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Abstract

Domain Adaptation (DA) enables transferring a learning machine from a labeled
source domain to an unlabeled target one. While remarkable advances have been
made, most of the existing DA methods focus on improving the target accuracy
at inference. How to estimate the predictive uncertainty of DA models is vital for
decision-making in safety-critical scenarios but remains the boundary to explore. In
this paper, we delve into the open problem of Calibration in DA, which is extremely
challenging due to the coexistence of domain shift and the lack of target labels.
We first reveal the dilemma that DA models learn higher accuracy at the expense
of well-calibrated probabilities. Driven by this finding, we propose Transferable
Calibration (TransCal) to achieve more accurate calibration with lower bias and
variance in a unified hyperparameter-free optimization framework. As a general
post-hoc calibration method, TransCal can be easily applied to recalibrate existing
DA methods. Its efficacy has been justified both theoretically and empirically.

1 Introduction

Deep neural networks (DNNs) achieve the state of the art predictive accuracy in machine learning tasks
with the benefit of powerful ability to learn discriminative representations [35, 11, 57]. However, in
real-world scenarios, it is hard (intolerably time-consuming and labor-expensive) to collect sufficient
labeled data through manual labeling, causing DNNs to confront challenges when generalizing the
pre-trained model to a different domain with unlabeled data. To tackle this challenge, researchers
propose to transfer knowledge from a different but related domain by leveraging the readily-available
labeled data, a.k.a. domain adaptation (DA) [44].

There are mainly two types of domain adaptation formulas: covariate shift [44, 37, 29, 13] and
label shift [27, 2, 1], while we focus on the former in this paper since it appears more natural in
recognition tasks and attracts more attention in the literature. Early domain adaptation methods
bridge the source and target domains mainly by learning domain-invariant representations [37, 16]
or instance importances [23, 15]. After the breakthrough in deep neural networks (DNNs) has been
achieved, they are widely believed to be able to learn more transferable features [35, 11, 57, 61],
since they disentangle explanatory factors of variations. Recent works in deep domain adaptation can
be mainly grouped into two categories: 1) moment matching. These methods align representations
across domains by minimizing the discrepancy between feature distributions [51, 29, 31, 32, 28];
2) adversarial training. These methods adversarially learn transferable feature representations by
confusing a domain discriminator in a two-player game [14, 50, 30, 55, 60].

While numerous domain adaptation methods have been proposed, most of them mainly focus on
improving the accuracy in the target domain but fail to estimate the predictive uncertainty, falling
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Figure 1: Left: A comparison between IID Calibration with TransCal, where φ denotes the deep
model; Right: an observation on the accuracy and ECE of various DA methods (12 transfer tasks of
Office-Home [52] with ResNet-50 [22]), indicating that DA models learn higher accuracy than the
SourceOnly ones at the expense of well-calibrated probabilities. See more results in D.1 of Appendix.

short of a miscalibration problem [20]. The accuracy of a deep adapted model constitutes only
one side of the coin, here we delve into the other side of the coin, i.e. the calibration of accuracy
and confidence, which requires the model to output a probability that reflects the true frequency
of an event. For example, if an automated diagnosis system says 1,000 patients have lung cancer
with probability 0.1, approximately 100 of them should indeed have lung cancer. Calibration is
fundamental to deep neural models and of great significance for decision-making in safety-critical
scenarios. With built-in [12, 25] or post-hoc [42, 20] recalibration methods, the confidence and
accuracy of deep models can be well-calibrated in the independent and identically distributed (IID)
scenarios. However, it remains unclear how to maintain calibration under dataset shifts, especially
when we do not have labels from the target dataset, as in the general setting of Unsupervised Domain
Adaptation (UDA). We identify two obstacles in the way of applying calibration to UDA:

• The lack of labeled examples in the target domain. We know that the existing successful
post-hoc IID recalibration methods mostly rely on ground-truth labels in the validation set to
select the optimal temperature [42, 20]. However, since ground-truth labels are not available
in the target domain, it is not feasible to directly apply IID calibration methods to UDA.

• Dataset shift entangled with the miscalibration of DNNs. Since DNNs are believed to learn
more transferable features [35, 57], many domain adaptation methods embed DNNs to
implicitly close the domain shift and rely on DNNs to achieve higher classification accuracy.
However, DNNs are prone to over-confidence [20], falling short of a miscalibration problem.

