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Abstract
Domain adaptation enables knowledge transfer
from a labeled source domain to an unlabeled tar-
get domain. A mainstream approach is adversarial
feature adaptation, which learns domain-invariant
representations through aligning the feature distri-
butions of both domains. However, a theoretical
prerequisite of domain adaptation is the adapt-
ability measured by the expected risk of an ideal
joint hypothesis over the source and target do-
mains. In this respect, adversarial feature adapta-
tion may potentially deteriorate the adaptability,
since it distorts the original feature distributions
when suppressing domain-specific variations. To
this end, we propose Transferable Adversarial
Training (TAT) to enable the adaptation of deep
classifiers. The approach generates transferable
examples to fill in the gap between the source and
target domains, and adversarially trains the deep
classifiers to make consistent predictions over the
transferable examples. Without learning domain-
invariant representations at the expense of distort-
ing the feature distributions, the adaptability in
the theoretical learning bound is algorithmically
guaranteed. A series of experiments validate that
our approach advances the state of the arts on a
variety of domain adaptation tasks in vision and
NLP, including object recognition, learning from
synthetic to real data, and sentiment classification.

1. Introduction
Transferring knowledge from a source domain with suffi-
cient supervision to an unlabeled target domain is advanta-
geous, since manual annotation for a new machine learning
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Figure 1. An overview of our approach. (a) A model trained only
on the source domain is not adaptive to the target domain. (b) Our
approach generates transferable examples to fill in the gap between
domains. (c) The decision boundary is adapted to the target data
through training with transferable examples. Best viewed in color.

task is often prohibitive. However, deep neural networks
are sensitive to cross-domain distribution shift. The same
network can make spurious prediction on a target domain
dissimilar to the source domain (Quionero-Candela et al.,
2009). A notable example is that models trained on labeled
synthetic data which come in abundance, may fail when
generalizing to real-world unlabeled data (Liu et al., 2017;
Hoffman et al., 2018).

Domain adaptation aims at learning an accurate classifier for
such a scenario. Recent advances in deep neural networks
have enhanced the transferability of feature representations
(Yosinski et al., 2014) and the disentanglement of explana-
tory factors behind data (Bengio et al., 2013). Therefore, a
reasonable approach to domain adaptation is harnessing the
power of deep neural networks to extract domain-invariant
feature representations. One possible way is to minimize
some measure of distance between the source and target
feature distributions such as maximum mean discrepancy
(Long et al., 2015). On par with distance minimizing meth-
ods, adversarial domain adaptation incorporates adversarial
learning as a two-player game similar to GANs (Goodfellow
et al., 2014). In this paradigm, the base network is divided
into a feature extractor and a classifier. A domain discrim-
inator is induced to discriminate the source domain from
the target domain, while the feature extractor learns domain-
invariant representations to fool the domain discriminator
(Ganin et al., 2016; Tzeng et al., 2017; Long et al., 2018).

However, this class of techniques face critical restrictions.
Based on the domain adaptation theory (Ben-David et al.,
2010), an essential prerequisite for domain adaptation is the
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Figure 2. Motivation of our approach. (a) Learning from synthetic to real data on VisDA-2017 dataset (Peng et al., 2017). (b) The error of
ideal joint hypothesis. (c) The distributions of the singular values of the deep classifier’s adapted weight matrices. Best viewed in color.

adaptability of feature representations between the source
and target domains. Given feature representations, the adapt-
ability can be explicitly quantified by the error of an ideal
joint hypothesis on the source and target domains. When the
adaptability is poor, we can never expect to learn a classifier
with lower target error by minimizing source error. Adver-
sarial feature adaptation is risky in this regard, since trans-
forming the feature representations to be domain-invariant
may inevitably distort the original feature distributions and
enlarge the error of the ideal joint hypothesis. A preliminary
empirical investigation of the adaptability on the challenging
task of learning from synthetic to real is shown in Figure 2.

Another disadvantage of such techniques is the need of learn-
ing new representations in deep neural networks. When
there is no well-established deep architectures for learning
disentangled and transferable representations as in many
important tasks of interest, e.g. sentiment polarity classifica-
tion, email spam filtering and click-through rate prediction,
the adversarial feature adaptation methods may perform un-
satisfactorily, run very slowly, or even break down. General
approaches to domain adaptation for a variety of real-world
tasks should take such scenarios into consideration.

