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Abstract
This paper explores a new research problem of un-
supervised transfer learning across multiple spa-
tiotemporal prediction tasks. Unlike most existing
transfer learning methods that focus on fixing the
discrepancy between supervised tasks, we study
how to transfer knowledge from a zoo of unsuper-
visedly learned models towards another predictive
network. Our motivation is that models from dif-
ferent sources are expected to understand the com-
plex spatiotemporal dynamics from different per-
spectives, thereby effectively supplementing the
new task, even if the task has sufficient training
samples. Technically, we propose a differentiable
framework named transferable memory. It adap-
tively distills knowledge from a bank of memory
states of multiple pretrained RNNs, and applies it
to the target network via a novel recurrent struc-
ture called the Transferable Memory Unit (TMU).
Compared with finetuning, our approach yields
significant improvements on three benchmarks for
spatiotemporal prediction, and benefits the target
task even from less relevant pretext ones.

1. Introduction
Existing transfer learning methods mainly focus on how
to fix the discrepancy between supervised tasks. However,
unsupervised learning has achieved remarkable advances in
recent years and has become a hot topic in the deep learning
community. Then new questions arise: Is it necessary to do
transfer learning between unsupervised tasks, and how to
do it?

As a typical unsupervised learning paradigm, predictive
learning has shown great research significance in discov-
ering the underlying structure of unlabeled spatiotemporal
data without human supervision and learning generalizable
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deep representations from the consequences of complex
video events. The studies of the spatiotemporal predictive
learning can benefit many practical applications and down-
stream tasks, such as precipitation nowcasting (Shi et al.,
2015), traffic flow prediction (Xu et al., 2018), physical
scene understanding (Wu et al., 2017), early activity recog-
nition (Wang et al., 2019a), deep reinforcement learning
(Ha & Schmidhuber, 2018), and vision-based model pre-
dictive control (Finn & Levine, 2017). Different from all
the above work, in this paper, we explore how to transfer
knowledge from a zoo of pretrained models towards a novel
predictive learning task. Models from both the source and
target domains are trained to predict sequences of future
frames.

Transferring knowledge across these tasks is yet to be ex-
plored, but important. In many scenarios, deep networks
may suffer from the serious problem of long-tail data distri-
bution in the target domain. A natural solution is to finetune
another model that was well-pretrained with large-scale and
more effective training data. For example, when we train
precipitation forecasting models for arid areas, we may ex-
ploit the laws of weather changes that are learned from other
areas with abundant rainfall. However, it is a challenging
transfer learning problem, because, in the first place, not
all knowledge of the pretrained models can be directly ap-
plied to the target task due to the discrepancy of various
domains. After all, different areas may have their unique
climate characteristics. We have to explore how to distill
the transferable representations from the pretrained models
without labeled data. In the second place, with a zoo of
source models, we need to dynamically adjust their impact
on the training process of the target network.

To solve these problems, we propose a novel differentiable
framework named transferable memory along with the new
Transferable Memory Unit (TMU). Different from finetun-
ing, our approach enables the target model to adaptively
learn from a zoo of source models. It provides diverse un-
derstandings of the underlying, complex data structure of
the target domain. Technically, we perform unsupervised
knowledge distillation on the memory states of multiple pre-
trained recurrent networks, and then introduce a new gating
mechanism to dynamically find the transferable part of the
distilled representations. In this way, we use the spatiotem-
poral dynamics of source domains as the prior knowledge
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of the final predictive model, so it can focus more on the
domain-specific data structure on the target dataset. The
transferable memory framework significantly outperforms
previous transfer learning methods on three benchmarks
with nine sub-datasets: a synthetic flying digits benchmark,
a real-world human motion benchmark, and a precipitation
nowcasting benchmark.

The contributions of this paper are summarized as follows:

• We introduce a new research problem of unsupervised
transfer learning across multiple spatiotemporal pre-
diction tasks. It is challenging as the data distribution
of different domains can be distant, e.g., from various
data sources, or from synthetic data to real data.

• We propose a deep learning solution which features
the transferable memory and is shown effective for a
wide range of RNNs, including ConvLSTM (Shi et al.,
2015), PredRNN (Wang et al., 2017), MIM (Wang
et al., 2019b), and SAVP (Lee et al., 2019), covering
both deterministic and stochastic models.

• We validate the effectiveness of the proposed approach
on three benchmarks with a variety of data sources and
have a series of empirical findings. Unlike supervised
transfer learning where irrelevant source data may lead
to negative transfer learning effects, the proposed ap-
proach can adaptively transfer temporal dynamics from
source videos even if the content seems less relevant.

