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Turbulence Atmospheric circulation

Real-world phenomena

Stress

How to understand the world?
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Turbulence Atmospheric circulation

Real-world phenomena

Stress

Beyond appearances, these phenomena are governed by 
scientific rules.
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Partial Differential Equations (PDEs)

Ø Fluid physics:

Ø Solid physics:

Navier-Stokes Equation
for fluid dynamics

Inner stress 
of solid materials
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Wide Applications

Airfoil design Weather forecasting

Civil engineering Vehicle manufacturing
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PDE Solvers

Classic Numerical Methods

FEM, Spectral, etcNew Task Results

Ø Recalculation for every new sample

Ø Each round will take hours or even days

Stable but Slow
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PDE Solvers

Neural PDE Solver

Deep ModelsData Loss

Ø Training once, inference a lot

Ø Each round needs several seconds

An efficient surrogate tool

(In expectation)

New Task Results

Classic Numerical Methods

Ø Recalculation for every new sample

Ø Each round will take hours or even days

Stable but Slow

FEM, Spectral, etcNew Task Results
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A Roadmap to Practical Neural PDE Solvers

Q3: Generalization 

among varied PDEs

Deep Models Latent Spectral Models Transolver Unisolver

Q1: High-dimensional

Mapping Approximation

Q2: Large-scale 

Irregular Meshes
…

Varied Geometries Physical Simulation

Industrial simulation with CAE

Neural PDE Solver (Our work)
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Solving PDEs: Discretization

Infinite-dimensional
PDE solutions

Discretization
High-dimensional 
coordinate spaces

𝒙 𝒔 , 𝒔 ∈ 𝒟 𝒟 is the mesh point set

Spatial continuous
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Solving PDEs: Discretization

Infinite-dimensional
PDE solutions

Discretization
High-dimensional 
coordinate spaces

𝒙 𝒔 , 𝒔 ∈ 𝒟 𝒟 is the grid point set

Spatiotemporal Continuous

Navier-Stokes Equation
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Challenges in Solving High-dimensional PDEs

(d) Darcy

Input:
Porous medium

Output: 
Fluid pressure

through medium

(e) AirFoil

Input:
Airfoil structure

Output:
Airflow velocity

Input:
Structure of 

elastic material

(a) Elasticity

Output: 
Inner stress

(f) Pipe

Input:
Pipe structure

Output:
Fluid velocity

Input:
Initial boundary 

condition

Output:
Displacement of

mesh points

(b) Plasticity

(c) Navier-Stokes

Input:
Fluid velocity
in the past

Output:
Fluid velocity
in the future
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mesh points

(b) Plasticity

(c) Navier-Stokes

Input:
Fluid velocity
in the past

Output:
Fluid velocity
in the future

Ø Curse of dimensionality → Huge computation cost 

Ø Intricate interactions among physical variates of coupled equations →

Complex mappings
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Complex mappings
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Inner stress
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Pipe structure
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Fluid velocity

Input:
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Output:
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mesh points

(b) Plasticity
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Input:
Fluid velocity
in the past

Output:
Fluid velocity
in the future

How to efficiently and precisely approximate complex mappings 

between high-dimensional input-output pairs?
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Motivation

Manifold Hypothesis: Real-world high-dimensional data lie on low-

dimensional manifolds embedded within the high-dimensional space.

…
Multitudinous Data

Following the same PDE constraint
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Motivation

Manifold Hypothesis: Real-world high-dimensional data lie on low-

dimensional manifolds embedded within the high-dimensional space.

…

1. High-dimensional data can be projected to a more compact latent space 

Multitudinous Data

Following the same PDE constraint
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Motivation

…

How to approximate

complex input-output mappings?

Previous Methods: Directly approximating with a single deep model

Suffer from optimization problem and limited performance
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Motivation

…

How to approximate

complex input-output mappings?

Spectral Methods: approximate solution 𝑓 of a certain PDE as a finite sum 

of 𝑁 orthogonal basis functions {𝑓!, 𝑓", ⋯ , 𝑓#}, that is: 𝑓 ≈ 𝑓# = ∑$%!# 𝑤$𝑓$.
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Motivation

…

How to approximate

complex input-output mappings?

2. Learning multiple basis operators for approximation

Spectral Methods: approximate solution 𝑓 of a certain PDE as a finite sum 

of 𝑁 orthogonal basis functions {𝑓!, 𝑓", ⋯ , 𝑓#}, that is: 𝑓 ≈ 𝑓# = ∑$%!# 𝑤$𝑓$.
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Latent Spectral Models (LSM)

Previous Methods LSM (ours)

Solving 

Process

Solving in the coordinate space

• Huge computation cost

• Making input-output mappings 

extremely complex

Solving in the latent space

• Efficient computation

• Highlight the inherent physics 

properties

Mapping 

approximation

Directly learning a single operator

• Fail in approximating complex 

mappings

• Lack of theoretical guarantee

Learning multiple basis operators

• Nice approximating and convergence 

properties under theoretical 

guarantee
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Overall design of LSM

LSM with Hierarchical Projection Network and Neural Spectral Block

① Coor → Latent ② Solving in the Latent Space ③ Latent → Coor
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Hierarchical Projection Network

① Multiscale patchified architecture → Solve PDEs in different regions and scales

PDEs always present different physical states according to the observed scales and regions.
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Hierarchical Projection Network

② Attention-based projector → Remove unwieldy coordinate information
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Hierarchical Projection Network

[Patches]

…

② Attention-based projector → Remove unwieldy coordinate information

Canonical

Self-Attention

[Patches]

…
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Hierarchical Projection Network

[Patches]

…

② Attention-based projector → Remove unwieldy coordinate information

Canonical

Self-Attention

[Patches]

…

Still in the coordinate space

Undergoing the problems from 

high-dimensional PDEs
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Hierarchical Projection Network

② Attention-based projector → Remove unwieldy coordinate information

[Latent Tokens]

