A Roadmap to Practical Neural PDE Solvers

Mingsheng Long School of Software, Tsinghua University July 2024

Real-world phenomena

Turbulence

Atmospheric circulation

Stress

How to understand the world?

Real-world phenomena

Turbulence

Atmospheric circulation

Stress

How to understand the world?

Images? Videos?

Real-world phenomena

Turbulence

Atmospheric circulation

Stress

Beyond appearances, these phenomena are governed by scientific rules.

Partial Differential Equations (PDEs)

 $\partial \rho$

> Fluid physics:

Navier-Stokes Equation for fluid dynamics

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{U}) &= 0 \\ \frac{\partial \boldsymbol{U}}{\partial t} + \boldsymbol{U} \cdot \nabla \boldsymbol{U} &= \boldsymbol{f} + \frac{1}{\rho} \nabla \cdot (\boldsymbol{T}_{ij} \boldsymbol{e}_i \boldsymbol{e}_j) \\ \frac{\partial (e + \frac{1}{2} \boldsymbol{U}^2)}{\partial t} + \boldsymbol{U} \cdot \nabla (e + \frac{1}{2} \boldsymbol{U}^2) &= \boldsymbol{f} \cdot \boldsymbol{U} + \frac{1}{\rho} \nabla \cdot (\boldsymbol{U} \cdot \boldsymbol{T}_{ij} \boldsymbol{e}_i \boldsymbol{e}_j) + \frac{\lambda}{\rho} \Delta T_i \end{aligned}$$

Solid physics:

$$\rho^s \frac{\partial^2 \boldsymbol{u}}{\partial t^2} + \nabla \cdot \boldsymbol{\sigma} = 0$$

Inner stress of solid materials

Wide Applications

Airfoil design

Civil engineering

Weather forecasting

Vehicle manufacturing

Classic Numerical Methods

- Recalculation for every new sample
- Each round will take hours or even days

Stable but Slow

PDE Solvers

Classic Numerical Methods

New Task
$$\longrightarrow$$
 FEM, Spectral, etc \longrightarrow Results

- Recalculation for every new sample
- Each round will take hours or even days

Stable but Slow

Neural PDE Solver

- ➤ Training once, inference a lot
- Each round needs several seconds

An efficient surrogate tool (In expectation)

A Roadmap to Practical Neural PDE Solvers

Industrial simulation with CAE

Neural PDE Solver (Our work)

A Roadmap to Practical Neural PDE Solvers

Industrial simulation with CAE

Neural PDE Solver (Our work)

Solving High-Dimensional PDEs with Latent Spectral Models

Haixu Wu 1 Tengge Hu 1 Huakun Luo 1 Jianmin Wang 1 Mingsheng Long 1

Haixu Wu

Tengge Hu

Huakun Luo

Jianmin Wang

Mingsheng Long

Solving PDEs: Discretization

Infinite-dimensional PDE solutions

 $x(s), s \in \mathcal{D}$

Discretization

High-dimensional coordinate spaces

 $\ensuremath{\mathcal{D}}$ is the mesh point set

Spatial continuous

Solving PDEs: Discretization

Infinite-dimensional PDE solutions

 $x(s), s \in \mathcal{D}$

Discretization

High-dimensional coordinate spaces

 $\ensuremath{\mathcal{D}}$ is the grid point set

Spatiotemporal Continuous Navier-Stokes Equation

 \Box

Curse of dimensionality → Huge computation cost
 Intricate interactions among physical variates of coupled equations →
 Complex mappings

Input: Porous medium Output:

Fluid pressure through medium

uputation cost

I variates of coupled equations \rightarrow

How to efficiently and precisely approximate complex mappings between high-dimensional input-output pairs?

Multitudinous Data

Following the same PDE constraint

Manifold Hypothesis: Real-world high-dimensional data lie on low-

dimensional manifolds embedded within the high-dimensional space.

Multitudinous Data

Following the same PDE constraint

Manifold Hypothesis: Real-world high-dimensional data lie on low-

dimensional manifolds embedded within the high-dimensional space.