2. Related Work
2.1. Spatiotemporal Prediction

Due to the modeling capability of temporal dependencies,
the early literature suggested using RNN-based models for
spatiotemporal predictive learning (Ranzato et al., 2014;
Srivastava et al., 2015; Oh et al., 2015; De Brabandere et al.,
2016). Shi et al. (2015) proposed the convolutional LSTM
(ConvLSTM) that combines the advantages of the convo-
lutions and the LSTMs to capture the spatial and temporal
correlations simultaneously. Wang et al. (2017) introduced
the ST-LSTM that allows the memory state to be updated
across the stacked recurrent layers along a zigzag state tran-
sition path. Villegas et al. (2018) proposed a framework for
long-term video generation with a combination of LSTMs
and a pose estimation model. Wichers et al. (2018) extended
the work from Villegas et al. (2018) by learning hierarchical
video representations in an unsupervised manner. Finn et al.
(2016) presented a recurrent model based on ConvLSTM to
predict how the content of the pixels moves instead of esti-
mating the variations of the pixel values. Wang et al. (2019a)
introduced the E3D-LSTM that combines ST-LSTM, the
3D convolution, and a memory attentive module. It builds
a memory-augmented recurrent network that can capture

long-term video dynamics. Wang et al. (2019b) treated the
predictive learning task as a spatiotemporal non-stationary
process and proposed to reduce the non-stationarity by re-
placing the forget gate of ST-LSTM with an inner recurrent
structure. There are many other methods focusing on im-
proving the RNN-based predictive models for spatiotempo-
ral data (Kalchbrenner et al., 2017; Liu et al., 2017; Villegas
et al., 2017). Besides these deterministic video prediction
models, some recent literature explored the video prediction
problem by modeling the future uncertainty. These models
are either based on adversarial training (Mathieu et al., 2016;
Vondrick et al., 2016; Tulyakov et al., 2018) or variational
autoencoders (VAEs) (Babaeizadeh et al., 2018; Tulyakov
et al., 2018; Denton & Fergus, 2018), or both (Lee et al.,
2019; Villegas et al., 2019).

Note that most of the above models, including both stochas-
tic and non-stochastic models, are based on recurrent archi-
tectures such as LSTMs. Thus, in this paper, we focus on
finding a transfer learning approach particularly designed
for LSTM-based predictive networks, while most existing
transfer learning techniques are designed for CNNs.

2.2. Transfer Learning

Transfer learning focuses on storing knowledge while solv-
ing one problem and applying it to a different but related
problem (Long et al., 2015). The ImageNet (Deng et al.,
2009) pretrained CNNs have greatly benefited many com-
puter vision tasks such as image classification, object detec-
tion, and segmentation. Donahue et al. (2014) proposed a
method to leverage the pretrained models, which directly
trains a classifier upon the fixed, pretrained CNNs on the tar-
get dataset. Apart from the initialization with the pretrained
model, Li et al. (2018; 2019) presented several regulariza-
tion techniques to retain the features learned on the source
task, explicitly enhancing the similarity of the final model
and the initial one. Rebuffi et al. (2017; 2018) introduced
convolutional adapter modules upon pretrained ResNet (He
et al., 2016) or VGGNet (Simonyan & Zisserman, 2015)
that can adapt the domain-specific knowledge from novel
tasks. Liu et al. (2019) developed a model transfer frame-
work named knowledge flow, in which the knowledge is
transferred by intermediate features flowing from multiple
pretrained teacher CNNs to a randomly initialized student
CNN. To make the student CNN independent, it uses a cur-
riculum learning strategy and gently increases the weights
of features by the student compared to those by the teachers.

This work is also inspired by the idea of knowledge distil-
lation (Li et al., 2014; Hinton et al., 2015), which transfers
knowledge from larger models into smaller, faster models
without losing too much generalization ability. Romero et al.
(2015) and Zagoruyko & Komodakis (2017) proposed to
explicitly produce similar response patterns in the teacher
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Figure 1. An overview of the transferable memory framework, which learns a predictive network on the target dataset from M pretrained
networks that were collected from different sources. K is the number of the recurrent layers. Without loss of generality, we use the
ConvLSTM (Shi et al., 2015) for the source models, yet this framework can be applied to any variants of LSTMs.

and student feature maps. The above work and many other
papers (Huang & Wang, 2017; Yim et al., 2017; Kim et al.,
2018; Koratana et al., 2019; Ahn et al., 2019) mainly focus
on distilling knowledge to solve the model compression
problem within the same dataset. These methods were not
designed for cross-domain transfer learning and are there-
fore different from our approach. Gupta et al. (2016) in-
troduced a cross-modal knowledge distillation technique to
transfer supervision between images from different modali-
ties, while our transfer learning approach is unsupervised.