[Patches] [Patches]

… ……

Coord->Latent
Projection

Solve PDEs in 
Latent SpaceQuery

Key

Value

Value

Key

Query

…
Latent->Coord

Projection

Initialize Latent tokens

as model parameters

• Share in all samples

• Provide physical prompt 

for projection

• Efficient computation
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Hierarchical Projection Network

[Latent Tokens]

[Patches] [Patches]

… ……

Coord->Latent
Projection

Solve PDEs in 
Latent SpaceQuery

Key

Value

Value

Key

Query

…
Latent->Coord

Projection
Latent Token as Q

Patches as K & V
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Hierarchical Projection Network

[Latent Tokens]

[Patches] [Patches]

… ……

Coord->Latent
Projection

Solve PDEs in 
Latent SpaceQuery

Key

Value

Value

Key

Query

…
Latent->Coord

Projection
Solve PDEs in latent space

by Neural Spectral Block
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Hierarchical Projection Network

[Latent Tokens]

[Patches] [Patches]

… ……

Coord->Latent
Projection

Solve PDEs in 
Latent SpaceQuery

Key

Value

Value

Key

Query

…
Latent->Coord

Projection
Latent Token as K & V

Patches as Q
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Hierarchical Projection Network

[Latent Tokens]

[Patches] [Patches]

… ……

Coord->Latent
Projection

Solve PDEs in 
Latent SpaceQuery

Key

Value

Value

Key

Query

…
Latent->Coord

Projection

1. Linear complexity projection, more efficient computation

2. Highlight the inherent properties of high-dimensional data

3. Benefit the model convergence properties
31
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Task: Approximate Complex Nonlinear Mapping (b) FNO: Linear Transformation in Fourier Domain

(c) LSM: Decompose into Basis Operators

FFT IFFT

Coefficients

Mapped
Coefficients

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Neural Spectral Methods: Solving PDEs in Hierarchical Latent Space

Anonymous Authors1

Abstract
//todo

1. Introduction
Extensive real-world applications and phenomena are gov-
erned by underlying partial differential equations (PDEs),
such as aviation, meteorology, and civil engineering.

2. Preliminaries
2.1. Spectral Methods

Spectral methods are widely-acknowledged in applied math-
ematics and scientific computing in solving partial differ-
ential equations (PDEs) numerically (Gottlieb & Orszag,
1977; Fornberg, 1998; Kopriva, 2009). The key idea is to ap-
proximate the solution f of a certain PDE as a finite sum of
N orthogonal basis functions {f1, f2, · · · , fN}, where the
approximation solution fN can be formalized as follows:

f ⇡ fN =
NX

i=1

wifi, (1)

where N is the hyper-parameter and wi is the coefficient
for fi, i 2 {1, · · · , N}. With the above approximation, the
problem can be simplified as the optimization of coefficients
{w1, w2, · · · , wN} to make fN satisfy the PDE better. The
spectral methods hold great approximation and convergence
properties in solving PDEs (Gottlieb & Orszag, 1977).

2.2. Deep Models for PDEs

Due to the immense importance in extensive scientific and
engineering areas, solving PDEs has attached great interest.
Since it is usually impossible to work out explicit formulas
for PDEs solutions, many numerical methods have been
explored (Ŝolı́n, 2005; Grossmann et al., 2007). However,
these classical methods are designed to solve one specific in-
stance and are hard to generalize to new scenarios. Besides,

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

these classical methods also suffer from poor computation
efficiency, especially in processing high-dimensional data.
Recently, various deep models have been developed. The
mainstream works can be roughly categorized into equation-
constraint and operator-learning methods.

Equation-constraint methods. This category of works
directly parameterizes the PDE solution as a deep model
and formalizes equation constraints, e.g. the PDEs and their
corresponding initial and boundary conditions, as the ob-
jective function (Weinan & Yu, 2017; Raissi et al., 2019;
Wang et al., 2020a;b). By doing this, they can directly ob-
tain the solution for a certain PDE with model optimization.
However, these methods require the exact formalization of
underlying PDEs, which is hard to acquire in real-world
applications. Besides, calculating the equation constraints
will also make them suffer from poor generality and effi-
ciency as classical numerical methods. Thus, instead of the
objective function, this paper focuses on the architecture
design, namely the operator-learning paradigm.

Operator-learning methods. This paradigm attempts to
propose deep models with novel architectures to learn the
mapping from scientific information to PDE solutions, such
as from past observations of fluid velocity to future predic-
tion or from the structure of elastic material to inner stress.

Technically, given the coordinates in a bounded open set
D ⇢ Rd, the inputs and outputs of deep models can be
re-written as functions w.r.t. the coordinates, which are in
the Banach spaces X = X (D;Rdx) and Y = Y(D;Rdy )
respectively. Rdx and Rdy are the range of input and output
functions. Thus, the PDE-governed task is to approximate
the optimal operator F : X ! Y with deep model learned
from observed input-output pairs. Concretely, suppose we
have collected M observations {xi, yi}Mi=1, where xi ⇠ µ
is one instance of i.i.d. input functions with the probability
measure µ supported on A. Given a metric L : Y ⇥Y ! R,
the optimization process can be formalized as:

min
✓2⇥

Ex⇠µ


L
�
F✓(x),F(x)

��
, (2)

where F✓ is the learned deep model and ✓ is selected from
the model parameter space ⇥. Optimized purely from data,
these methods do not require any knowledge of underlying
PDEs and focus more on the architecture design.