In this paper, we address the aforementioned challenges by
proposing a general approach to adapting deep classifiers
across domains, without performing the adversarial feature
adaptation to learn domain-invariant representations. Recent
advances in adversarial training (Goodfellow et al., 2015)
reveal that minimizing the error under adversarial pertur-
bations within a small Wasserstein distance to the source
domain can potentially bound the error on the target domain
(Lee & Raginsky, 2018). Additionally, adversarial training
can push the decision boundary away from data points. For
deep neural networks, it is an effective method of regulariz-
ing the model to mitigate overfitting (Miyato et al., 2018).
Based on these findings, we adapt deep classifiers across
domains by presenting a general approach, Transferable
Adversarial Training (TAT). Without changing the feature
representations, the approach generates transferable exam-
ples as adversaries to both the category classifier and the do-
main discriminator. Through adversarial training with these

transferable examples, the category classifier can be adapted
from the source to the target with guaranteed adaptability.
The generation of these transferable examples and the ad-
versarial training of both classifiers are formulated into a
two-player minimax game, which can be solved in linear-
time through back-propagation. Extensive experiments on
vision and NLP tasks testify that our model exceeds state of
the art methods on domain adaptation benchmark datasets.

2. Hidden Limitations of Adversarial Feature
Adaptation

Existing adversarial feature adaptation methods are based
on the domain adaptation theory (Ben-David et al., 2010).

Theorem 1. (Ben-David et al., 2010) LetH be the hypothe-
sis space and εs, εt be the generalization error of a classifier
C ∈ H on the source domain Xs and the target domain Xt,
respectively. Then for any classifier C ∈ H,

εt(C) ≤ εs(C) + dH∆H(Xs, Xt) + λ, (1)

where dH∆H is theH∆H-distance between Xs and Xt,

dH∆H , sup
h,h′∈H

|Ex∼Xs [h(x) 6= h′(x)]

−Ex∼Xt [h(x) 6= h′(x)]|
(2)

and λ is the error of an ideal joint hypothesis h∗ defined as
h∗ = arg minh∈H εs(h) + εt(h), such that

λ = εs(h
∗) + εt(h

∗). (3)

The hypothesis-inducedH∆H-distance measures the diver-
gence between the source and target feature distributions.
In adversarial feature adaptation, the feature extractor learns
domain-invariant feature representations to minimizeH∆H-
distance, while the classifier is simultaneously trained on the
source labeled data to minimize the source error. However,
the adaptability quantified by λ is often overlooked, which
should be made sufficiently small to guarantee the feasibil-
ity of domain adaptation. Adversarial feature adaptation
methods align the feature distributions across domains un-
der the assumption that λ remains small, yet they inevitably
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distort the original feature representations. In consequence,
there is no guarantee that λ will remain under control. We
substantiate this claim with the following experimentation.

Error of ideal joint hypothesis. As aforementioned, the
adaptability λ of domain adaptation is quantified by the error
of the ideal joint hypothesis h∗ as λ = εs(h

∗) + εt(h
∗).

To compute λ, we train a new classifier over the feature
representations learned by existing methods: ResNet-50
(He et al., 2016) pre-trained on ImageNet (Russakovsky
et al., 2015), Domain Adversarial Neural Network (DANN)
(Ganin et al., 2016), and Maximum Classifier Discrepancy
(MCD) (Saito et al., 2018). The ideal joint hypothesis h∗

is found by training on both source labeled data and target
labeled data. Note that in this case, the ground truth labels
of target data are only used to reason about the adaptability.
The error of the ideal joint hypothesis on the source domain,
the target domain, and their sum λ are shown in Figure 2(b).

It is somewhat unexpected that the adaptability λ, as quan-
tified by the error of the ideal joint hypothesis h∗, worsens
substantially in the adversarial feature adaptation methods
DANN and MCD, compared to the non-adaptation method
ResNet-50. We reasonably postulate that this undesirable ef-
fect is caused by the distortion of feature distributions in the
process of adversarial representation learning, which is gen-
erally performed in adversarial feature adaptation methods.
Diminishing domain-specific variations inevitably breaks
the discriminative structures of the original representations.

Singular values of weight matrices. We further justify
that the feature distributions are distorted in adversarial fea-
ture adaptation such that the discriminative structures of the
feature representations are substantially deteriorated. To this
end, we compute the singular values of the weight matrices
of the layers corresponding to the adapted feature represen-
tations learned by ResNet-50 (He et al., 2016) pre-trained
on ImageNet (Russakovsky et al., 2015) and Domain Adver-
sarial Neural Network (DANN) (Ganin & Lempitsky, 2015).
The distributions of singular values are shown in Figure 2(c).
The singular values of weight matrix from DANN (Ganin
et al., 2016) have higher variations than those from ResNet-
50. Further, the singular value distribution of DANN matrix
is more heavy-tailed, indicating a worse-conditioned and
more-distorted feature representation (Bjorck et al., 2018).