In contrast with all the above transfer learning methods de-
signed for CNNs, we focus on the transfer learning problem
for predictive RNNs. This problem is under-explored, es-
pecially in spatiotemporal scenarios. In the field of natural
language processing, Cui et al. (2019) proposed a recur-
rent transfer learning framework that transfers hidden states
from the teacher RNN to the student RNN. However, upon
training, this method still relies on the pretrained teacher
models, and thus requires extra memory footprint. Different
from this work, our paper presents a novel framework for a
new problem, i.e., transferring knowledge across multiple
unsupervised prediction tasks for spatiotemporal data.

3. Method
In this section, we provide a solution to the problem of dis-
tilling knowledge from unsupervisedly pretrained predictive
networks, and transferring it to a new spatiotemporal pre-
diction task. Different from most previous work in transfer
learning, our approach is specifically designed for RNN
models and unlabelled sequential data. Below we introduce
the overall transferable memory framework, a new recurrent
unit named TMU, and the multi-task training objective for
knowledge distillation and sequence prediction.

3.1. Transferable Memory Framework

Why transfer memory representations? The memory
state of the LSTM unit (Hochreiter & Schmidhuber, 1997)

can latch the gradients during the training process of the
recurrent networks, to alleviate the gradient vanishing prob-
lem, thereby storing valuable information about the underly-
ing temporal dynamics. In spatiotemporal predictive learn-
ing scenarios, the effectiveness of the memory states has
also been explored and validated (Wang et al., 2017). They
are important for multi-step future prediction as they con-
vey long-term features of the spatiotemporal data. Besides,
training an LSTM-based model in the predictive learning
manner, i.e., one of the unsupervised learning paradigms,
has been empirically proved to successfully learn concept-
level representations that can benefit downstream supervised
tasks (Wang et al., 2019a). Therefore, we assume that the
predictive networks that were pretrained on different unla-
beled datasets can provide knowledge of their source do-
mains, and understand the spatiotemporal dynamics of a
new task from different perspectives. Now, the question is
how to effectively leverage the memory representations of
multiple pretrained models. Figure 1 shows our proposed
transferable memory framework, which enables the student
recurrent network to learn from M existing teacher models.

Memory bank. Without loss of generality, we use Con-
vLSTM (Shi et al., 2015) as the building block of the source
models. Note that the proposed framework can be easily
applied to other forms of future frames prediction models,
such as the Spatiotemporal LSTM (Wang et al., 2017), the
Video Pixel Network (Kalchbrenner et al., 2017), the Eide-
tic LSTM (Wang et al., 2019a), etc. In this paper, we do
not focus on discussing how to pretrain the source models.
During the training process of the target network on a new
dataset, the parameters of the source models are frozen, and
they are not taken as the initialization of the target model.
In other words, the target model is trained from scratch. It
gradually obtains knowledge from the pretrained networks
via knowledge distillation. Both the source models and the
target one take the same input sequences. Formally, at time
step t, each unit of the source model computes

Hm
t , Cmt = ConvLSTM

(
Xt,Hm

t−1, Cmt−1

)
, (1)
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Figure 2. The architecture of the TMU that is used in the target predictive network. It unsupervisedly distills knowledge (in terms of
diverse representations of the spatiotemporal dynamics) from a bank of memory states of a zoo of pretrained models. Here, M is the
number of pretrained models, and amt is the transfer gate that corresponds to the m-th pretrained model.

where Xt is the input state that can be an input frame or the
hidden state from the lower layer. Hm

t , Cmt are respectively
the hidden state and memory state of the m-th pretrained
networks, where m ∈ {1, . . . ,M}. Then we obtain the
memory bank in forms of

{
C1t , . . . , CMt

}
, which contains

diverse representations of the spatiotemporal dynamics, part
of which can contribute to the target task.

3.2. Transferable Memory Unit

The Transferable Memory Unit (TMU) is the basic building
block of the target network (see Figure 1). It is designed
to distill transferable features from the memory bank and
dynamically adjust the influence of all source networks. As
shown in Figure 2, the main architecture of TMU has three
components: a memory distiller module, a set of transfer
gate, and the basic operations following the ConvLSTM
(Shi et al., 2015), which are specified as follows:

gt = tanh (Wxg ∗ Xt +Whg ∗ Ht−1 + bg)

it = σ (Wxi ∗ Xt +Whi ∗ Ht−1 +Wci � Ct−1 + bs)

ft = σ (Wxf ∗ Xt +Whf ∗ Ht−1 +Wcf � Ct−1 + bf )

C̃t = ft � Ct−1 + it � gt,
(2)

where σ is sigmoid activation function, ∗ and � denote
the convolution operator and the Hadamard product respec-
tively. Unless otherwise mentioned, all through this text,
the convolutional filters are 5× 5. The use of the input gate
it, forget gate ft, and input-modulation gate gt controls the
information flow towards the intermediate memory state
C̃t. Here we build TMU upon ConvLSTM for the sake of
convenience, yet the proposed memory distiller and transfer
gate, being displayed as a whole by the gray box in Figure 2,
can be seamlessly integrated into any forms of LSTM-like
recurrent units.