Linear Transformation

(a) U-Net: Directly Learn Mapping
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efficiency, especially in processing high-dimensional data.
Recently, various deep models have been developed. The
mainstream works can be roughly categorized into equation-
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re-written as functions w.r.t. the coordinates, which are in
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is one instance of i.i.d. input functions with the probability
measure µ supported on A. Given a metric L : Y ⇥Y ! R,
the optimization process can be formalized as:
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where F✓ is the learned deep model and ✓ is selected from
the model parameter space ⇥. Optimized purely from data,
these methods do not require any knowledge of underlying
PDEs and focus more on the architecture design.
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LSM approximates complex mappings by learning multiple basis operators
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{ŷk(s)}s2Dk

{xk(s)}s2Dk

x

F(x)

F✓(x)

1 Introduction

1

check

xxx

January 2023
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{ŷk(s)}s2Dk

{xk(s)}s2Dk

x

F(x)

F✓(x)

1 Introduction

1

check

xxx

January 2023
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stance and are hard to generalize to new scenarios. Besides,
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these classical methods also suffer from poor computation
efficiency, especially in processing high-dimensional data.
Recently, various deep models have been developed. The
mainstream works can be roughly categorized into equation-
constraint and operator-learning methods.

Equation-constraint methods. This category of works
directly parameterizes the PDE solution as a deep model
and formalizes equation constraints, e.g. the PDEs and their
corresponding initial and boundary conditions, as the ob-
jective function (Weinan & Yu, 2017; Raissi et al., 2019;
Wang et al., 2020a;b). By doing this, they can directly ob-
tain the solution for a certain PDE with model optimization.
However, these methods require the exact formalization of
underlying PDEs, which is hard to acquire in real-world
applications. Besides, calculating the equation constraints
will also make them suffer from poor generality and effi-
ciency as classical numerical methods. Thus, instead of the
objective function, this paper focuses on the architecture
design, namely the operator-learning paradigm.

Operator-learning methods. This paradigm attempts to
propose deep models with novel architectures to learn the
mapping from scientific information to PDE solutions, such
as from past observations of fluid velocity to future predic-
tion or from the structure of elastic material to inner stress.

Technically, given the coordinates in a bounded open set
D ⇢ Rd, the inputs and outputs of deep models can be
re-written as functions w.r.t. the coordinates, which are in
the Banach spaces X = X (D;Rdx) and Y = Y(D;Rdy )
respectively. Rdx and Rdy are the range of input and output
functions. Thus, the PDE-governed task is to approximate
the optimal operator F : X ! Y with deep model learned
from observed input-output pairs. Concretely, suppose we
have collected M observations {xi, yi}Mi=1, where xi ⇠ µ
is one instance of i.i.d. input functions with the probability
measure µ supported on A. Given a metric L : Y ⇥Y ! R,
the optimization process can be formalized as:

min
✓2⇥

Ex⇠µ


L
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F✓(x),F(x)

��
, (2)

where F✓ is the learned deep model and ✓ is selected from
the model parameter space ⇥. Optimized purely from data,
these methods do not require any knowledge of underlying
PDEs and focus more on the architecture design.
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N orthogonal basis functions {f1, f2, · · · , fN}, where the
approximation solution fN can be formalized as follows:
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where N is the hyper-parameter and wi is the coefficient
for fi, i 2 {1, · · · , N}. With the above approximation, the
problem can be simplified as the optimization of coefficients
{w1, w2, · · · , wN} to make fN satisfy the PDE better. The
spectral methods hold great approximation and convergence
properties in solving PDEs (Gottlieb & Orszag, 1977).
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Since it is usually impossible to work out explicit formulas
for PDEs solutions, many numerical methods have been
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these classical methods are designed to solve one specific in-
stance and are hard to generalize to new scenarios. Besides,
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Recently, various deep models have been developed. The
mainstream works can be roughly categorized into equation-
constraint and operator-learning methods.

Equation-constraint methods. This category of works
directly parameterizes the PDE solution as a deep model
and formalizes equation constraints, e.g. the PDEs and their
corresponding initial and boundary conditions, as the ob-
jective function (Weinan & Yu, 2017; Raissi et al., 2019;
Wang et al., 2020a;b). By doing this, they can directly ob-
tain the solution for a certain PDE with model optimization.
However, these methods require the exact formalization of
underlying PDEs, which is hard to acquire in real-world
applications. Besides, calculating the equation constraints
will also make them suffer from poor generality and effi-
ciency as classical numerical methods. Thus, instead of the
objective function, this paper focuses on the architecture
design, namely the operator-learning paradigm.

Operator-learning methods. This paradigm attempts to
propose deep models with novel architectures to learn the
mapping from scientific information to PDE solutions, such
as from past observations of fluid velocity to future predic-
tion or from the structure of elastic material to inner stress.

Technically, given the coordinates in a bounded open set
D ⇢ Rd, the inputs and outputs of deep models can be
re-written as functions w.r.t. the coordinates, which are in
the Banach spaces X = X (D;Rdx) and Y = Y(D;Rdy )
respectively. Rdx and Rdy are the range of input and output
functions. Thus, the PDE-governed task is to approximate
the optimal operator F : X ! Y with deep model learned
from observed input-output pairs. Concretely, suppose we
have collected M observations {xi, yi}Mi=1, where xi ⇠ µ
is one instance of i.i.d. input functions with the probability
measure µ supported on A. Given a metric L : Y ⇥Y ! R,
the optimization process can be formalized as:
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where F✓ is the learned deep model and ✓ is selected from
the model parameter space ⇥. Optimized purely from data,
these methods do not require any knowledge of underlying
PDEs and focus more on the architecture design.
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where N is the hyper-parameter and wi is the coefficient
for fi, i 2 {1, · · · , N}. With the above approximation, the
problem can be simplified as the optimization of coefficients
{w1, w2, · · · , wN} to make fN satisfy the PDE better. The
spectral methods hold great approximation and convergence
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Since it is usually impossible to work out explicit formulas
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these classical methods are designed to solve one specific in-
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these classical methods also suffer from poor computation
efficiency, especially in processing high-dimensional data.
Recently, various deep models have been developed. The
mainstream works can be roughly categorized into equation-
constraint and operator-learning methods.