To this end, we study the open problem of Calibration in DA, which is extremely challenging due to
the coexistence of the domain gap and the lack of target labels. To figure out the calibration error
on the target domain of DA models, we first delve into the predictions and confidences of the target
dataset. By calculating the target accuracy and ECE [20] (a calibration error measure defined in 3.1)
with various domain adaptation models before calibration, we found something interesting. As shown
in the right panel of Figure 1, the accuracy increases from the weakest SourceOnly [22] model to the
latest state-of-the-art MDD [60] model, while the ECE becomes larger as well. That is, after applying
domain adaptation methods, miscalibration phenomena become severer compared with SourceOnly
model, indicating that the domain adaptation models learn higher classification accuracy at the
expense of well-calibrated probabilities. This dilemma is unacceptable in safety-critical scenarios, as
we need higher accuracy while maintaining calibration. Worse still, the well-performed calibration
methods in the IID setting cannot be directly applied to DA due to the domain shift.

To tackle the dilemma between accuracy and calibration, we propose a new Transferable Calibration
(TransCal) method in DA, achieving more accurate calibration with lower bias and variance in a
unified hyperparameter-free optimization framework, while a comparison with IID calibration is
shown in the left panel of Figure 1. Specifically, we first define a new calibration measure, Importance
Weighted Expected Calibration Error (IWECE) to estimate the calibration error in the target domain
in a transferable calibration framework. Next, we propose a learnable meta parameter to further
reduce the estimation bias from the perspective of theoretical analysis. Meanwhile, we develop a
serial control variate method to further reduce the variance of the estimated calibration error. As
a general post-hoc calibration method, TransCal can be easily applied to recalibrate existing DA
methods. This paper has the following contributions:

• We uncover a dilemma in the open problem of Calibration in DA: existing domain adaptation
models learn higher classification accuracy at the expense of well-calibrated probabilities.
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• We propose a Transferable Calibration (TransCal) method, achieving more accurate calibra-
tion with lower bias and variance in a unified hyperparameter-free optimization framework.

• We conduct extensive experiments on various DA methods, datasets, and calibration metrics,
while the effectiveness of our method has been justified both theoretically and empirically.

2 Related Work

2.1 Domain Adaptation

There are mainly two types of domain adaptation formulas: covariate shift [44, 37, 29, 13] and label
shift [27, 2, 1], while we focus on the former in this paper since it appears more natural in recognition
tasks and attracts more attention in the literature. Existing domain adaptation methods can be mainly
grouped into two categories: moment matching and adversarial training. Moment matching methods
align feature distributions across domains by minimizing the distribution discrepancy, in which
Maximum Mean Discrepancy [19] is adopted by DAN [29] and DDC [51], and Joint Maximum Mean
Discrepancy is utilized by JAN [32]. Motivated by Generative Adversarial Networks (GAN) [17],
DANN [14] introduces a domain discriminator to distinguish the source features from the target ones,
which are generated by the feature extractor. The domain discriminator and feature extractor are
competing in a two-player minimax game. Further, CDAN [30] conditions the adversarial domain
adaptation models on discriminative information conveyed in the classifier predictions. MADA
[39] uses multiple domain discriminators to capture multimodal structures for fine-grained domain
alignment. ADDA [50] adopts asymmetric feature extractors while MCD [47] employs two classifiers
consistent across domains. MDD [60] proposes a new domain adaptation margin theory and achieves
an impressive performance. TransNorm [54] tackles domain adaptation from a new perspective of
designing a transferable normalization layer. Though numerous DA methods have been proposed,
most of them focus on improving target accuracy and rare attention has been paid to the predictive
uncertainty, causing a miscalibration between accuracy and confidence.

Table 1: Comparisons among calibration methods for unsupervised domain adaptation (UDA).

Calibration Method works with
domain shift

works without
target label

Bias
Reduction

Variance
Reduction

Temp. Scaling [20] 7 7 7 7
MC-dropout [12] 3 7 7 7
CPCS [38] 3 3 7 7
TransCal (proposed) 3 3 3 3