Memory distiller module. The memory distiller module
is largely inspired by recent advances on compressing many
visual domains in relatively small networks, with substan-
tial parameter sharing between them (Rebuffi et al., 2017;
2018), which have also been shown to mitigate the forget-
ting problem of finetuning. However, different from these
existing methods that were particularly designed for trans-
ferring knowledge from a single source model to multiple
target models, our memory distiller is used for vice-versa.
As shown in Figure 2, TMU contains M memory distiller
modules, corresponding to the number of source models.
Each memory distiller takes C̃t as input, and employs a 1×1
convolutional layer parametrized as Wm

distill for each pretext
task, followed by layer normalization (Ba et al., 2016):

Ĉmt = LayerNorm
(
Wm

distill ∗ C̃t
)
. (3)

We then use the generated features {Ĉ1t , . . . , ĈMt } to dis-
till knowledge from the memory bank mentioned above
{C1t , . . . , CMt }. Over all pretext tasks and across the time
horizon, we minimize the Euclidean distance between pairs
of memory states:

Ldistill =

M∑
s=1

T∑
t=1

‖Ĉmt − Cmt ‖22. (4)

The distillation loss enables TMU to learn separately from
multiple teachers, thereby gaining substantial prior knowl-
edge of the complex spatiotemporal dynamics. In this way,
throughout the training process, the student network can
focus on more domain-specific patterns of the target dataset.
Noticeably, the target memory Ĉmt would not converge to the
mean of source memories as in Eq. (3) we have M sets of
parametersWm

distill to match each Ĉmt with the corresponding
source memory.
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Transfer gate. However, two problems remain for learn-
ing from multiple pretext domains. First, not all memory
representations by the source models are transferable and
yield a positive effect to the target task. Second, the source
models should not equally contribute to the target one. To
further solve these problems, we propose to learn a set of
transfer gates {a1t , . . . , aMt } to adaptively control the infor-
mation flow from the previously distilled memory represen-
tations {Ĉ1t , . . . , ĈMt } to the final memory state Ct. Finally,
TMU obtains the output hidden state as follows.

amt = σ (Wxm ∗ Xt +Whm ∗ Ht−1 + bm)

Ct = C̃t +
M∑

m=1

(
amt � Ĉmt + (1− amt )� C̃t

)
ot = σ (Wxo ∗ Xt +Who ∗ Ht−1 +Wco � Ct + bo)

Ht = ot � tanh (Ct) .

(5)

The complete computation of TMU consists of Eq. (2),
Eq. (3), and Eq. (5). When amt approaches 1, more pretext
knowledge is distilled from the m-th source domain to the
learned model. By controlling the states in {a1t , . . . , aMt },
TMU can dynamically adjust the influence of M sources.

3.3. Unsupervised Training Objective

All the training procedures of the transfer memory frame-
work are unsupervised. The final training objective is:

Lfinal =

T∑
t=2

‖X̂t −Xt‖22 + β

K∑
k=1

Lk
distill, (6)

where X̂t is the generated frame, k ∈ {1, . . . ,K} is the
index of the TMU layer, Lk

distill is defined in Eq. (4), and β
is a hyper-parameter tuned on the target validation set. It
is worth noting that we do not use any parameters to the
distillation loss terms of different source domains in Eq. (4).
It is because that due to Eq. (3), {Ĉ1t , . . . , ĈMt } can learn
domain-specific patterns so that C̃t can focus on common
ones. Further, in Eq. (5), the transfer gates {a1t , . . . , aMt }
dynamically adjust the significance of all source domains.

4. Experiments
We study unsupervised transfer learning performed between
different spatiotemporal prediction tasks, within or across
the following three benchmarks:

Flying digits. This synthetic benchmark has three Moving
MNIST datasets with respectively 1, 2, or 3 flying digits
randomly sampled from the static MNIST dataset. Each
dataset contains 10,000 training sequences, 2,000 validation
sequences, and 3,000 testing sequences. Each sequence
consists of 20 consecutive frames, 10 for the input, and 10
for the prediction. Each frame is of the resolution of 64×64.