Equation-constraint methods. This category of works
directly parameterizes the PDE solution as a deep model
and formalizes equation constraints, e.g. the PDEs and their
corresponding initial and boundary conditions, as the ob-
jective function (Weinan & Yu, 2017; Raissi et al., 2019;
Wang et al., 2020a;b). By doing this, they can directly ob-
tain the solution for a certain PDE with model optimization.
However, these methods require the exact formalization of
underlying PDEs, which is hard to acquire in real-world
applications. Besides, calculating the equation constraints
will also make them suffer from poor generality and effi-
ciency as classical numerical methods. Thus, instead of the
objective function, this paper focuses on the architecture
design, namely the operator-learning paradigm.

Operator-learning methods. This paradigm attempts to
propose deep models with novel architectures to learn the
mapping from scientific information to PDE solutions, such
as from past observations of fluid velocity to future predic-
tion or from the structure of elastic material to inner stress.

Technically, given the coordinates in a bounded open set
D ⇢ Rd, the inputs and outputs of deep models can be
re-written as functions w.r.t. the coordinates, which are in
the Banach spaces X = X (D;Rdx) and Y = Y(D;Rdy )
respectively. Rdx and Rdy are the range of input and output
functions. Thus, the PDE-governed task is to approximate
the optimal operator F : X ! Y with deep model learned
from observed input-output pairs. Concretely, suppose we
have collected M observations {xi, yi}Mi=1, where xi ⇠ µ
is one instance of i.i.d. input functions with the probability
measure µ supported on A. Given a metric L : Y ⇥Y ! R,
the optimization process can be formalized as:

min
✓2⇥

Ex⇠µ
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where F✓ is the learned deep model and ✓ is selected from
the model parameter space ⇥. Optimized purely from data,
these methods do not require any knowledge of underlying
PDEs and focus more on the architecture design.
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erned by underlying partial differential equations (PDEs),
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2. Preliminaries
2.1. Spectral Methods

Spectral methods are widely-acknowledged in applied math-
ematics and scientific computing in solving partial differ-
ential equations (PDEs) numerically (Gottlieb & Orszag,
1977; Fornberg, 1998; Kopriva, 2009). The key idea is to ap-
proximate the solution f of a certain PDE as a finite sum of
N orthogonal basis functions {f1, f2, · · · , fN}, where the
approximation solution fN can be formalized as follows:

f ⇡ fN =
NX

i=1

wifi, (1)

where N is the hyper-parameter and wi is the coefficient
for fi, i 2 {1, · · · , N}. With the above approximation, the
problem can be simplified as the optimization of coefficients
{w1, w2, · · · , wN} to make fN satisfy the PDE better. The
spectral methods hold great approximation and convergence
properties in solving PDEs (Gottlieb & Orszag, 1977).

2.2. Deep Models for PDEs

Due to the immense importance in extensive scientific and
engineering areas, solving PDEs has attached great interest.
Since it is usually impossible to work out explicit formulas
for PDEs solutions, many numerical methods have been
explored (Ŝolı́n, 2005; Grossmann et al., 2007). However,
these classical methods are designed to solve one specific in-
stance and are hard to generalize to new scenarios. Besides,
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these classical methods also suffer from poor computation
efficiency, especially in processing high-dimensional data.
Recently, various deep models have been developed. The
mainstream works can be roughly categorized into equation-
constraint and operator-learning methods.

Equation-constraint methods. This category of works
directly parameterizes the PDE solution as a deep model
and formalizes equation constraints, e.g. the PDEs and their
corresponding initial and boundary conditions, as the ob-
jective function (Weinan & Yu, 2017; Raissi et al., 2019;
Wang et al., 2020a;b). By doing this, they can directly ob-
tain the solution for a certain PDE with model optimization.
However, these methods require the exact formalization of
underlying PDEs, which is hard to acquire in real-world
applications. Besides, calculating the equation constraints
will also make them suffer from poor generality and effi-
ciency as classical numerical methods. Thus, instead of the
objective function, this paper focuses on the architecture
design, namely the operator-learning paradigm.

Operator-learning methods. This paradigm attempts to
propose deep models with novel architectures to learn the
mapping from scientific information to PDE solutions, such
as from past observations of fluid velocity to future predic-
tion or from the structure of elastic material to inner stress.

Technically, given the coordinates in a bounded open set
D ⇢ Rd, the inputs and outputs of deep models can be
re-written as functions w.r.t. the coordinates, which are in
the Banach spaces X = X (D;Rdx) and Y = Y(D;Rdy )
respectively. Rdx and Rdy are the range of input and output
functions. Thus, the PDE-governed task is to approximate
the optimal operator F : X ! Y with deep model learned
from observed input-output pairs. Concretely, suppose we
have collected M observations {xi, yi}Mi=1, where xi ⇠ µ
is one instance of i.i.d. input functions with the probability
measure µ supported on A. Given a metric L : Y ⇥Y ! R,
the optimization process can be formalized as:

min
✓2⇥

Ex⇠µ
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F✓(x),F(x)
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, (2)

where F✓ is the learned deep model and ✓ is selected from
the model parameter space ⇥. Optimized purely from data,
these methods do not require any knowledge of underlying
PDEs and focus more on the architecture design.
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for fi, i 2 {1, · · · , N}. With the above approximation, the
problem can be simplified as the optimization of coefficients
{w1, w2, · · · , wN} to make fN satisfy the PDE better. The
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Since it is usually impossible to work out explicit formulas
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these classical methods also suffer from poor computation
efficiency, especially in processing high-dimensional data.
Recently, various deep models have been developed. The
mainstream works can be roughly categorized into equation-
constraint and operator-learning methods.

Equation-constraint methods. This category of works
directly parameterizes the PDE solution as a deep model
and formalizes equation constraints, e.g. the PDEs and their
corresponding initial and boundary conditions, as the ob-
jective function (Weinan & Yu, 2017; Raissi et al., 2019;
Wang et al., 2020a;b). By doing this, they can directly ob-
tain the solution for a certain PDE with model optimization.
However, these methods require the exact formalization of
underlying PDEs, which is hard to acquire in real-world
applications. Besides, calculating the equation constraints
will also make them suffer from poor generality and effi-
ciency as classical numerical methods. Thus, instead of the
objective function, this paper focuses on the architecture
design, namely the operator-learning paradigm.