2.2 Calibration

Among binary calibration methods, Histogram Binning [58] is a simple non-parametric one with either
equal-width or equal-frequency bins; Isotonic Regression [59] is a strict generalization of histogram
binning by jointly optimizing the bin boundaries and bin predictions; Differently, Platt Scaling [42]
is a parametric one that transforms the logits of a classifier to probabilities. When extended to
multiclass, there are two types of methods. 1) built-in methods: Monte Carlo dropout (MC-dropout)
[12] is popular as it simply uses Dropout [48] during testing phase to estimate predictive uncertainty.
Later, [25] finds out that the ensembles of neural networks can work. Further, Stochastic Variational
Bayesian Inference (SVI) methods for deep learning [5, 33, 56] are shown effective. However, built-in
methods require to modify the classifier learning algorithm or training procedure, which are complex
to apply in DA. Thus, we prefer 2) post-hoc approaches, including various multi-class extensions of
Platt scaling [42]: matrix scaling, vector scaling and temperature scaling [20]. Though remarkable
advances of IID calibration are witnessed, it remains unclear how to maintain calibration under dataset
shifts [24], especially when the target labels are unavailable in UDA case. Recently, [36] finds that
traditional post-hoc IID recalibration methods such as temperature scaling fail to maintain calibration
under distributional shift. A recent paper (CPCS) [38] considering calibration under dataset shift uses
importance weighting to correct for the shift from the source to the target distribution and applies
domain adaptation as a base tool for alignment, while we focus on how to maintain calibration in DA.
A detailed comparison of typical calibration methods is shown in Table 1.
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3 Approach

Let x denote the input of the network, y be the label and d be the Bernoulli variable indicating to
which domain x belongs. In our terminology, the source domain distribution is p(x) and the target
domain distribution is q(x). We are given a labeled source domain S =

{(
xis,y

i
s

)}ns
i=1

with ns
samples (d = 1), and an unlabeled target domain T =

{(
xit
)}nt
i=1

with nt samples (d = 0). Similar
to IID calibration, S is first partitioned into Str =

{(
xitr,y

i
tr

)}ntr
i=1

and Sv =
{(

xiv,y
i
v

)}nv
i=1

. In this
paper, we proposed a new Transferable Calibration (TransCal) method in DA under the well-known
covariate shift assumption, i.e., the equation p(y|x) = q(y|x) is held.

3.1 IID Calibration

Calibration Metrics. Given a deep neural model φ (parameterized by θ) which transforms the
random variable input X into the class prediction Ŷ and its associated confidence P̂ , we can define
the perfect calibration [20] as P(Ŷ = Y |P̂ = c) = c, ∀ c ∈ [0, 1] where Y is the ground truth
label. There are some typical metrics to measure calibration error: 1) Negative Log-Likelihood
(NLL) [18], also known as the cross-entropy loss in field of deep learning, serves as a proper scoring
rule to measure the quality of a probabilistic model [21]. 2) Brier Score (BS) [6], defined as the
squared error between p(ŷ|x,θ) and y, is another proper scoring rule for uncertainty measurement.
3) Expected Calibration Error (ECE) [34, 20] first partitions the interval of probability predictions
into B bins where Bm is the indices of samples falling into the m-th bin, and then computes the
weighted absolute difference between accuracy and confidence across bins:

LECE =

B∑
m=1

|Bm|
n
|A(Bm)− C(Bm)|, (1)

where for each bin m, the accuracy is A(Bm) = |Bm|−1
∑
i∈Bm 1(ŷi = yi) and its confidence is

C(Bm) = |Bm|−1
∑
i∈Bm maxk p(ŷ

k
i |xi,θ). ECE is easier to interpret and thereby more popular.

Temperature Scaling Calibration. Temperature scaling is one of the simplest, fastest, and effec-
tive IID Calibration methods [20]. Fixing the neural model trained on the training set Dtr, temperate
scaling first attains the optimal temperature T ∗ by minimizing the cross-entropy loss between the
logit vectors zv scaled by temperatrue T and the ground truth label yv on the validation set Dv as

T ∗ = argmin
T

E(xv,yv)∈Dv LNLL (σ(zv/T ),yv) , (2)

where σ(·) is the softmax function as σ(zj) = exp (zj)/
∑K
k=1 exp (zk) for K classes. After that, we

transform the logit vectors zte on the test set Dte into calibrated probabilities by ŷte = σ(zte/T
∗).

3.2 Transferable Calibration Framework

As mentioned above, the main challenge of extending temperature scaling method into domain adap-
tation (DA) setup is that the target calibration error Eq = Ex∼q

[
L(·)(φ(x), y)

]
is defined over the

target distribution q where labels are inaccessible. However, if density ratio (a.k.a. importance weight)
w(x) = q(x)/p(x) is known, we can estimate target calibration error by the source distribution p:

Ex∼q
[
L(·)(φ(x), y)

]
=

∫
q

L(·)(φ(x), y)q(x)dx

=

∫
p

q(x)

p(x)
L(·)(φ(x), y)p(x)dx = Ex∼p

[
w(x)L(·)(φ(x), y)

]
,

(3)

which means Ex∼p
[
w(x)L(·)(φ(x), y)

]
is an unbiased estimator of the target calibration error Eq.