Human motion. This benchmark is built upon three hu-
man action datasets with real-world videos: Human3.6M
(Ionescu et al., 2013), KTH (Schuldt et al., 2004), and Weiz-
mann (Blank et al., 2005). Specifically, we use the Hu-
man3.6M dataset as the target domain, which has 2,220
sequences for training, 300 for validation, and 1,056 for
testing. We follow (Wang et al., 2019b) to resize each RGB
frame to the resolution of 128× 128, and make the model
predict 4 future frames based on 4 previous ones.

Precipitation nowcasting. Precipitation nowcasting is a
meaningful application of spatiotemporal prediction. This
benchmark consists of three radar echo datasets1: two of
them are from separate years of Guangzhou, and the other
one is from Beijing, which is a more arid place. The
Guangzhou2016 dataset has 33,769 consecutive radar ob-
servations, collected every 6 minutes. The Guangzhou2014
dataset has 9,998 observations. Though the data sources
are different, these two Guangzhou datasets both contain
the rainy seasons of the city. We use the Beijing dataset
as the target domain, which suffers from a large amount of
ineffective training data due to the lack of rain. The Beijing
dataset has 55,466 observations for training, 3,000 for vali-
dation, and 12,711 for testing. All frames are resized to the
resolution of 256× 256.

Implementation. On all benchmarks, our final model has
four stacked TMU layers with 64-channel hidden states.
We use the ADAM optimizer (Kingma & Ba, 2015) with a
starting learning rate of 0.001 for training the TMU network.
Unless otherwise mentioned, the batch size is set to 8, and
the training process is stopped after 80,000 iterations. All
experiments are implemented in PyTorch (Paszke et al.,
2019) and conducted on NVIDIA TITAN-RTX GPUs. We
run all experiments three times and use the average results
for quantitative evaluation. As for the dimensionality of the
tensors, all the dimensions of the source and target states
should be matched, including the number of channels (P ),
width (W ), and height (H). For example, on the human
motion benchmark, both Cm

t (source, KTH/WEI) and Ct

(target, Human3.6M) are 3D tensors of 64× 32× 32. We
use a standard frame sub-scaling method (Shi et al., 2015)
to transform the input images from P ×W ×H to (P ·K ·
K)× (W/K)× (H/K) and control K to make W/K and
H/K constant across source and target domains.

4.1. Flying Digits Benchmark

Setups. We take the 3-digits Moving MNIST dataset as
the target domain. Due to frequent occlusions and complex
motions, it is challenging to accurately predict the trajecto-

1Predicting the shapes and trajectories of future radar echoes
is the foundation of accurate precipitation nowcasting (Shi et al.,
2015; 2017; Wang et al., 2017).
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Table 1. Quantitative results on the flying digits benchmark. We use the 3-digits subdataset as the target domain. A lower MSE or a higher
SSIM per frame indicates better prediction results. All compared models are built upon the same ConvLSTM architecture.

METHOD SOURCES MSE SSIM #PARAMETERS RUNTIME
TRAIN TEST TRAIN TEST

CONVLSTM (SHI ET AL., 2015) NONE 120.5 0.712 3.0M 3.0M 0.35S/BATCH 16.3MS/SEQ
TMU (TRAIN FROM SCRATCH) NONE 120.6 0.715 - - - -

TMU (FINETUNE) 1 DIGIT 114.8 0.720 3.0M 3.0M 0.35S/BATCH 16.3MS/SEQ
TMU (FINETUNE) 2 DIGITS 110.0 0.732 - - - -
L2SP (LI ET AL., 2018) 1 DIGIT 118.5 0.703 3.0M 3.0M 0.39S/BATCH 16.3MS/SEQ
L2SP (LI ET AL., 2018) 2 DIGITS 116.4 0.705 - - - -
KNOWLEDGE FLOW (LIU ET AL., 2019) BOTH 107.2 0.748 10.1M 4.1M 0.54S/BATCH 21.7MS/SEQ
ART (CUI ET AL., 2019) BOTH 105.0 0.734 10.1M 10.1M 0.73S/BATCH 25.3MS/SEQ

TMU (MEMORY TRANSFER) 1 DIGIT 96.1 0.762 - - - -
TMU (MEMORY TRANSFER) 2 DIGITS 97.3 0.756 - - - -
TMU (MEMORY TRANSFER) BOTH 94.7 0.777 9.5M 3.6M 0.43S/BATCH 17.7MS/SEQ

Inputs

TMU on PredRNN (memory transfer), sources: 1&2 digits

PredRNN (Train from scratch )

TMU on ConvLSTM (memory transfer), sources: 1&2 digits

ConvLSTM (Train from scratch )

Ground truth future

Figure 3. Predicted frames on the flying digits benchmark. Our
transfer learning approach can consistently outperform the baseline
predictive networks being trained from scratch.

ries of all three digits. We expect to improve this task by
transferring the understandings of the digit’s motion from
the existing models that were pretrained with fewer digits.