1. High-dimensional data can be projected to a more compact latent space

Previous Methods: Directly approximating with a single deep model

Suffer from optimization problem and limited performance

Spectral Methods: approximate solution f of a certain PDE as a finite sum of N orthogonal basis functions $\{f_1, f_2, \dots, f_N\}$, that is: $f \approx f^N = \sum_{i=1}^N w_i f_i$.

Spectral Methods: approximate solution *f* of a certain PDE as a finite sum

of N orthogonal basis functions $\{f_1, f_2, \dots, f_N\}$, that is: $f \approx f^N = \sum_{i=1}^N w_i f_i$.

2. Learning multiple basis operators for approximation

Latent Spectral Models (LSM)

	Previous Methods	LSM (ours)
	Solving in the coordinate space	Solving in the latent space
Solving	Huge computation cost	Efficient computation
Process	Making input-output mappings	 Highlight the inherent physics
	extremely complex	properties
	Directly learning a single operator	Learning multiple basis operators
Mapping	Fail in approximating complex	Nice approximating and convergence
approximation	mappings	properties under theoretical
	Lack of theoretical guarantee	guarantee

Overall design of LSM

LSM with *Hierarchical Projection Network* and *Neural Spectral Block* (1) Coor \rightarrow Latent (2) Solving in the Latent Space (3) Latent \rightarrow Coor

(1) *Multiscale patchified architecture* \rightarrow Solve PDEs in different regions and scales

PDEs always present different physical states according to the observed scales and regions.

Still in the coordinate space Undergoing the problems from high-dimensional PDEs

$$\mathbf{T}_{oldsymbol{x},i} = \mathbf{T}_i + \sum_{\mathbf{s}\in\mathcal{D}} rac{\mathrm{Sim}\left(\mathbf{T}_i,oldsymbol{x}(\mathbf{s})\mathbf{W}_{\mathrm{K}}
ight)}{\sum_{\mathbf{s}'\in\mathcal{D}}\mathrm{Sim}\left(\mathbf{T}_i,oldsymbol{x}(\mathbf{s}')\mathbf{W}_{\mathrm{K}}
ight)} \left(oldsymbol{x}(\mathbf{s})\mathbf{W}_{\mathrm{V}}
ight)$$

$$\{\mathbf{T}_{\boldsymbol{y},i,j}^k\}_{i=1}^C = \text{Solve}\left(\{\mathbf{T}_{\boldsymbol{x},i,j}^k\}_{i=1}^C\right)$$

$$\widehat{oldsymbol{y}}(\mathbf{s}) = oldsymbol{x}(\mathbf{s}) + \sum_{i=1}^{C} rac{\mathrm{Sim}\left(oldsymbol{x}(\mathbf{s}), \mathbf{T}_{oldsymbol{y},i} \mathbf{W}_{\mathrm{K}}'
ight)}{\sum_{i'=1}^{C} \mathrm{Sim}\left(oldsymbol{x}(\mathbf{s}), \mathbf{T}_{oldsymbol{y},i'} \mathbf{W}_{\mathrm{K}}'
ight)} (\mathbf{T}_{oldsymbol{y},i} \mathbf{W}_{\mathrm{V}}')$$

- 1. Linear complexity projection, more efficient computation
- 2. Highlight the inherent properties of high-dimensional data
- 3. Benefit the model convergence properties

Neural Spectral Block

LSM approximates complex mappings by learning multiple basis operators

 $\begin{bmatrix} \mathbf{S}_{x} & \mathbf{S}_{x$ $f_{on}^{*}Giy$ stears spectral Block $\rightarrow \mathbb{R}$, where \mathcal{F}_{a} is t is the learned deep model and θ is selected from Introduction $\mathcal{F}_{ heta}(oldsymbol{x})$ Θ . Optimized purally from data th e any knowl e architectur $\mathcal{F}_{ heta_{ ext{Solve}}}$ $\theta \mathbf{x}$ **Basis Operators** i=1leep model and θ is selected from $e \Theta$. Optimized purely from data, uire any knowledge of underlying