Motivation of this work. The above findings reveal that
existing adversarial feature learning generally deteriorates
the adaptability λ and makes adaptation models vulnerable.
Thus, we have to rethink the current paradigm and propose
alternatives to the mainstream adversarial feature adapta-
tion approaches. A natural solution is to fix the feature
representations and instead adapt the deep classifiers, which
apparently guarantees the adaptability λ. This is possible by
extending the adversarial training approaches (Goodfellow
et al., 2015) to domain adaptation.

3. Transferable Adversarial Training
Consider the problem of unsupervised domain adaptation,
with ns i.i.d. observations {x(i)

s ,y
(i)
s }nsi=1 from a source

domain of distribution P (xs,ys), and nt i.i.d. observations
{x(i)

t }
nt
i=1 from a target domain of distribution Q(xt,yt).

Note that the i.i.d. assumption is violated across domains
as P 6= Q. Our goal is to adapt a deep category classifier
y = C(f) under the feature representation f = F (x), which
guarantees lower generalization error on the target domain.

In this paper, we present a general approach to adapting
deep classifiers across domains with guaranteed adaptability
λ. The approach, Transferable Adversarial Training (TAT),
constitutes two alternating steps: adversarial generation of
transferable examples and adversarial training with transfer-
able examples, both without distorting feature distributions.

3.1. Adversarial Generation of Transferable Examples

Existing adversarial feature adaptation methods diminish
domain-specific variations by learning domain-invariant rep-
resentations. Denote by f = F (x) the feature extractor and
by d = D(f) the domain discriminator. D and F form a
two-player minimax game: D is trained to distinguish the
source from the target while F is trained simultaneously
to confuse D. However, such a procedure may deteriorate
the adaptability λ. To guarantee adaptability, we propose to
fix the feature representations and generate transferable ex-
amples to bridge domain gap. Concretely, we still train the
domain discriminator D to distinguish the source domain
from the target domain through the following loss function:

`d (θD, f) =− 1

ns

ns∑
i=1

log[D(f (i)
s )]

− 1

nt

nt∑
i=1

log[1−D(f
(i)
t )].

(4)

The deep category classifier C is also trained to perform
well on the source domain through the cross-entropy loss:

`c(θC , f) =
1

ns

ns∑
i=1

`ce(C(f (i)
s ),y(i)

s ). (5)

Different from existing adversarial feature adaptation meth-
ods, we diminish the distributional variations by filling the
gap between the source and target domains with transferable
examples generated in a new adversarial training paradigm.
To enable adversarial generation of transferable examples,
we compute the gradients of the above loss functions `d and
`c w.r.t. each example in terms of learned features fs and
ft. Note that we opt not to compute the gradients w.r.t. the
raw images xs and xt as in standard adversarial training
(Goodfellow et al., 2015). Further, the feature extractor F
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Figure 3. Transferable Adversarial Training (TAT) for adapting deep classifiers. The feature extractor F yields representations fs and ft of
the source and target data, which are fixed in the training process to guarantee adaptability λ. The dashed lines indicate the adversarial
generation of transferable examples fs∗ and ft∗ through maximizing the errors of the category classifier C and domain discriminator D.
We adversarially train the classifiers with transferable examples: C to minimize the source error and D to distinguish source from target.

is not updated using these gradients. As analyzed in the
previous section, this guarantees good adaptability λ.

More formally, we propose to generate the transferable ex-
amples taking the philosophy of adversarial training. First,
the transferable examples should effectively confuse the
domain discriminator D, such that they can fill in the gap
and bridge the source and target domains. Second, the trans-
ferable examples should be able to deceive the category
classifier C, such that they can push the decision boundary
away from data points. Hence, the transferable examples
are generated adversarially through a joint loss of `c and `d:

ftk+1 ← ftk + β∇f
tk
`d(θD, ftk)

− γ∇f
tk
`2(ftk , ft0),

(6)

fsk+1 ← fsk + β∇f
sk
`d(θD, fsk)

− γ∇f
sk
`2(fsk , fs0)

+ β∇f
sk
`c(θC , fsk),

(7)

where K is the number of iterations for generating each
transferable example, and k = 0, 1, · · · ,K−1 is the current
iteration. Note that ft0 = ft, fs0 = fs, ft∗ = ftK , fs∗ = fsK .
To generate examples that are sufficiently transferable, we
need a sufficient number of iterations, typically K = 10. In
addition, to avoid divergence of the generated examples, we
control the `2-distance between the generated examples and
the original examples with hyper-parameters γ and β.