In Eq. (3), it is obvious that there are two buliding blocks: importance weight w(x) and calibration
metric L(·). We first delve into the specific type of calibration metric L(·). The existing calibration
method under covariate shift (CPCS) [38] utilizes the Brier Score LBS. However, Brier Score
conflates accuracy with calibration since it can be decomposed into two components: calibration
error and refinement [10], making it insensitive to predicted probabilities associated with infrequent
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events [36]. Meanwhile, NLL is minimized if and only if the prediction recovers ground truth
y, however, it may over-emphasize tail probabilities [7]. Hence, we adopt ECE, an intuitive and
informative calibration metric to directly quantify the goodness of calibration. One may concern that
ECE is not a proper scoring rule since the optimum score may not correspond to a perfect prediction,
however, as a post-hoc method that softens the overconfident probabilities but keeps the probability
order over classes, the temperature scaling we utilize will maintain the same accuracy with that
before calibration, while achieving a lower ECE as shown in Fig. 2. Since this kind of calibration is
trained on the source data but can transfer to the target domain, we call it transferable calibration.

Previously, we assume that density ratio is known, however, it is not readily accessible in real-world
applications. In this paper, we adopt a mainstream discriminative density ratio estimation method:
LogReg [43, 3, 8], which uses Bayesian formula to derive the estimated density ratio from a logistic
regression classifier that separates examples from the source and the target domains as

ŵ(x) =
q(x)

p(x)
=
v(x|d = 0)

v(x|d = 1)
=
P (d = 1)

P (d = 0)

P (d = 0|x)
P (d = 1|x)

, (4)

where v is a distribution over (x, d) ∈ X × {0, 1} and d ∼ Bernoulli(0.5) is a Bernoulli variable
indicating to which domain x belongs. With Eq. (4), the estimated density ratio ŵ(x) can be
decomposed into two parts, in which the first part P (d = 1)/P (d = 0) is a constant weight factor
that can be estimated with the sample sizes of source and target domains as ns/nt, and the second part
P (d = 0|x)/P (d = 1|x) is the ratio of target probability to source probability that can be directly
estimated with the probabilistic predictions of the logistic regression classifier. For simplicity, we
randomly upsample the source or the target dataset to make ns = nt, i.e., P (d = 1)/P (d = 0) equals
to 1.0. In this way, ŵ(x) is only decided by the second part: P (d = 0|x)/P (d = 1|x).

3.3 Bias Reduction by Learnable Meta Parameter

Through the above analysis, we can reach an unbiased estimation of the target calibration error if
the estimated importance weights are equal to the true ones. However, the gap between them are
non-ignorable, causing a bias between the estimated calibration error and the ground-truth calibration
error in the target domain. We formalize this bias of calibration as∣∣∣Ex∼q

[
Lŵ(x)

ECE

]
− Ex∼q

[
Lw(x)

ECE

]∣∣∣ = |Ex∼p [ŵ(x)LECE(φ(x), y)]− Ex∼p [w(x)LECE(φ(x), y)]|

= |Ex∼p [(w(x)− ŵ(x))LECE(φ(x), y)]| .
(5)

Note that the bias of estimated calibration error in the target domain is highly related to the estimation
error of importance weights. Hence, we focus on the bias of importance weights and show that after
applying some basic mathematical inequalities, the estimation bias can be bounded by

|Ex∼p [(w(x)− ŵ(x))LECE(φ(x), y)]|

≤
√

Ex∼p

[
(w(x)− ŵ(x))2

]
Ex∼p

[
(LECE(φ(x), y))

2] (Cachy − Schwarz Ineqaulity)

≤1

2

(
Ex∼p

[
(w(x)− ŵ(x))2

]
+ Ex∼p

[
(LECE(φ(x), y))

2]) (AM/GM Inequality)

(6)

where AM/GM denotes the inequality of arithmetic and geometric means. It is noteworthy that the
domain adaptation model φ is fixed since we consider transferable calibration as a post-hoc method.
Therefore, we can safely bypass the second term of Eq. (6) and focus our attention on the first term.
According to the standard bounded importance weight assumption [9], for some bound M > 0 we
have w(x) ≤M . Then for any x s.t. P (d = 1|x) 6= 0, the following inequality holds:

1

M + 1
≤ P (d = 1|x) ≤ 1, since w(x) = P (d = 0|x)

P (d = 1|x) =
1− P (d = 1|x)
P (d = 1|x) =

1

P (d = 1|x) − 1. (7)

In this way, the first term of the bias in importance weights in Eq. (6) can be further bounded by

Ex∼p

[
(w(x)− ŵ(x))2

]
= Ex∼p

[(
P (d = 1|x)− P̂ (d = 1|x)
P (d = 1|x)P̂ (d = 1|x)

)2]

≤ (M + 1)4Ex∼p

[(
P (d = 1|x)− P̂ (d = 1|x)

)2]
.