the architecture designselect trigonometric basis operators

$$egin{aligned} \mathcal{F}_{ heta_{ ext{Solve}},(2k-1)}ig(oldsymbol{t}_{oldsymbol{x}}(\mathbf{s})ig) &= \sinig(koldsymbol{t}_{oldsymbol{x}}(\mathbf{s})ig) \ \mathcal{F}_{ heta_{ ext{Solve}},(2k)}ig(oldsymbol{t}_{oldsymbol{x}}(\mathbf{s})ig) &= \cosig(koldsymbol{t}_{oldsymbol{x}}(\mathbf{s})ig) \end{aligned}$$

during the training process, namely solving PDEs

- $e \Theta$. Optimized purely from data,
- uire any knowledge of underlying tral block is applied to
- the architectorge designent tokens of all the patches in multiple scales

$$\mathbf{T}_{\boldsymbol{y}} = \mathbf{T}_{\boldsymbol{x}} + \mathbf{w}_0 + \mathbf{w}_{\sin} \begin{bmatrix} \sin(\mathbf{T}_{\boldsymbol{x}}) \\ \vdots \\ \sin(\frac{N}{2}\mathbf{T}_{\boldsymbol{x}}) \end{bmatrix} + \mathbf{w}_{\cos} \begin{bmatrix} \cos(\mathbf{T}_{\boldsymbol{x}}) \\ \vdots \\ \cos(\frac{N}{2}\mathbf{T}_{\boldsymbol{x}}) \end{bmatrix}$$

Theoretical analysis

Convergence of Trigonometric Approximation in High-dimensional Space: Let $f: \mathbb{R}^M \to \mathbb{R}^M$ be a 2π -periodic function w.r.t. the variable on each dimension, where $f \in L_p([-\pi,\pi)^M), M \ge 2, 1 \le p \le \infty$ and $p \ne 2$. For f defined on the *M*-dimension space, its trigonometric approximation f^N is defined as:

$$oldsymbol{f}^{N}(\mathbf{x}) = \sum_{\mathbf{k}\in\mathbb{Z}^{M}, |\mathbf{k}|\leq N} \left(rac{1}{2\pi} \int_{[-\pi,\pi)^{M}} oldsymbol{f}(\mathbf{t}) e^{-i\mathbf{kt}} \mathrm{dt}
ight) e^{i\mathbf{kx}},$$

if **f** satisfies the Lipschitz condition, then there exists a constant K, such that

$$||f - f^N|| \le KN^{(M-1)|\frac{1}{2} - \frac{1}{p}| - 1}$$

Slow Convergence Rate in High-dimensional Space
Theoretical analysis

Approximation and Convergence Properties of Neural Spectral Block

(trigonometric approximation with residual): Given $f: [0, \pi] \to \mathbb{R}$, if f satisfies the Lipschitz condition, there is a choice of model parameters such that the approximation f^N defined in neural spectral block can uniformly converge to fwith the speed as follows:

$$\left| |f - f^N(\boldsymbol{x})| \right| \le K \frac{\ln N}{N}, \forall \boldsymbol{x} \in [0, \pi].$$

Projecting M-dimension data into independent latent tokens brings

favorable convergence speed of Neural Spectral Block.

Overall design of LSM

LSM with *Hierarchical Projection Network* and *Neural Spectral Block* (1) Coor \rightarrow Latent (2) Solving in the Latent Space (3) Latent \rightarrow Coor

Experiments

PHYSICS	BENCHMARKS	GEOMETRY	#DIM
Solid	ELASTICITY-P Elasticity-G Plasticity	POINT CLOUD REGULAR GRID STRUCTURED MESH	2D 2D 3D
Fluid	NAVIER-STOKES DARCY AIRFOIL PIPE	REGULAR GRID REGULAR GRID STRUCTURED MESH STRUCTURED MESH	3D 2D 2D 2D 2D

Seven typical PDE solving tasks, covering both fluid and solid physis, various geometrics.