Operator-learning methods. This paradigm attempts to
propose deep models with novel architectures to learn the
mapping from scientific information to PDE solutions, such
as from past observations of fluid velocity to future predic-
tion or from the structure of elastic material to inner stress.

Technically, given the coordinates in a bounded open set
D ⇢ Rd, the inputs and outputs of deep models can be
re-written as functions w.r.t. the coordinates, which are in
the Banach spaces X = X (D;Rdx) and Y = Y(D;Rdy )
respectively. Rdx and Rdy are the range of input and output
functions. Thus, the PDE-governed task is to approximate
the optimal operator F : X ! Y with deep model learned
from observed input-output pairs. Concretely, suppose we
have collected M observations {xi, yi}Mi=1, where xi ⇠ µ
is one instance of i.i.d. input functions with the probability
measure µ supported on A. Given a metric L : Y ⇥Y ! R,
the optimization process can be formalized as:
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the model parameter space ⇥. Optimized purely from data,
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N orthogonal basis functions {f1, f2, · · · , fN}, where the
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where N is the hyper-parameter and wi is the coefficient
for fi, i 2 {1, · · · , N}. With the above approximation, the
problem can be simplified as the optimization of coefficients
{w1, w2, · · · , wN} to make fN satisfy the PDE better. The
spectral methods hold great approximation and convergence
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Since it is usually impossible to work out explicit formulas
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these classical methods are designed to solve one specific in-
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these classical methods also suffer from poor computation
efficiency, especially in processing high-dimensional data.
Recently, various deep models have been developed. The
mainstream works can be roughly categorized into equation-
constraint and operator-learning methods.

Equation-constraint methods. This category of works
directly parameterizes the PDE solution as a deep model
and formalizes equation constraints, e.g. the PDEs and their
corresponding initial and boundary conditions, as the ob-
jective function (Weinan & Yu, 2017; Raissi et al., 2019;
Wang et al., 2020a;b). By doing this, they can directly ob-
tain the solution for a certain PDE with model optimization.
However, these methods require the exact formalization of
underlying PDEs, which is hard to acquire in real-world
applications. Besides, calculating the equation constraints
will also make them suffer from poor generality and effi-
ciency as classical numerical methods. Thus, instead of the
objective function, this paper focuses on the architecture
design, namely the operator-learning paradigm.

Operator-learning methods. This paradigm attempts to
propose deep models with novel architectures to learn the
mapping from scientific information to PDE solutions, such
as from past observations of fluid velocity to future predic-
tion or from the structure of elastic material to inner stress.

Technically, given the coordinates in a bounded open set
D ⇢ Rd, the inputs and outputs of deep models can be
re-written as functions w.r.t. the coordinates, which are in
the Banach spaces X = X (D;Rdx) and Y = Y(D;Rdy )
respectively. Rdx and Rdy are the range of input and output
functions. Thus, the PDE-governed task is to approximate
the optimal operator F : X ! Y with deep model learned
from observed input-output pairs. Concretely, suppose we
have collected M observations {xi, yi}Mi=1, where xi ⇠ µ
is one instance of i.i.d. input functions with the probability
measure µ supported on A. Given a metric L : Y ⇥Y ! R,
the optimization process can be formalized as:
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where F✓ is the learned deep model and ✓ is selected from
the model parameter space ⇥. Optimized purely from data,
these methods do not require any knowledge of underlying
PDEs and focus more on the architecture design.

x

check

xxx

January 2023
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erned by underlying partial differential equations (PDEs),
such as aviation, meteorology, and civil engineering.

2. Preliminaries
2.1. Spectral Methods

Spectral methods are widely-acknowledged in applied math-
ematics and scientific computing in solving partial differ-
ential equations (PDEs) numerically (Gottlieb & Orszag,
1977; Fornberg, 1998; Kopriva, 2009). The key idea is to ap-
proximate the solution f of a certain PDE as a finite sum of
N orthogonal basis functions {f1, f2, · · · , fN}, where the
approximation solution fN can be formalized as follows:

f ⇡ fN =
NX

i=1

wifi, (1)

where N is the hyper-parameter and wi is the coefficient
for fi, i 2 {1, · · · , N}. With the above approximation, the
problem can be simplified as the optimization of coefficients
{w1, w2, · · · , wN} to make fN satisfy the PDE better. The
spectral methods hold great approximation and convergence
properties in solving PDEs (Gottlieb & Orszag, 1977).

2.2. Deep Models for PDEs

Due to the immense importance in extensive scientific and
engineering areas, solving PDEs has attached great interest.
Since it is usually impossible to work out explicit formulas
for PDEs solutions, many numerical methods have been
explored (Ŝolı́n, 2005; Grossmann et al., 2007). However,
these classical methods are designed to solve one specific in-
stance and are hard to generalize to new scenarios. Besides,
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these classical methods also suffer from poor computation
efficiency, especially in processing high-dimensional data.
Recently, various deep models have been developed. The
mainstream works can be roughly categorized into equation-
constraint and operator-learning methods.

Equation-constraint methods. This category of works
directly parameterizes the PDE solution as a deep model
and formalizes equation constraints, e.g. the PDEs and their
corresponding initial and boundary conditions, as the ob-
jective function (Weinan & Yu, 2017; Raissi et al., 2019;
Wang et al., 2020a;b). By doing this, they can directly ob-
tain the solution for a certain PDE with model optimization.
However, these methods require the exact formalization of
underlying PDEs, which is hard to acquire in real-world
applications. Besides, calculating the equation constraints
will also make them suffer from poor generality and effi-
ciency as classical numerical methods. Thus, instead of the
objective function, this paper focuses on the architecture
design, namely the operator-learning paradigm.