(8)

Plugging Eq. (8) into Eq. (6), we conclude that a smaller M can ensure a lower bias for the estimated
weight ŵ(x), leading to a smaller bias of the estimated target calibration error, which is also supported
by the generalization bound for importance weighting domain adaptation (Theorem 1, [9]).
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To this end, what we should do is to find some techniques to control the upper boundM of importance
weights. It seems that we can normalize each weight by the sum of all weights, leading to a smaller
M . Still, only with self-normalization, a few bad samples with very large weights will dominate the
estimation, and drastically explode the estimator. Further, can we clip those samples with very large
weights by a given threshold? It seems feasible, but the threshold is task-specific and hard to preset,
which is not an elegant solution that we pursue. Based on the above theoretical analysis, we propose
to introduce a learnable meta parameter λ (0 ≤ λ ≤ 1) to adaptively downscale the extremely large
weights, which can decrease M and attain a bias-reduced target calibration error. Formally,

T ∗ = argmin
T,λ

Exv∼p [w̃(xv)LECE(σ(φ(xv)/T ), y)] , w̃(xiv) =
[
ŵ(xiv)

]λ
. (9)

By jointly optimizing the calibration objective in Eq. (9), we can attain an optimal temperature T ∗ for
transferable calibration, along with a task-specific optimal λ∗ for bias reduction. [49] also introduced
a control value to importance weighting for model selection, but it was used as a hyperparameter.
This work further makes itself learnable in a unified hyperparameter-free optimization framework.

3.4 Variance Reduction by Serial Control Variate

Through the above analysis, we enable transferable calibration and further reduce its bias. However,
another main drawback of importance weighting is uncontrolled variance as the importance weighted
estimator can be drastically exploded by a few bad samples with large weights. For simplicity, we
denote w(x)LECE(φ(x), y) as LwECE. Replacing the estimated target error from Lemma 2 of [9]
with LwECE, we can conclude that the variance of transferable calibration error can be bounded by
Rényi divergence between p and q (A proof is provided in B.1 of Appendix):

Varx∼p [LwECE] = Ex∼p
[
(LwECE)

2
]
− (Ex∼p [LwECE])

2

≤ dα+1(q‖p)(Ex∼pLwECE)
1− 1

α − (Ex∼pLwECE)
2, ∀α > 0.

(10)

Apparently, lowering the variance of LwECE results in more accurate estimation. First, Rényi diver-
gence [45] between p and q can be reduced by deep domain adaptation methods [30, 14, 60]. Second,
developing bias reduction term in 3.3 may unexpectedly increase the estimation variance, thus we
further reduce the variance via the parameter-free control variate method [26]. It introduces a related
unbiased estimator t to the estimator u that we concern, achieving a new estimator u∗ = u+ η(t− τ)
while E[t] = τ . As proved in A.3 of Appendix, Var[u∗] ≤ Var[u] is held and u∗ has an optimal
solution when η̂ = −Cov(u, t)/Var[t]. For brevity, denote Ẽq(ŷ,y) = Ex∼p [w̃(x)LECE(φ(x), y)]

as Ex∼pLw̃ECE hereafter. To reduce Varx∼p[Lw̃ECE], we first adopt the importance weight w̃(x) as the
control variate since the expectation of w̃(x) is approximately fixed: Ex∼p [w̃(x)] = 1. Here, regard
Ex∼p[Lw̃ECE] and w̃(x) as u and t respectively, and we can attain a new unbiased estimator. When η
achieves the optimal solution, the estimation of target calibration error with control variate is

E∗q(ŷ,y) = Ẽq(ŷ,y)−
1

ns

Cov(Lw̃ECE, w̃(x))

Var[w̃(x)]

ns∑
i=1

[w̃(xis)− 1]. (11)

Further, we can add the prediction correctness on the source domain r(x) = 1(ŷ = y) as another
control variate because its expectation is also fixed: Ex∼p [r(x)] = c, i.e., the accuracy should be
equal to the confidence c on a perfect calibrated source model as defined in Section 3.1. In this way,
control variate method can be easily extended into the serial version in which there is a collection of
control variables: t1, t2 whose corresponding expectations are τ1, τ2 respectively. Formally,

u∗ = u+ η1(t1 − τ1),
u∗∗ = u∗ + η2(t2 − τ2).