Comparing with training from scratch. Table 1 and
Figure 3 respectively give the quantitative and qualitative
results of our approach. Compared with training a model on
the target dataset from scratch, it gains significant improve-
ments by learning from pretrained models on 1&2-digits
Moving MNIST. Besides, by comparing the training-from-
scratch TMU model without any pretrained models with
the training-from-scratch ConvLSTM network (the first two
rows in Table 1), we may conclude that it is the memory

transfer mechanism that improves the final results, instead
of the engineering on the network architecture or the in-
creased number of model parameters.

Comparing with previous transfer learning methods.
Also shown in Table 1, our approach outperforms finetuning
by 17.5% in MSE. It also achieves better results than exist-
ing transfer learning approaches, including L2SP (Li et al.,
2018), Knowledge Flow (Liu et al., 2019), and ART (Cui
et al., 2019). Furthermore, compared with finetuning, TMU
with two sources only increases the number of parameters
slightly at test time but improves MSE and SSIM remark-
ably. Compared with ART (Cui et al., 2019), which is also
particularly designed for RNNs, our approach only requires
about one-third of the number of model parameters at test
time. Thus, it does not increase the memory usage linearly
with the growth of sources. As for the training stage, all
multi-source transfer learning models are forced to yield
more parameters. A TITAN-RTX GPU can hold up to 41
source ConvLSTM models and a target TMU model, which
is sufficient for most practical application scenarios.

Backbones. Our TMU can also be applied to other LSTM-
based predictive models. We use PredRNN (Wang et al.,
2017) and MIM (Wang et al., 2019b) to take the place of
the ConvLSTM network, covering both deterministic and
stochastic models. Quantitative results and prediction exam-
ples are respectively shown in Table 2 and Figure 3. The
proposed TMU network achieves better results than directly
finetuning the pretrained PredRNN or MIM on the 3-digits
dataset. It significantly improves the state-of-the-art MIM
model in all metrics.

Hyper-parameters. Last but not least, we show the sensi-
tivity analysis of the training hyper-parameter β in Figure 4.
It achieves the best results at 0.1 on the flying digits bench-
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Table 2. MSE/SSIM results of TMU upon different network back-
bones. We take the 3-digits Moving MNIST as the target domain.

METHOD SOURCES PREDRNN MIM

FROM SCRATCH NONE 93.4/0.802 89.0/0.783
FINETUNE 1 DIGIT 91.1/0.811 84.5/0.794
FINETUNE 2 DIGITS 89.4/0.816 83.2/0.801
MEM. TRANSFER BOTH 84.9/0.828 75.3/0.838
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Figure 4. Sensitivity analysis of the hyper-parameter (β) for the
unsupervised training objective on the flying digits benchmark.

mark and is robust and easy to tune in the range of 10−3 to
1. We have similar results on the other two benchmarks and
thus set β to 0.1 throughout this paper.

4.2. Human Motion Benchmark

Setups. Compared with the KTH and Weizmann datasets
with limited variability (they are small sets of backgrounds
and actions, performed by a small group of individuals),
the Human3.6M dataset contains larger amounts of data
and more complex human motions, which makes it difficult
to predict the future frames. On this benchmark, we take
Human3.6M as the target domain and the other two datasets
as the source domains. We use ConvLSTM (Shi et al., 2015),
MIM (Wang et al., 2019b), and SAVP (Lee et al., 2019) as
the network backbone of TMU, covering both deterministic
and stochastic models.

Inputs

Train from
scratch

Finetune
from

Weizmann

Finetune
from KTH

Memory transfer
from KTH &
Weizmann

Ground truth & Predictions

t=4 t=5 t=6 t=7 t=8

…

Figure 5. Prediction examples on Human3.6M by TMU networks
based on ConvLSTM. Our method obtains the sharpest predictions.