PDE-governed Tasks

Approximate complex input-output mappings with deep models

Main Results

	SOLID PHYSICS*			Fluid Physics [†]			
Model	ELASTICITY-P ‡	ELASTICITY-G	PLASTICITY	NAVIER-STOKES	DARCY	Airfoil	Pipe
U-NET (2015)	0.0235	0.0531	0.0051	0.1982	0.0080	0.0079	0.0065
ResNet (2016)	0.0262	0.0843	0.0233	0.2753	0.0587	0.0391	0.0120
TF-NET (2019)	/	/	/	0.1801	/	/	/
SWIN (2021)	0.0283	0.0819	0.0170	0.2248	0.0397	0.0270	0.0109
DEEPONET (2021)	0.0965	0.0900	0.0135	0.2972	0.0588	0.0385	0.0097
FNO (2021)	0.0229	0.0508	0.0074	0.1556	0.0108	0.0138	0.0067
U-FNO (2021)	0.0239	0.0480	0.0039	0.2231	0.0183	0.0269	<u>0.0056</u>
WMT (2021)	0.0359	0.0520	0.0076	<u>0.1541</u>	0.0082	0.0075	0.0077
GALERKIN (2021)	0.0240	0.1681	0.0120	0.2684	0.0170	0.0118	0.0098
SNO (2022)	0.0390	0.0987	0.0070	0.2568	0.0495	0.0893	0.0294
U-NO (2022)	0.0258	<u>0.0469</u>	<u>0.0034</u>	0.1713	0.0113	0.0078	0.0100
HT-NET (2022)	0.0372	0.0472	0.0333	0.1847	0.0079	<u>0.0065</u>	0.0059
F-FNO (2023)	0.0263	0.0475	0.0047	0.2322	<u>0.0077</u>	0.0078	0.0070
KNO (2023A)	/	/	/	0.2023	/	/	/
LSM	0.0218	0.0408	0.0025	0.1535	0.0065	0.0059	0.0050
PROMOTION	4.8%	13.0%	26.5%	0.4%	15.6%	9.2%	10.7%

LSM achieves consistent SOTA and surpasses previous

14 baselines with 11.5% error reduction.

Showcases

Showcases

Efficiency

Favorable trade-off between performance and efficiency.

Solving Process Visualization

LSM can precisely capture the complex mapping and latent process from high-dimensional coordinate space.

Performance under various resolutions in Darcy benchmark

LSM presents a stable performance w.r.t. different inputs and consistently surpasses other baselines.

Transferability

Finetune the pipe-pretrained model into airfoil with limited data

(same PDE equation but different boundary conditions)

LSM shows good Transferability between different conditions.