3.2. Adversarial Training with Transferable Examples

We aim at enabling the robustness of the category classifier
C against domain distribution shift. To reach this goal, a
reasonable way is to train the classifier to make accurate
predictions for the transferable examples fs∗ in the source
domain. Furthermore, we require the classifier to make con-
sistent predictions for the transferable examples ft∗ and their
original counterparts ft in the target domain. As analyzed

empirically by Miyato et al. (2018), adversarial training
improves local smoothness of the output distribution. Tak-
ing similar explanation, training the category classifier with
transferable examples can be interpreted as improving the
robustness of the classifier’s prior distribution against both
adversarial perturbations and domain variations. Note that
we have access to labels of the source domain but the target
labels are absent. Thus, the loss function for adversarial
training of the category classifier C is formulated as follows,

`c,adv(θC , f∗) =
1

ns

ns∑
i=1

`ce(C(f
(i)
s∗ ),y

(i)
s∗ )

+
1

nt

nt∑
i=1

∣∣∣C((f
(i)
t∗ ))− C((f

(i)
t ))

∣∣∣. (8)

Similar to training the category classifier, we also train the
domain discriminator with generated transferable examples.
This is important to stabilize the adversarial training process,
otherwise the generated transferable examples will diverge.
Another key perspective is to leverage these transferable
examples to bridge the domain discrepancy. Simply fooling
the domain discriminator on original data cannot guarantee
that generated examples are transferable from one domain
to the other. Hence, we propose to adversarially train the
domain discriminator to further distinguish transferable ex-
amples from the source and target, using the following loss

`d,adv(θD, f∗) = − 1

ns

ns∑
i=1

log[D(f
(i)
s∗ )]

− 1

nt

nt∑
i=1

log[1−D(f
(i)
t∗ )].

(9)

Finally, we enable transferable adversarial training (TAT)
by generating transferable examples and training classifiers
on them. We jointly minimize error (4) and error (9) with
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Algorithm 1 Transferable Adversarial Training (TAT)

Input: original features {f (i)
s ,y

(i)
s }nsi=1 and {f (i)

t }
nt
i=1.

Output: learned model parameters θ = (θC , θD).
Initialize θ = (θC , θD) randomly.
for iter = 1 to MaxIter do

Sample a mini-batch of {(fs,ys)} and {ft} uniformly
from the training dataset in terms of original features.
for k = 0 to K − 1 do
fsk+1 ← fsk + β∇f

sk
`d(θD, fsk)− γ∇f

sk
`2(fsk , fs0)

+ β∇f
sk
`c(θC , fsk)

ftk+1 ← ftk + β∇f
tk
`d(θD, ftk)− γ∇f

tk
`2(ftk , ft0)

end for
θC ← θC − α∇θC [`c(θC , f) + `c,adv(θC , f∗))]

θD ← θD − α∇θD [`d(θD, f) + `d,adv(θD, f∗))]

end for

respect to D, and error (5) and error (8) with respect to C.
This leads to the optimization problem for the TAT approach:

min
θD,θC

`d(θD, f) + `c(θC , f)

+ `d,adv(θD, f∗) + `c,adv(θC , f∗).
(10)

We summarize the detailed training procedure in Algorithm
1. TAT runs over the feature-level examples f and propagates
only through the deep classifier C (usually of no more than
three layers), which is very computationally efficient (an
order of magnitude faster than feature adaptation methods).

4. Theoretical Understanding
In this section, we give a theoretical understanding of the
proposed approach, making use of the domain adaptation
theory (Ben-David et al., 2010) and the adversarial training
theory (Sinha et al., 2018). While unifying both theories
turns out to be nontrivial, we will leave it as our future work.

4.1. Domain Adaptation Theory

Recall the domain adaptation theory in Theorem 1,

εt(C) ≤ εs(C) + dH∆H(Xs, Xt) + λ. (11)

We have analyzed that the adversarial feature adaptation
methods weaken the adaptability λ. TAT fixes the feature
extractor F throughout the training procedure to keep λ
unchanged, which is a complementary improvement to the
previous methods. Further, by training the category clas-
sifier on the source domain, TAT minimizes error εs(C).
Most importantly, our approach generates the transferable
examples towards the opposite domains by confusing the
domain discriminator. And training domain discriminatorD
against these transferable examples will explicitly bound the

H∆H-distance, as justified in Ganin & Lempitsky (2015).
Since the transferable examples will fill in the gap across
domains (intuitively demonstrated in Figures 1 and 4), the
dH∆H(Xs, Xt) term is further bounded in our approach.
In summary, our approach conforms well with the domain
adaptation theory, further yielding guaranteed adaptability.