Operator-learning methods. This paradigm attempts to
propose deep models with novel architectures to learn the
mapping from scientific information to PDE solutions, such
as from past observations of fluid velocity to future predic-
tion or from the structure of elastic material to inner stress.

Technically, given the coordinates in a bounded open set
D ⇢ Rd, the inputs and outputs of deep models can be
re-written as functions w.r.t. the coordinates, which are in
the Banach spaces X = X (D;Rdx) and Y = Y(D;Rdy )
respectively. Rdx and Rdy are the range of input and output
functions. Thus, the PDE-governed task is to approximate
the optimal operator F : X ! Y with deep model learned
from observed input-output pairs. Concretely, suppose we
have collected M observations {xi, yi}Mi=1, where xi ⇠ µ
is one instance of i.i.d. input functions with the probability
measure µ supported on A. Given a metric L : Y ⇥Y ! R,
the optimization process can be formalized as:

min
✓2⇥

Ex⇠µ


L
�
F✓(x),F(x)

��
, (2)

where F✓ is the learned deep model and ✓ is selected from
the model parameter space ⇥. Optimized purely from data,
these methods do not require any knowledge of underlying
PDEs and focus more on the architecture design.

Linear Transformation

(a) U-Net: Directly Learn Mapping
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1 Introduction

1

Neural spectral block is applied to

projected latent tokens of all the patches in multiple scales

35



Theoretical analysis

Convergence of Trigonometric Approximation in High-dimensional Space:

Let 𝒇:ℝ( → ℝ( be a 2𝜋-periodic function w.r.t. the variable on each dimension, 

where 𝒇 ∈ 𝐿) −𝜋, 𝜋 ( , 𝑀 ≥ 2, 1 ≤ 𝑝 ≤ ∞ and 𝑝 ≠ 2. For 𝒇 defined on the 

M-dimension space, its trigonometric approximation 𝒇# is defined as:

if 𝒇 satisfies the Lipschitz condition, then there exists a constant 𝐾, such that

𝒇 − 𝒇# ≤ 𝐾𝑁 (*! !
"*
!
) *!.

Slow Convergence Rate in High-dimensional Space
36



Approximation and Convergence Properties of Neural Spectral Block 

(trigonometric approximation with residual): Given 𝑓: [0, 𝜋] → ℝ, if 𝑓 satisfies 

the Lipschitz condition, there is a choice of model parameters such that the 

approximation 𝑓# defined in neural spectral block can uniformly converge to f 

with the speed as follows:

𝑓 − 𝑓#(𝒙) ≤ 𝐾
ln𝑁
𝑁

, ∀𝑥 ∈ [0, 𝜋].

Theoretical analysis

Projecting M-dimension data into independent latent tokens brings 

favorable convergence speed of Neural Spectral Block.
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Overall design of LSM

LSM with Hierarchical Projection Network and Neural Spectral Block

① Coor → Latent ② Solving in the Latent Space ③ Latent → Coor
38



Experiments

Seven typical PDE solving tasks, covering both fluid and 

solid physis, various geometrics.
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PDE-governed Tasks

(d) Darcy

Input:
Porous medium

Output: 
Fluid pressure

through medium

(e) AirFoil

Input:
Airfoil structure

Output:
Airflow velocity

Input:
Structure of 

elastic material

(a) Elasticity

Output: 
Inner stress

(f) Pipe

Input:
Pipe structure

Output:
Fluid velocity

Input:
Initial boundary 

condition

Output:
Displacement of

mesh points

(b) Plasticity

(c) Navier-Stokes

Input:
Fluid velocity
in the past

Output:
Fluid velocity
in the future

Approximate complex input-output mappings with deep models
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Main Results

LSM achieves consistent SOTA and surpasses previous 

14 baselines with 11.5% error reduction.
41



Showcases
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Showcases
Ground Truth (T=18) U-NO FNO LSM (Ours)HT-Net MWT
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���

Prediction
Error

Ground Truth (T=20) U-NO FNO LSM (Ours)HT-Net MWT

����

����

���

���

���

Prediction
Error
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Efficiency

Favorable trade-off between performance and efficiency.
44



Solving Process Visualization

LSM can precisely capture the complex mapping and 

latent process from high-dimensional coordinate space. 
45



Performance under various resolutions in Darcy 
benchmark

LSM presents a stable performance w.r.t. different inputs 

and consistently surpasses other baselines. 46



Transferability

(d) Darcy

Input:
Porous medium

Output: 
Fluid pressure

through medium

(e) AirFoil

Input:
Airfoil structure

Output:
Airflow velocity

Input:
Structure of 

elastic material

(a) Elasticity

Output: 
Inner stress

(f) Pipe

Input:
Pipe structure

Output:
Fluid velocity

Input:
Initial boundary 

condition

Output:
Displacement of

mesh points

(b) Plasticity

(c) Navier-Stokes

Input:
Fluid velocity
in the past

Output:
Fluid velocity
in the future

(d) Darcy

Input:
Porous medium

Output: 
Fluid pressure

through medium

(e) AirFoil

Input:
Airfoil structure

Output:
Airflow velocity

Input:
Structure of 

elastic material

(a) Elasticity

Output: 
Inner stress

(f) Pipe

Input:
Pipe structure

Output:
Fluid velocity

Input:
Initial boundary 

condition

Output:
Displacement of

mesh points

(b) Plasticity

(c) Navier-Stokes

Input:
Fluid velocity
in the past

Output:
Fluid velocity
in the future

Finetune the pipe-pretrained model into airfoil with limited data

(same PDE equation but different boundary conditions)

LSM shows good Transferability between different conditions. 
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Open Source