Results. We show the quantitative evaluations in Table 3.
The baseline TMU network, which takes either of the KTH
or Weizmann datasets as the source domain, consistently
outperforms the finetuning counterpart by large margins.
The final TMU network that learns from both pretrained
models further improves the prediction quality on the target
task, which is because of the effectiveness of the transfer
gates. Besides, by using MIM and SAVP as the network
backbones, we validate that TMU can outperform strong
competitors that are pretrained well on the source datasets.
Moreover, we can see from Figure 5 that the generated
frames of the finetuning models largely suffer from blur ef-
fect, indicating that they are unable to capture a clear trend
of motion. By contrast, the TMU network provides the
sharpest results. We may conclude that the pretrained mod-
els from domains of plain backgrounds and simple actions
can facilitate the training process of the model on a more
challenging task, and the proposed transferable memory
framework can enhance this positive effect.

Table 3. Quantitative results averaged per frame on Human3.6M using different network backbones, including ConvLSTM (Shi et al.,
2015), MIM (Wang et al., 2019b), and SAVP (Lee et al., 2019). For SAVP, we take the best one in SSIM from 100 prediction samples.

MODEL METHOD SOURCES
CONVLSTM MIM SAVP

MSE SSIM MSE SSIM MSE SSIM

TMU

TRAIN FROM SCRATCH NONE 504.2 0.762 430.5 0.790 465.2 0.792
FINETUNE KTH 472.0 0.778 420.1 0.796 453.7 0.808
FINETUNE WEIZMANN 476.4 0.774 422.9 0.793 458.1 0.805
MEMORY TRANSFER KTH & WEIZMANN 442.5 0.794 394.2 0.813 430.2 0.831
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Figure 6. Prediction examples on the Beijing radar echo dataset
by TMU networks based on ConvLSTM. We mainly compare the
predicted high-intensity areas in yellow and red.

4.3. Precipitation Nowcasting Benchmark

Setups. We forecast the next 10 radar echo frames from
the previous 10 observations, covering weather conditions
in the next hour. Due to the lack of effective training
data in the Beijing dataset, we take Guangzhou2014 and
Guangzhou2016 as the source domains and pretrain mod-
els on these two datasets. Different from the previous ex-
periments, the convolutional filters inside both the source
ConvLSTM networks and the target TMU network are 3×3.

Results. In addition to MSE and MAE, here we also eval-
uate the predicted radar echoes using the Critical Success
Index (CSI), which is defined as Hits

Hits + Misses + FalseAlarms .
Here, hits correspond to the true positive, misses correspond
to the false positive, and false alarms correspond to the false
negative. We set the alarm threshold to 20 dBZ. Compared
with MSE and MAE, this metric is particularly sensitive
to the high-intensity echoes. A higher CSI indicates better
prediction results. As shown in Table 4, the TMU network
remarkably outperforms the finetuning method in all evalu-
ation metrics. Figure 6 provides showcases of predictions
taking the Guangzhou radar echo datasets as source domains.
Note that the ConvLSTM network without the help of the
transferable memory framework makes fuzzy predictions,
while the final TMU model forecasts the positions of high-
intensity echoes (areas in red and yellow) more accurately.

4.4. Further Analysis and Empirical Findings

What if the target domain has sufficient training data?
Based on the previous studies of transfer learning performed
between supervised tasks, someone may concern that the
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Figure 7. Averaged MSE per frame with respect to different num-
bers of training sequences of the target domain of the flying digits.

effect of transferable memory mechanism will degenerate
when the number of training samples increases for the target
domain. We explore this problem by training target models
with respectively 25%, 50%, 75%, 100%, and 200% train-
ing sequences for the 3-digits Moving MNIST, and evaluate
all the models on the same set (see Figure 7). We observe
the TMU network consistently outperforms the ones trained
from scratch or finetuned upon the source models. Specif-
ically, in the case that the target set has twice the training
samples (20,000) than those in the standard settings, the
finetuning method fails to remarkably improve the training-
from-scratch baseline, while our approach achieves larger
improvements. We may conclude that the main cause is
that TMU enables successful distillation of the diverse un-
derstandings about the complex spatiotemporal dynamics,
which can be a meaningful supplement to the target domain.

Finding favorable transfer schemes. We then explore
the transfer schemes that can maximize the effectiveness of
our method. What assumptions does our method make on
the pretrained models? Table 6 provides the results of differ-
ent transfer schemes towards the KTH dataset. We observe
that although the pretrained model on the KTH dataset can
greatly help the training process on the Human3.6M dataset
(SSIM: 0.762→ 0.790, Table 3), conversely, the pretrained
model from Human3.6M only has a slight effect on the
KTH result (SSIM: 0.771 → 0.774, Table 6). There are
two possible causes: the first is that representations learned
from the complex Human3.6M dataset do not have strong
transferability; the second is that the training-from-scratch
model on the KTH dataset is strong enough and cannot be
further improved. To find the reason, we pretrain a model
on the 2-digits Moving MNIST dataset and apply it to the
training process on KTH. We observe that such a transfer
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Table 4. Comparisons of transfer learning schemes within or across benchmarks using the Beijing radar echo dataset as the target domain.