4.2. Adversarial Training Theory

The proposed approach generates transferable examples,
which are essentially the adversarial examples against both
category classifier C and domain discriminatorD. This is in
line with the adversarial training theory (Sinha et al., 2018).
Theorem 2. (Sinha et al., 2018) Assume |`(θ, x)| ≤M` for
all models θ ∈ Θ and examples x ∈ X . Then, for a fixed
t > 0 and numerical constants b1, b2 > 0, with probability
at least 1−e−t, simultaneously for all θ ∈ Θ, ρ ≥ 0, γ ≥ 0,

sup
Q:W (P,Q)≤ρ

EQ[`(θ,X)] ≤ γρ

+ EP̂n [φγ(θ,X)] +O(1/
√
n,M`, b1, b2),

(12)

where W (P,Q) is the Wasserstein distance between P and
Q, P̂n is the empirical distribution of P , O(·) is a com-
plexity function, and φγ(θ,X) is the robust surrogate loss,

φγ(θ,X) , sup
x∈X

`(θ, x)− γW (x0, x). (13)

Our approach trains the category classifier C with the worst-
case distributions within distance ρ away from the source
domain, which guarantees good performance if the target
domain is in the range of distance ρ. By introducing hyper-
parameters β and γ in Eq. (6)–(7), our approach executes
the adversarial training procedure guaranteed by the theory.

5. Experiments
We evaluate TAT on five domain adaptation datasets. Codes
and datasets are made available at github.com/thuml/
Transferable-Adversarial-Training.

5.1. Experimental Setup

Office-31 (Saenko et al., 2010) is a standard dataset for
visual domain adaptation. It contains 4,652 images across 31
categories from three domains: Amazon (A), Webcam (W),
and DSLR (D). From this dataset, we construct 6 transfer
tasks: A→W, D→W, W→D, A→D, D→A, and W→A.

ImageCLEF-DA (Long et al., 2017) is a dataset organized
by selecting the 12 common classes shared by three public
datasets (domains): Caltech-256 (C), ImageNet ILSVRC
2012 (I), and Pascal VOC 2012 (P). We evaluate all methods
on 6 transfer tasks: I→P, P→I, I→C, C→I, C→ P, and
P→C.

github.com/thuml/Transferable-Adversarial-Training
github.com/thuml/Transferable-Adversarial-Training
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Table 1. Classification accuracies (%) on Office-31 for unsupervised domain adaptation with ResNet-50.

METHOD A→W D→W W→D A→D D→A W→A AVG.

RESNET-50 (HE ET AL., 2016) 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1
DAN (LONG ET AL., 2015) 80.5±0.4 97.1±0.2 99.6±0.1 78.6±0.2 63.6±0.3 62.8±0.2 80.4
DANN (GANIN ET AL., 2016) 82.6±0.4 96.9±0.2 99.3±0.2 81.5±0.4 68.4±0.5 67.5±0.5 82.7
ADDA (TZENG ET AL., 2017) 86.2±0.5 96.2±0.3 98.4±0.3 77.8±0.3 69.5±0.4 68.9±0.5 82.9
VADA (SHU ET AL., 2018) 86.5±0.5 98.2±0.4 99.7±0.2 86.7±0.4 70.1±0.4 70.5±0.4 85.4
GTA (SANKARANARAYANAN ET AL., 2018) 89.5±0.5 97.9±0.3 99.7±0.2 87.7±0.5 72.8±0.3 71.4±0.4 86.5
MCD (SAITO ET AL., 2018) 88.6±0.2 98.5±0.1 100.0±.0 92.2±0.2 69.5±0.1 69.7±0.3 86.5
CDAN (LONG ET AL., 2018) 93.1±0.1 98.6±0.1 100.0±.0 92.9±0.2 71.0±0.3 69.3±0.3 87.5
TAT 92.5±0.3 99.3±0.1 100.0±.0 93.2±0.2 73.1±0.3 72.1±0.3 88.4

Table 2. Classification accuracies (%) on Image-CLEF for unsupervised domain adaptation with ResNet-50.

METHOD I→P P→I I→C C→I C→P P→C AVG.