Code is available at https://github.com/thuml/Latent-Spectral-Models 48

https://github.com/thuml/Latent-Spectral-Models


A Roadmap to Practical Neural PDE Solvers

Q3: Generalization 

among varied PDEs

Deep Models Latent Spectral Models Transolver Unisolver

Q1: High-dimensional

Mapping Approximation

Q2: Large-scale 

Irregular Meshes
…

Varied Geometries Physical Simulation

Industrial simulation with CAE

Neural PDE Solver (Our work)

49



ICML | 2024
The Forty-first International Conference on Machine Learning

Haixu Wu Mingsheng LongJianmin WangHuakun Luo Haowen Wang
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Solving PDEs: Discretization

Airplane

Car

51



Challenges in Practical Industrial Design

Example: Estimate the drag coefficient of a given shape:

Surrounding Wind & Surface Pressure

52



Challenges in Practical Industrial Design

Example: Estimate the drag coefficient of a given shape:

Surrounding Wind & Surface Pressure

1. Large-scale meshes → Huge computation cost 

2. Complex and unstructured geometrics → Complex geometric learning

3. Multiphysics interaction → Intricate physical correlations
53



Previous Work: Geometric Deep Learning

(1) Mesh

GraphSAGE, MeshGraphNet, etc

(2) Point Cloud

PointNet, Point Transformer, etc

Excels in geometry modeling but fail in physics learning
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Previous Work: Geometry-General Neural Operators

(1) GNN as Operators

GNO, GINO, etc

(2) FNO-Variants

geoFNO, SFNO, etc

Only focus on local physics or limited to periodic boundary

55



Transformer-based PDE Solvers

…

(1) Geometries as point sequences (2) Attention as Monte Carlo Integral

OFormer, Galerkin Transformer, etc

1. Quadratic complexity

2. Hard to capture physical correlations among massive points

56



Transformer-based PDE Solvers

…

(1) Geometries as point sequences (2) Attention as Monte Carlo Integral

OFormer, Galerkin Transformer, etc

How to efficiently capture physical correlations underlying discretized meshes

is the key to “transform” Transformers into practical PDE solvers

57



Related Work

(1) Linear Transformers

1. Less informative attention

2. Individual points is insufficient for 

physics learning

(2) Vision Transformer

Augment features with patch ✓

Not applicable to irregular meshes
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A foundational Idea of Transolver

Discretized Domain

Previous Work

Being “trapped” to superficial and unwieldy meshes

Difficulties in Complexity, Geometry, Physics
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A foundational Idea of Transolver

Transolver

Learning intrinsic physical states under

complex and large-scale geometrics

Better Complexity, Geometry, Physics ModelingPhysics Domain

Discretized Domain

Previous Work

Being “trapped” to superficial and unwieldy meshes

Difficulties in Complexity, Geometry, Physics

60



…
(a) Slices for Darcy, 2D Regular Grid

…
(b) Slices for Elasticity, 2D Point Cloud (c) Slices for Airfoil, 2D Mesh

(e) Slices for Shape-Net Car Surface Pressure, 3D Mesh

2023/12/18 15:07 SY.KWPO

ÀOH:///8VHUV/WKXPO/DHVNWRS/IC0L2024/SY.KWPO 1/2

(d) Slices for Shape-Net Car Surrounding Velocity, 3D Volumes

2023/12/18 16:09 pv_velo.html

file:///Users/thuml/Desktop/ICML2024/pv_velo.html 1/2

……

…

Learning Physical States

Mesh points under similar physical states will be ascribed to the same slice

and then encoded into a physics-aware token.

61



Overview of Transolver

Transolver applies attention to learned physical states (Physics-Attention)

① Mesh → physics ② Attention (Integral) ③ Physics → Mesh
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Overview of Transolver

① Mesh → physics

To obtain physics-aware tokens
63



Mesh → physics

1. Assign each point to slices with weights learned from features

𝑵 Points to 𝑴 Slices

Softmax for low-entropy slices
64



Mesh → physics

1. Assign each point to slices 2. Aggregate slices for physics-aware tokens

65



Mesh → physics

1. Why slices can learn physically internal-consistent information

2. Learning slice is different from splitting computation area

Ascribe physically similar but spatially distant points to the same slice
66



Overview of Transolver

② Attention among physics tokens

Approximate Integral to solve PDEs
67



Attention among physics tokens

1. Complexity: 𝒪(𝑁"𝐶) → 𝒪(𝑀"𝐶)

2. Capture interactions among physics states

3. Theorem: Attention as learnable integral operator

Canonical attention among physics tokens

…
(a) Slices for Darcy, 2D Regular Grid

…
(b) Slices for Elasticity, 2D Point Cloud (c) Slices for Airfoil, 2D Mesh

(e) Slices for Shape-Net Car Surface Pressure, 3D Mesh

2023/12/18 15:07 SY.KWPO

ÀOH:///8VHUV/WKXPO/DHVNWRS/IC0L2024/SY.KWPO 1/2

(d) Slices for Shape-Net Car Surrounding Velocity, 3D Volumes

2023/12/18 16:09 pv_velo.html

file:///Users/thuml/Desktop/ICML2024/pv_velo.html 1/2

……

…
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Overview of Transolver

③ Physics → Mesh

Project physics information back to mesh
69



Theoretical Understanding of Transolver

1. Corollary of Attention is a learnable integral

Since attention mechanism is applied to tokens encoded from slices, the step 2 

(attention part of Transolver) is a learnable integral for the physics domain

Is Physics-Attention still an input domain integral?

70



Theoretical Understanding of Transolver

All the designs in Transolver can be directly derived.
71



Experiments

Six standard benchmarks, two practical design tasks

More than 20 baselines
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Standard PDE-Solving Benchmarks

Transolver achieves 22% error reduction over the second-best model
73



Practical Design Tasks

Design-oriented metrics: Drag/lift coefficients and their Spearman’s correlation

Transolver performs best in both physics and design-oriented metrics
74



Efficiency

Favorable efficiency and performance balance

Transolver is faster than linear Transformers in large-scale meshes.