MODEL METHOD SOURCES MSE MAE CSI

TMU ON CONVLSTM

TRAIN FROM SCRATCH NONE 110.5 219.9 0.348
FINETUNE GUANGZHOU2014 96.6 198.3 0.368
FINETUNE GUANGZHOU2016 94.9 197.3 0.375
MEMORY TRANSFER 2-DIGITS MNIST & KTH 91.8 192.8 0.382
MEMORY TRANSFER GUANGZHOU2014 87.4 193.3 0.374
MEMORY TRANSFER GUANGZHOU2016 84.7 191.6 0.384
MEMORY TRANSFER GUANGZHOU2014 & 2016 77.3 184.2 0.403
MEMORY TRANSFER GUANGZHOU & MNIST & KTH 77.1 181.3 0.408

Table 5. The averages of transfer gate on the Beijing radar echo dataset. The model corresponds to the last one in Table 4, where two
relevant sources and two less relevant sources are used. The results show the significance of each source domain to the target domain.

METRIC GUANGZHOU2014 GUANGZHOU2016 2-DIGITS MNIST KTH

VALUES OF TRANSFER GATE (amt ) 0.60 0.61 0.43 0.39

Table 6. Results of different transfer schemes using KTH as the
target domain. All models are built upon the ConvLSTM network.

METHOD SOURCE SSIM

TRAIN FROM SCRATCH NONE 0.771
MEMORY TRANSFER HUMAN3.6M 0.774
MEMORY TRANSFER 2-DIGITS MNIST 0.808

scheme obtains remarkable improvements over the baseline
(SSIM: 0.771 → 0.808). Therefore, we can rule out the
validity of the second hypothesis. Since the Moving MNIST
dataset only contains deterministic motions, the pretrained
model yields less uncertainty about the future spatiotempo-
ral dynamics. We may conclude that a favorable transfer
scheme is to use the knowledge of better pretrained, more
deterministic source models, and thus the final model can
focus more on the domain-specific mode of target data.

Will content-irrelevant source domains benefit the tar-
get predictive learning task? We take the radar echo
dataset from the city of Beijing as the target domain, and the
seemingly irrelevant 2-digits Moving MNIST dataset and
KTH dataset as the source domains. From Table 4, we find
that using KTH and Moving MNIST pretrained models can
greatly help the prediction results, which outperforms the
training-from-scratch TMU baseline (CSI: 0.348→ 0.382).
Such results might be counter-intuitive, yet important to our
understandings of the transferability of spatiotemporal mod-
eling. Further, we take both the relevant Guangzhou2014
and Guangzhou2016 datasets as well as the seemingly irrel-
evant Moving MNIST dataset and KTH dataset as source
domains. As opposed to our common sense for super-
vised transfer learning, TMU benefits from the less relevant
sources, which are unrelated in image appearance but re-

lated in temporal dynamics (can be transferable). We then
use the averages of amt to analyze the significance of each
source domain. As shown in Table 5, TMU has higher amt
for the Guangzhou radar echo datasets, indicating that it
can adaptively control the influence of different sources
via the transfer gates. Unlike supervised transfer learning,
where irrelevant source data may cause negative effects,
our approach can associate a variety of source domains and
transfer temporal dynamics even if the content of source
videos seems irrelevant.

5. Conclusion and Discussion
In this paper, we studied a new unsupervised transfer learn-
ing problem of using multiple pretrained models to im-
prove the performance of a new spatiotemporal predictive
learning task. We used the term unsupervised for two rea-
sons. First, we only explored the transfer learning cases
between multiple unsupervised tasks. Second, the pro-
posed method does not require any labels. We proposed
the transferable memory framework, which transfers knowl-
edge from multi-source RNNs and yielded better results
than finetuning. Our approach was shown effective even in
the case that there is adequate data for the target domain,
or the pretrained models were collected from less relevant
domains. Code and datasets are made available at https:
//github.com/thuml/transferable-memory.

One potential work in the future is to explore how to transfer
knowledge between unsupervised tasks beyond predictive
learning. Another one is that how we can transfer knowledge
from unsupervisedly learned RNN models to CNN models
of the downstream supervised task. Our approach is also
likely to be effective for supervised tasks, though it may
not be the best choice when labels are available. It is worth
exploring, but beyond the scope of the paper.

https://github.com/thuml/transferable-memory
https://github.com/thuml/transferable-memory
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