(12)

Plugging r(x) as the second control variate into the bottom line of Eq. (12), we can further reduce
the variance of target calibration error by the serial control variate method as

E∗∗q (ŷ,y) = E∗q(ŷ,y)−
1

ns

Cov(Lw̃∗ECE, r(x))

Var[r(x)]

ns∑
i=1

[r(xis)− c], (13)

where Lw̃∗ECE is the estimated target calibration error after applying the control variate to weight
w̃(x). Similarly, replacing the Ex∼pLw̃ECE defined in Eq. 9 with E∗∗q (ŷ,y) defined in Eq. 13 and then
optimizing the new objective, we can attain a more accurate calibration with lower bias and variance.
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Algorithm 1 Transferable Calibration in Domain Adaptation

1: Input: Labeled source dataset S =
{(

xis,y
i
s

)}ns
i=1

and unlabled target dataset T =
{(

xit
)}nt
i=1

2: Parameter: Temperature T and learnable meta parameter λ

3: Partition S into Str =
{(

xitr,y
i
tr

)}ntr
i=1

and Sv =
{(

xiv,y
i
v

)}nv
i=1

4: Train a DA model φ(x) = G(F (x)) on Str and T via any DA method until convergy

5: Randomly upsample the source or the target dataset to make ntr = nt

6: Fix the DA model and compute features Ftr =
{
f itr
}ntr
i=1

, Fv =
{
f iv
}nv
i=1

, Ft =
{
f it
}nt
i=1

7: Train a logistic regression model H to discriminate the features Ftr and Ft until converge

8: Compute ŵ(xiv) =
[
1−H(f iv)

]
/H(f iv) and w̃(xiv) =

[
ŵ(xiv)

]λ
9: Compute Ex∼pLw̃ECE, E∗q(ŷ,y) and E∗∗q (ŷ,y) as in Eq. 9, Eq. 11 and Eq. 13 respectively

10: Jointly optimize the transferable calibration objective as T ∗ = argmin
T,λ

E∗∗q (σ(φ(xv)/T ), yv))

11: Calibrate the logit vectors on the target domain by ŷt = σ(φ(xt)/T
∗)

In summary, the transferable calibration framework (3)–(4) is improved through: 1) lowering bias as
(9); 2) lowering variance by deep adaptation as (10) and by serial control variate as (11) and (13).
The overall process of TransCal is summarized in Algorithm 1. Integrating the above explanation,
TransCal is designed to achieve more accurate calibration in domain adaptation with lower bias and
variance in a unified hyperparameter-free optimization framework.
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Figure 2: Reliability diagrams from Clipart to Product with CDAN [30] before and after calibration.

4 Experiments

4.1 Setup

We fully verify our methods on six DA datasets: (1) Office-Home [52]: a dataset with 65 categories,
consisting of 4 domains: Artistic (A), Clipart (C), Product (P) and Real-World (R). (2) VisDA-2017
[41], a Simulation-to-Real dataset with 12 categories. (3) ImageNet-Sketch [53], a large-scale dataset
transferring from ImageNet (I) to Sketch (S) with 1000 categories. (4) Multi-Domain Sentiment [4],
a NLP dataset, comprising of product reviews from amazon.com in four product domains: books
(B), dvds (D), electronics (E), and kitchen appliances (K). (5) DomainNet [40]: a dataset with 345
categories, including 6 domains: Infograph (I), Quickdraw (Q), Real (R), Sketch (S), Clipart (C) and
Painting (P). (6) Office-31 [46] contains 31 categories from 3 domains: Amazon (A), Webcam (W),
DSLR (D). We run each experiment for 10 times. We denote Vanilla as the standard softmax method
before calibration, Oracle as the temperature scaling method while the target labels are available.
Detailed descriptions are included in C.1, C.2 and C.3 of Appendix.