RESNET-50 (HE ET AL., 2016) 74.8±0.3 83.9±0.1 91.5±0.3 78.0±0.2 65.5±0.3 91.2±0.3 80.7
DAN (LONG ET AL., 2015) 74.5±0.4 82.2±0.2 92.8±0.2 86.3±0.4 69.2±0.4 89.8±0.4 82.5
DANN (GANIN ET AL., 2016) 75.0±0.3 86.0±0.3 96.2±0.4 87.0±0.5 74.3±0.5 91.5±0.6 85.0
CDAN (LONG ET AL., 2018) 76.7±0.3 90.6±0.3 97.0±0.4 90.5±0.4 74.5±0.3 93.5±0.4 87.1
TAT 78.8±0.2 92.0±0.2 97.5±0.3 92.0±0.3 78.2±0.4 94.7±0.4 88.9

Office-Home (Venkateswara et al., 2017) is a new dataset
more difficult than Office-31. It has 15,500 images across
65 classes in office and home settings from four domains
of large domain discrepancy: Artistic images (Ar), Clip Art
(Cl), Product images (Pr), and Real-World images (Rw).

VisDA-2017 (Peng et al., 2017) is the largest dataset to date
for visual domain adaptation, providing with two distinct do-
mains. Synthetic: renderings of 3D models from different
angles and with different lightning conditions; Real: real-
world images collected from MSCOCO (Lin et al., 2014).

Multi-Domain Sentiment (Blitzer et al., 2007) was widely
adopted as the benchmark for domain adaptation in senti-
ment classification. It comprises of product reviews from
amazon.com in four product domains: books (B), dvds
(D), electronics (E), and kitchen appliances (K). Each re-
view is assigned with a positive or negative polarity and is
represented by Bag of Words (BoW) using term frequency.

We investigate state of the art domain adaptation methods:
Deep Adaptation Network (DAN) (Long et al., 2015), Do-
main Adversarial Neural Network (DANN) (Ganin et al.,
2016), Adversarial Discriminative Domain Adaptation
(ADDA) (Tzeng et al., 2017), Virtual Adversarial Domain
Adaptation (VADA) (Shu et al., 2018), Generate to Adapt
(GTA) (Sankaranarayanan et al., 2018), Maximum Clas-
sifier Discrepancy (MCD) (Saito et al., 2018), and Condi-
tional Domain Adversarial Network (CDAN) (Long et al.,
2018). For the sentiment classification tasks, we further
compare with classic Marginalized Denoising Autoencoders
(mSDA) (Chen et al., 2012) and the state of the art Transfer
Denoising Autoencoders (TDA) (Long et al., 2016).

For image datasets, we use ResNet-50 (He et al., 2016) pre-
trained on ImageNet (Russakovsky et al., 2015) to extract

original feature representations. We use Adam (Kingma &
Ba, 2014) with initial learning rate η0 = 10−4. We adopt
the inverse-decay strategy of DANN (Ganin et al., 2016),
where the learning rate changes by ηp = η0

(1+ωp)φ
, ω = 10,

φ = 0.75, and p is the progress ranging from 0 to 1. We
use reverse validation for hyperparameter selection (Zhong
et al., 2010). For image datasets, β = 5 and γ = 1. For
sentiment datasets, we use Bag of Word (BoW) vectors and
mSDA (Chen et al., 2012) representations as input.

For the proposed TAT approach, the category classifier is a
two-layer fully connected network (2048×256×#classes),
and the domain discriminator consists of two fully con-
nected layers with BatchNorm (Ioffe & Szegedy, 2015) and
LeakyReLU non-linearity in the first layer. For the adversar-
ial feature adaptation methods, we adopt gradient reversal
layers (Ganin et al., 2016) for jointly training the domain
discriminator with the category classifier.

5.2. Results

We report results of Office-31 based on ResNet-50 in Table
1. The proposed TAT outperforms all comparison methods
on most tasks. We clearly observe that on W→A and D→A
with relatively large domain shift and imbalanced domain
scales, TAT exceeds all feature adaptation methods by large
margins and even performs better than models incorporating
complex generative architectures. This further testifies that
transferable examples augment the original source domain
and therefore mitigate the imbalance between domains.

On ImageCLEF-DA, TAT exceeds comparison methods in
all tasks, but the boost is relatively minor, since domain
scale is the same and the domain discrepancy is smaller.

When domain discrepancy is significant as on Office-Home,

amazon.com
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Table 3. Classification accuracies (%) on Office-Home for unsupervised domain adaptation (ResNet-50).

METHOD AR→CL AR→PR AR→RW CL→AR CL→PR CL→RW PR→AR PR→CL PR→RW RW→AR RW→CL RW→PR AVG.