75



Physics-Attention Visualization

Slice visualization on Elasticity

Transolver is mesh-free, precisely captures states even on broken meshes
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Physics-Attention Visualization

Physics-Attention can learn more informative physical correlations

Kullback–Leibler (KL) divergence between 

attention weights and uniform distribution

77



Showcases

Transolver excels in solving multiphysics PDEs on hybrid geometrics
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Pursuing PDE Foundation Models: Scalability

1. Resolution: Consistent performance at varied scales

2. Data: Benefiting from larger training data

3. Parameter: Benefiting from more parameters
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Pursuing PDE Foundation Models: Generalization

Transolver still performs best (Spearman’s correlation ~ 99%) in OOD settings 
80



Pursuing PDE Foundation Models: Versatile

Transolver can also be extended to 

Lagrangian Settings 

(Ever-changing geometrics)

Initial State Ground Truth (400th step) GNN GNN + Transolver

81



Open Source

Code is available at https://github.com/thuml/Transolver 82

https://github.com/thuml/Transolver


A Roadmap to Practical Neural PDE Solvers

Q3: Generalization 

among varied PDEs

Deep Models Latent Spectral Models Transolver Unisolver

Q1: High-dimensional

Mapping Approximation

Q2: Large-scale 

Irregular Meshes
…

Varied Geometries Physical Simulation

Industrial simulation with CAE

Neural PDE Solver (Our work)
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Machine Learning for PDEs

Physics-Informed 

Neural Networks
Neural Operators

Karniadakis, G. et al. Physics-informed machine learning, Nature Review Physics 3, 422–440 (2021)85



Generalizability of Neural PDE Solvers

Ø PINNs

Ø Neural operators

1. Formalize the specific PDE equations as 
objective functions during training

2. Struggle to generalize to unseen PDEs
3. Re-training required to solve new PDEs

1. learning from pre-computed simulation data
2. Cannot efficiently adapt to PDEs with varying 

components
3. Computational costly and data-demanding

PDE1

PDE2

PDE3

PINN1

PINN2

PINN3

Solution1

Solution2

Solution3

PDE 
set1 Neural Operator 1

PDE 
set2 Neural Operator 2

training

training

training

training

training
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Unisolver: A Unification of Two Paradigms

In addition to simulated data, Unisolver also defines and utilizes 
a complete set of PDE components.
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Complete PDE Components

Motivating example: vibrating string equation 

¡ The coefficient 𝑎 represents physical quantity such as tension, linear density
¡ 𝑓 represents the external force driving the vibrations of the string
¡ Equation (1b) sets boundary conditions at endpoints
¡ Equation (1c) specifies initial conditions
¡ The domain geometry spans the range 0, 𝐿 ×[0, 𝑇]
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Complete PDE Components

Motivating example: vibrating string equation 

¡ The analytical solution of the above equations is:

¡ The PDE is solved under complex interactions between equation components
¡ The impact of the external force is imposed point-wisely
¡ The coefficient exerts a consistent influence over the domain

89



Complete PDE Components

Categorization of PDE components

¡ Category PDE components into domain- and point-wise components:

¡ Here the equation formulation refers to the symbolic expression of PDEs, 

which can be encoded by Large Language Models
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Universal Components Embedding

p Embedding of equation formulation
ü Utilizing a LLM to embed the symbolic expression of the PDE
ü The symbolic expression is represented by the LaTeX code

p Embedding of other components
ü Domain-wise components are embedded by a 2-layer MLP
ü Point-wise components are patchified and embedded into tokens

p Deep condition consolidation
ü Embedded conditions of each categories are aggregated together
ü Make for easy adaptation to novel PDE components in downstream tasks

91



PDE-Conditional Transformer

① Unify Embedding ② Condition Aggregation
92



PDE-Conditional Transformer

I!" = Concat(MLP C#!$%&' . repeat, MLP(C"!&'())
I!") = Concat(MLP C#!$%&' . repeat, MLP(C"!&'())① Unify Embedding

93



PDE-Conditional Transformer

② Condition Aggregation X'*+/- = I./0/1(⊙Attn I.1%0/⊙LayerNorm X'*+ + I.2&3( + X'*+
X' = I′./0/1(⊙FFN I′.1%0/⊙LayerNorm X'*+/- + I′.2&3( + X'*+/-
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Experiments

¡ HeterNS contains multiple viscosity coefficients and external force

¡ PDEformer proposes a large-scale dataset with 3M samples of 1D PDEs, including 

multiple equation coefficients, external force and boundary conditions

¡ DPOT collects 12 datasets from FNO, PDEBench, PDEArena and CFDBench, with 

PDEs varying in coefficients, external force, geometries and boundary conditions

95



Heterogeneous 2D Navier-Stokes Equation
¡ Generalize to unseen coefficients

¡ Generalize to unseen external force
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Heterogeneous 2D Navier-Stokes Equation

¡ All showcases generated with the same initial condition but with varied 

coefficients. Different viscosities presents quite different dynamics.
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1D Time-dependent PDEs proposed by PDEformer

¡ Models are pretrained on a dataset with 3 million 1D PDEs with varied 

coefficients, external force, boundary conditions and equation symbols

¡ Then tested on OOD downstream PDE datasets generated by PDEBench, 

including the Burgers equation and the advection equation
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Showcases
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2D Mixed PDEs proposed by DPOT

The models are pretrained on 12 datasets collected by DPOT, with varied 

coefficients, external force, boundary conditions and geometries
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Showcases
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Scalability

We progressively increase the training data by 60 times and the model 

parameters by 21 times, plotting the Relative L2 error on a log-log scale
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A Roadmap to Practical Neural PDE Solvers

Q3: Generalization 

among varied PDEs

Deep Models Latent Spectral Models Transolver Unisolver

Q1: High-dimensional

Mapping Approximation

Q2: Large-scale 

Irregular Meshes
…

Varied Geometries Physical Simulation

Industrial simulation with CAE

Neural PDE Solver (Our work)
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