Open Source

wuhaiku2016 Update darcy_tsm.sh 3addate for on May 3 © 21 commits About Code Release for "Solving High-Dimensional PDES with Latent Spectral Models" (CML 2023). https://ankiv.org/abs/2301.12664 models clean last month Image: CML 2023). https://ankiv.org/abs/2301.12664 scripts Update darcy_tsm.sh last month Image: CML 2023). https://ankiv.org/abs/2301.12664 uitis clean last month Image: CML 2023). https://ankiv.org/abs/2301.12664 i. ditis clean last month Image: CML 2023). https://ankiv.org/abs/2301.12664 i. ditis clean last month Image: CML 2023). https://ankiv.org/abs/2301.12664 i. ditis clean last month Image: CML 2023). https://ankiv.org/abs/2301.12664 i. ditis clean last month Image: CML 2023). https://ankiv.org/abs/2301.12664 i. ditis clean	 wuhaixu2016 Update darcy_ fig 	Jsm.sh		About Code Delegas for "Solving High	
figadd readmelast mothMtbs://arxiv.org/abs//30112664modelscleanlast mothlast mothlast mothscriptsUpdate darcy.jsm.shlast mothlast mothlast mothutilscleanlast mothlast mothlast mothi. glitgnoreinitial commitlast mothlast mothi. LICENSEinitial commitlast mothlast mothexp.pirolis.pycleanlast mothlast mothexp.pirolis.pycleanlast mothreleasesi. exp.glas.pycleanlast mothNo releases publishedi. exp.glas.pycleanlast mothNo releasesi. exp.glas.pycleanlast mothNo releases publishedi. exp.glas.pycleanlast mothNo release publishedi. exp.glas.pycleanlast mothNo release publishedi. exp.glas.pycleanlast mothNo release publishedi. exp.glas.pycleanlast mothhast mothi. exp	f ig		30db0cf on May 3 🕚 21 commits	Dimensional PDEs with Latent Spectral	
ImageIdeaIdeaIdeaIdeai striptsUpdat dary, Jsm. ShIdeaIdeaIdeai uliaIdeaIdeaIdeaIdeaIdeai uliaInitia CommitIdeaIdeaIdeaIdeai LCNSEInitia CommitIdeaIdeaIdeaIdeai RADME.mdUpdat README.mdIdeaIdeaIdeaIdeai exp, airfoils.pyIdeaIdeaIdeaIdeaIdeai exp, els.pyIdeaIdeaIdeaIdeaIdeai exp, els.pyIdeaIdeaIdeaIdeaIdeai exp, pise.pyIdeaIdeaIdeaIdeaIdeai exp, pise.p		add readme	last month	Models" (ICML 2023), https://arxiv.org/abs/2301.12664	
Image: spiptsUpdate darcy_lsm.shImage: spiptsImage: spiptsImage: utilscleanlast mothimage: spipts> ActivityImage: utilsinitial commitlast mothimage: spipts> Image: spiptsImage: utilscleanlast mothlast mothImage: spiptsImage: utilscleanlast mothlast mothlast mothImage: utils	models	clean	last month	D Readme	
Itilscleanlast montlast mont~ Activity ☆ 21 stars	scripts	Update darcy_lsm.sh	last month	회 MIT license	
Initial commitlast montilast montiIst mon	🖿 utils	clean	last month	- Activity	
LCENSEInitial commitIast month¥ 2 forks Report repositoryREADME.mdUpdate README.mdIast monthReport repositoryexp.airfoils.pycleanIast monthReleasesexp.plas.pycleanIast monthCreate a new releaseexp.plas.pycleanIast monthMeredesesexp.plas.pycleanIast monthCreate a new releaseexp.plas.pycleanIast monthMeredesesexp.plas.pycleanIast monthMeredesesexp.plas.pycleanIast monthMoredesesexp.plas.pycleanIast monthMoredesesimodel_dict.pycleanIast monthMoredeseimodel_dict.pycleanIast monthMoredeseimodel_dict.pycleanIast monthMoredeseimodel_dict.pyinitinitIast monthimodel_dict.pyinitinitIast monthimodel_dict.pyinitinitimodel_dic	🗋 .gitignore	Initial commit	last month	• 4 watching	
README.mdUpdate README.mdlast monthReport repositorylexp_airfoils.pycleanlast monthReleaseslexp_darcy.pycleanlast monthNo releases publishedlexp_las.pycleanlast monthNo releases publishedlexp_ns.pycleanlast monthNo releases publishedlexp_ns.pycleanlast monthNo releases publishedlexp_ns.pycleanlast monthPackageslexp_ns.pycleanlast monthNo packages publishedlexp_ns.pycleanlast monthlast monthlexp_ns.pycleanlast monthlast monthlexp_ns.pycleanlast monthlast monthlexp_ns.pycleanlast monthlast monthlexp_ns.pycleanlast monthlast monthlexp_ns.pyinitlast monthlast monthlexp_ns.pyinitlast monthlast monthlexp_ns.pycleanlast monthlast monthlexp_ns.pycleanlast monthlast monthlexp_ns.pycleanlast monthlast monthlexp_ns.pycleanlast monthlast monthlexp_ns.pycleanlast monthlast month <td></td> <td>Initial commit</td> <td>last month</td> <td>양 2 forks</td> <td></td>		Initial commit	last month	양 2 forks	