RESNET-50 (HE ET AL., 2016) 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN (LONG ET AL., 2015) 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
DANN (GANIN ET AL., 2016) 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN (LONG ET AL., 2018) 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8
TAT 51.6 69.5 75.4 59.4 69.5 68.6 59.5 50.5 76.8 70.9 56.6 81.6 65.8

Table 4. Classification accuracies (%) on Multi-Domain Sentiment Dataset for unsupervised domain adaptation.

METHOD B→D B→E B→K D→B D→E D→K E→B E→D E→K K→B K→D K→E AVG.

SVM (BOW) (CHANG & LIN, 2011) 79.9 74.8 76.9 74.3 74.8 74.6 70.5 72.6 84.7 70.7 73.6 84.2 76.0
DANN (BOW) (GANIN ET AL., 2016) 78.4 73.3 77.9 72.3 75.4 78.3 71.3 73.8 85.4 70.9 74.0 84.3 76.3
MSDA (BOW) (CHEN ET AL., 2012) 83.5 74.5 84.6 83.6 79.5 87.1 78.8 80.9 85.3 80.2 82.3 86.9 82.3
TAT (BOW) 84.5 80.1 83.6 81.9 81.9 84.0 83.2 77.9 90.0 75.8 77.7 88.2 82.4
DANN (MSDA) (GANIN ET AL., 2016) 82.9 80.4 84.3 82.5 80.9 84.9 77.4 78.1 88.1 71.8 78.9 85.6 81.3
TDA (MSDA) (LONG ET AL., 2016) 84.1 85.0 87.5 84.9 85.7 88.6 82.0 82.7 87.7 81.5 83.3 86.8 85.0
TAT (MSDA) 86.8 85.9 88.6 86.4 86.4 89.4 83.7 83.5 90.4 81.4 84.7 89.2 86.3

Table 5. Classification accuracies(%) on VisDA-2017 (ResNet-50).

METHOD ACCURACY

RESNET-50 (HE ET AL., 2016) 40.2
DANN (GANIN ET AL., 2016) 63.7
MCD (SAITO ET AL., 2018) 69.2
GTA (SANKARANARAYANAN ET AL., 2018) 69.5
CDAN (LONG ET AL., 2018) 70.0
TAT 71.9

TAT still achieves strong performance across all the tasks, as
shown in Table 3. By guaranteeing adaptability, it improves
substantially over adversarial feature adaptation methods.

Results of VisDA-2017 are shown in Table 5, where TAT
outperforms both feature-level adaptation and generative
pixel-level adaptation methods. Note that TAT only involves
two-layer fully connected networks, much simpler than the
generative methods that incorporate complex architecture
tailored to the synthetic-to-real domain adaptation problem.

TAT, with the same architecture choice as the vision tasks,
even outperforms strong competitors in the multi-domain
sentiment classification tasks by large margins. The two-
layer TAT can achieve comparable accuracy to five-layer
mSDA on the 30000-dimension BoW input, and improve
mSDA by 3.9% if further trained on mSDA representations.
This verifies TAT’s effectiveness on non-visual domain adap-
tation tasks. To our knowledge, TAT is the first approach that
performs well in both vision and NLP adaptation scenarios.

5.3. Analysis

Toy dataset. We study the behavior of TAT on the rotating
twinning moon dataset. We generate 1000 samples for each
domain with scikit-learn (Pedregosa et al., 2013). Samples
of the target domain are rotated 30◦ from the source domain.

We depict the decision boundary of TAT and compare it
with the model trained solely on the source domain. We
also show the distributions of the transferable examples.

As shown in Figure 4(a), the model trained on the source
domain cannot accurately classify the target examples. In
contrast, TAT’s decision boundary separates most target ex-
amples correctly (Figure 4(b)). In Figure 4(c), we illustrate
the distribution of transferable examples. The generated ex-
amples are shown to fill in the gap between the source and
target domains and thus reduce the domain discrepancy. By
enforcing consistent predictions over transferable examples,
we drive the decision boundary away from all examples.

Ablation study. We study the strategies for transferable
examples generating and transferable adversarial training.
The comparison between TAT and its variants are provided
in Table 6. TAT (w\o c) and TAT (w\o d) refer to the pro-
posed model without transferable examples generated from
the gradient of category classifier C and domain discrimina-
torD, respectively. Results indicate that adversarial training
towards the category classifier and the domain discriminator
are both beneficial to bridging cross-domain discrepancy.

Cross-domain A-distance. As shown in the domain adap-
tation theory (1), two important factors bound the generaliza-
tion error: adaptability λ and discrepancy dH∆H. Figure 2
shows that our approach yields the highest adaptability (that
of ResNet-50). We further show in Table 7 the cross-domain
A-distance (Ben-David et al., 2010), a proxy of dH∆H. We
compute the A-distance of TAT based on the transferable
examples, which turns out to be the smallest in all methods.