4.2 Results

Qualitative Results. As shown in Figure 2, the blue lines indicate the distributions for perfectly
reliable forecasts with standard deviation, and the red lines denote the conditional distributions of the
observations. Obviously, If the model is perfectly calibrated, these two lines should be matched. We
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Table 2: ECE (%) vs. Acc (%) via various calibration methods on Office-Home with CDAN

Metric Cal. Method A→C A→P A→R C→A C→P C→R R→A R→C R→P Avg

Acc
Before Cal. 49.4 68.4 75.5 57.6 70.1 70.4 68.9 54.4 81.2 68.3
MC-dropout [12] 47.2 66.2 71.4 57.1 65.7 70.6 68.3 53.6 80.7 66.7
TransCal (ours) 49.4 68.4 75.5 57.6 70.1 70.4 68.9 54.4 81.2 68.3

ECE

Before Cal. 40.2 26.4 17.8 35.8 23.5 21.9 24.8 36.4 14.5 26.8
MC-dropout [12] 33.1 21.3 15.0 24.2 20.5 13.2 25.6 14.2 22.4 19.6
Matrix Scaling 44.7 28.8 19.7 36.1 25.4 24.1 38.1 15.7 29.5 29.1
Vector Scaling 34.7 18.0 11.3 23.4 15.4 11.5 27.3 8.5 20.0 18.9
Temp. Scaling 28.3 17.6 10.1 21.2 13.2 8.2 26.0 8.8 18.1 16.8
CPCS [38] 35.0 29.4 8.3 21.3 29.0 5.6 19.9 9.1 20.3 19.8

TransCal (w/o Bias) 21.7 10.8 5.8 27.6 9.2 6.0 27.4 5.2 16.9 14.5
TransCal (w/o Variance) 31.2 16.4 6.5 31.1 14.7 16.1 27.5 4.1 20.0 18.6
TransCal (ours) 22.9 9.3 5.1 21.7 14.0 6.4 21.6 4.5 15.6 13.5
Oracle 5.8 8.1 4.8 10.0 7.7 4.2 5.5 3.9 6.2 6.2

Table 3: ECE (%) before and after various calibration methods on several DA methods and datasets.

Method Dataset Office-Home Sketch VisDA
Transfer Task A→C A→P A→R C→A C→P C→R Avg I→S S→R

MDD

Before Cal. (Vanilla) 33.6 18.7 13.0 28.9 22.9 19.0 22.7 19.7 30.5
IID Cal. (Temp. Scaling) 28.7 16.4 9.3 21.8 16.5 12.1 17.5 14.7 29.1
CPCS [38] 29.5 17.3 9.6 22.9 16.7 11.8 18.0 14.2 30.4
TransCal (ours) 13.5 11.4 4.8 21.8 7.0 11.1 11.6 8.1 16.1
Oracle 6.8 8.5 4.7 7.0 5.8 4.0 6.1 4.7 7.4

MCD

Before Cal. (Vanilla) 39.4 28.8 20.5 33.9 27.9 20.1 28.4 18.3 25.7
IID Cal. (Temp. Scaling) 21.8 22.0 15.1 22.5 20.5 9.1 18.5 13.0 23.2
CPCS [38] 23.1 22.3 15.4 20.6 20.0 9.0 18.4 12.9 22.9
TransCal (ours) 13.1 20.2 5.1 15.5 9.3 9.1 12.0 10.2 7.8
Oracle 5.6 9.4 2.3 7.1 7.4 2.5 5.7 3.6 1.8

can see that TransCal is much better and approaches the Oracle one on the task: Clipart→ Product.
More reliability diagrams of other tasks to back up this conclusion are shown in D.3 of Appendix.

Quantitative Results. As reported in Table 2 and Table 3, TransCal achieves much lower ECE than
competitors (dereases about 30% or more, e.g. when TransCal is used to calibrate MCD on VisDA,
the target ECE is reduced from 22.9 to 7.8) on various datasets and domain adaptation methods. Some
results of TransCal are even approaching the Oracle ones. Further, the ablation studies on TransCal
(w/o Bias) and TransCal (w/o Variance) verify that both bias reduction term and variance reduction
term are effective. TransCal can be generalized to other tasks of Office-Home (D.2.1), to more DA
methods (D.2.2), and to DomainNet and Office-31 (D.2.3), all shown in Appendix. Further, the results
evaluated by NLL and BS metrics are included in D.2.4 and D.2.5 of Appendix respectively. Apart
from computer vision datasets, TransCal performs well in 12 transfer tasks of a popular NLP dataset:
Amazon Multi-Domain Sentiment in Table 4. As shown in Table. 2, it is noteworthy that TransCal

Table 4: ECE (%) via various calibration methods on Multi-Domain Sentiment.

Cal. Method B→D B→E B→K D→B D→E D→K E→B E→D E→K K→B K→D K→E Avg

Before Cal. 13.7 15.2 17.5 20.4 18.6 21.4 11.3 10.3 23.0 13.1 14.5 20.9 16.7
Temp. Scaling 5.9 8.2 5.0 2.6 5.5 4.0 17.1 17.3 6.2 16.5 14.9 6.6 9.2
TransCal (ours) 8.0 6.1 3.8 2.4 1.4 4.0 7.7 8.4 2.2 10.9 11.2 4.2 5.9
Oracle 2.0 3.0 3.6 1.9 1.3 2.5 2.6 1.4 1.8 2.9 2.0 1.6 2.2
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maintains the same accuracy with that before calibration while built-in methods (e.g. MC-dropout)
may degrade prediction accuracy, and they have to modify the network architecture (e.g. adding
dropout layers). We further show that both Vector Scaling and Matrix Scaling underperform TransCal
and Temp Scaling. Matrix Scaling works even worse than the Vanilla model due to overfitting, which
was also observed in the results of Guo et al. [20] reported in Table 2.

(a) Art→ Clipart (b) Art→ Product (c) Art→ Real-World (d) Clipart→ Art

Figure 3: The estimated calibration error with respect to different values of temperature T and meta
parameter λ (both are learnable), showing that different models achieve optimal values at different λ.

0 10 20 30 40
0

20

40

60

80

100

120

140

160

(a) A→ R
0 2 4 6 8 10 12

0

5

10

15

20

25

30

35

40

(b) A→ R (λ∗ = 0.67)
0 50 100 150 200 250 300

0

100

200

300

400

500

600

700

800

(c) P→A
0 5 10 15 20

0

20

40

60

80

100

120

(d) P→A (λ∗ = 0.53)

Figure 4: Importance weight distribution of two DA tasks after transferable calibration with (4(b),
4(d)) and without (4(a), 4(c)) applying the learnable meta parameter, which lowers the value of M .

Table 5: ECE (%) of TransCal with different control variate (CV) methods on MDD [60].

Dataset Office-Home Sketch VisDA

Transfer Task A→C A→P A→R I→S S→R

TransCal (w/o Control Variate) 20.9±4.68 12.1±2.46 6.8±2.22 9.7±3.17 17.2±5.74
TransCal (CV via only w(x)) 13.9±4.45 9.6 ±1.52 5.9±1.91 9.3±1.68 16.4±5.68
TransCal (CV via only r(x)) 13.8±4.32 10.2±0.97 5.2±1.08 8.6±1.37 16.3±3.32
TransCal (Parallel Control Variate) 13.6±4.43 10.6±1.46 5.2±1.45 8.7±1.54 16.3±3.45
TransCal (Serial Control Variate) 13.5±3.51 11.4±0.81 4.8±0.76 8.1±1.09 16.1±1.20

4.3 Insight Analyses

Why Bias Reduction Term Works. From the perspective of optimization, we explore the estimated
calibration error with respect to different values of temperature (T ) and lambda (λ) in Figure 3,
showing that different models achieve optimal values at different λ. Thus, it is impossible to attain
optimal estimated calibration error by presetting a fixed λ. However, with our unified meta-parameter
optimization framework, we can adaptively find an optimal λ for each task. From the perspective of
importance weight distribution as shown in Figure 4, after applying learnable meta parameter λ, the
highest values (M in Section 3.3) of importance weight decrease, leading to a smaller bias in Eq. (5).

Why Serial Control Variate Works. As the theoretical analysis in B.2 of Appendix shows, the
variance of E∗∗q can be further reduced since Var[E∗∗q ] ≤ Var[E∗q ] ≤ Var[Ẽq], but other variants of
control variate (CV) method such as Parallel CV may not hold this property. Meanwhile, as shown in
Table 5, TransCal (Serial CV) not only achieves better calibration performance but also attains lower
calibration variance than other variants of control variate methods.

5 Conclusion
In this paper, we delve into an open and important problem of Calibration in DA. We first reveal
that domain adaptation models learn higher accuracy at the expense of well-calibrated probabilities.
Further, we propose a novel transferable calibration (TransCal) approach, achieving more accurate
calibration with lower bias and variance in a unified hyperparameter-free optimization framework.
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Broader Impact

The open problem of Calibration in DA that we delve into is a very promising research direction and
important for decision making in safety-critical applications, such as automated diagnosis system
for lung cancer. Since our method can be easily applied to recalibrate the existing DA methods and
generate more reliable predictions, it will benefit the transfer learning community. If the method
fails in some extreme circumstances, it will confuse researchers or engineers who apply our method
but it will not bring about any negative ethical or societal consequences. Meanwhile, our method
did not leverage biases in the data such as racial discrimination and gender discrimination since we
conduct experiments on standard domain adaptation datasets that are more about animals or pieces of
equipment in the office. In summary, we hold a positive view of the broader impact on this paper.
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