6. Related Work
Domain Adaptation Domain adaptation generalizes a
model under dataset shift (Pan & Yang, 2010). Moment
matching minimizes the distance between feature statistics
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(a) Source Only Model (b) TAT (c) Transferable Examples

Figure 4. Behaviors on the two moon problem. Purple and yellow "+"s indicate source samples, blue "+"s are target samples, while dots
are transferable examples. (a) The source only model. (b) The decision boundary of TAT. (c) The distribution of the transferable examples.

Table 6. Classification accuracies (%) of the TAT variants on Office-31 for unsupervised domain adaptation (ResNet-50).

METHOD A→W D→W W→D A→D D→A W→A AVG.

TAT (W\O C) 87.2±0.2 98.3±0.2 99.9±0.1 88.4±0.2 71.0±0.1 69.8±0.1 85.8
TAT (W\O D) 88.5±0.3 98.7±0.2 100.0±.0 90.6±0.2 71.4±0.2 72.0±0.1 86.8
TAT 92.5±0.3 99.3±0.1 100.0±.0 93.2±0.2 73.1±0.3 72.1±0.3 88.4

Table 7. Cross-domain A-distance of different approaches.

METHOD D→W W→A

RESNET-50 (HE ET AL., 2016) 1.27 1.86
DANN (GANIN ET AL., 2016) 1.23 1.44
MCD (SAITO ET AL., 2018) 1.22 1.60
TAT 1.06 1.04

of the source and target. DAN and DDC minimize the max-
imum mean discrepancies (Long et al., 2015; Tzeng et al.,
2014). Zellinger et al. (2017) proposed the central moment
discrepancy as a discrepancy measure between distributions.

The success of GANs (Goodfellow et al., 2014) inspires
the adversarial feature adaptation approaches. DANN trains
a domain discriminator to distinguish the source and tar-
get while the features are learned to fool the discriminator
(Ganin et al., 2016). This paradigm incorporates minimax
training objectives and can be interpreted as approximating
the H∆H-distance in the domain adaptation theory (Ben-
David et al., 2010). Based on adversarial feature adapta-
tion, a line of works improve the domain discriminator or
the procedure of adversarial learning. ADDA uses asym-
metric feature extractors for the source and target (Tzeng
et al., 2017). CDAN conditions the domain discriminator
on classifier predictions (Long et al., 2018). Another way
of adversarial feature adaptation generates target features
to minimize theH∆H-distance, which is computed by the
disagreement of independent classifiers (Saito et al., 2018).

On par with feature-level adaptation methods, pixel-level
adaptation methods translate the source data into the target
domain or vice versa by Image to Image Translation. Liu
et al. (2017) proposed to learn a shared latent space with
translated images. GTA generates source-like images using
source features and target-like images using target features
(Sankaranarayanan et al., 2018). Inspired by CycleGAN
(Zhu et al., 2017), CyCADA enforces semantic consistency

of the image translation to improve the pixel-level methods
(Hoffman et al., 2018).
Adversarial Training Szegedy et al. (2014) first discov-
ered the intriguing weakness of deep networks to minor
adversarial perturbations. Goodfellow et al. (2015) delved
into adversarial examples and pointed out the advantages
of adversarial training. Training with adversarial examples
results in regularizing the network to mitigate over-fitting
(Zheng et al., 2016). Sinha et al. (2018) derived a theory of
principled adversarial training with robustness guarantees.

In addition to enhancing the robustness of deep networks,
adversarial training is also promising in a variety of machine
learning problems. Miyato et al. (2018) incorporated virtual
adversarial training (VAT) in semi-supervised context to
smooth the output distributions as a regularization of deep
networks. Virtual Adversarial Domain Adaptation (VADA)
improves adversarial feature adaptation with VAT and har-
nesses the cluster assumption (Chapelle & Zien, 2005; Shu
et al., 2018). Different from our method, it generates adver-
sarial examples against only the classifier and still performs
adversarial feature adaptation. Volpi et al. (2018) explored
adversarial training in domain generalization scenarios.

7. Conclusion
We present a general approach, transferable adversarial train-
ing, to adapting deep classifiers. By deceiving both category
classifier and domain discriminator, the approach generates
transferable examples which bridge the gap across domains.
Both high adaptability and small distribution discrepancy
expected by the domain adaptation theory are achieved by
the approach, as justified on both vision and NLP datasets.
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