exp_airfoiis.pycleanlast monthexp_darcy.pycleanlast monthexp_elas.pycleanlast monthexp_elas_interp.pycleanlast monthexp_ns.pycleanlast monthexp_pipe.pycleanlast monthexp_pipe.pycleanlast monthexp_pipe.pycleanlast monthimodel_dict.pycleanlast monthimodel_dict.pyimitlast m	🗋 README.md	Update README.md	last month	Report repository	
Less exp_darcy.pycleanlast monthReleasesLess exp_elas_interp.pycleanlast monthNo releases published Create a new releaseLess exp_pipe.pycleanlast monthPackagesLess exp_pipe.pycleanlast monthPackagesLess exp_plas.pycleanlast monthPackagesLess model_dict.pycleanlast monthNo packages published Publish your first packageLess model_dict.pycleanlast monthLess model_dict.pyLess model_dict.pyinitlast monthLess model_dict.pyLess model_dict.pyinitlast monthLess model_dict.pyLess model_dict.pyinitlast monthLess model_dict.pyinitlast monthLess model_dict.pyinitlast monthLess model_dict.pyinitlast monthLess model_dict.pyinitlast monthLess model_dict.pyinitlast monthLess model_dict.pyinitlast monthLess model_dict.pyinitlast monthLess model_dict.pyinitlast monthLess model_dict.pyinitlast m	exp_airfoils.py	clean	last month		
Image: No releases published Create a new releaseNo releases published Create a new releaseImage: No releases published PackagesImage: No releases published Create a new releaseImage: No releases published PackagesImage: No packages published Publish your first packageImage: No packages published Publish your first packageNo packages published Publish your first packageImage: No packages published Publish your first packageNo packages published Publish your first packageImage: No packages published Publish your first packageNo packages published Publish your first packageImage: No packages published Publish your first packageNo packages published Publish your first packageImage: No packages published Publish your first packageNo packages published Publish your first packageImage: No packages published Publish your first packageNo packages published Publish your first packageImage: No packages published Publish your first packageNo packages published Publish your first packageImage: No packages published Publish your first packageNo packages published Publish your first packageImage: No packages published Publish your first packageNo packages published Publish your first packageImage: No packages published Publish your first packageNo packages published Publish your first packageImage: No	exp_darcy.py	clean	last month	Releases	
exp_elas_interp.pycleanlast monthexp_ns.pycleanlast monthexp_pipe.pycleanlast monthexp_plas.pycleanlast monthmodel_dict.pycleanlast monthintcleanlast monthintlast monthlast monthintlast monthlast monthintintlast monthintlast monthlast monthintlast monthlast monthintlast monthlast monthintlast monthlast monthintlast monthlast monthintlast monthlast month	🗋 exp_elas.py	clean	last month	No releases published Create a new release	
exp_ns.pycleanlast monthPackagesexp_pipe.pycleanlast monthNo packages publishedexp_plas.pycleanlast monthPublish your first packagemodel_dict.pycleanlast monthIast monthrequirements.txtinitlast monthlast month	exp_elas_interp.py	clean	last month		
Lexp_pipe.pycleanlast monthNo packages publishedPublish your first packageLmodel_dict.pycleanlast monthlast monthlast monthlast monthLmodel_dict.pyinitlast monthlast monthlast monthlast month	🗋 exp_ns.py	clean	last month	Packages	
L exp_plas.py clean last month L model_dict.py clean last month L requirements.txt init last month	🗋 exp_pipe.py	clean	last month	No packages published	
model_dict.py clean last month requirements.txt init last month	🗋 exp_plas.py	clean	last month	Publish your first package	
requirements.txt init last month	model_dict.py	clean	last month		
	requirements.txt	init	last month		
Python 96.1% ● Python 96.1% ● Shell 3.9%	i≣ README.md		ß	• Python 96.1% • Shell 3.9%	

Code is available at https://github.com/thuml/Latent-Spectral-Models

A Roadmap to Practical Neural PDE Solvers

Industrial simulation with CAE

Neural PDE Solver (Our work)

Transolver: A Fast Transformer Solver for PDEs on General Geometries

Haixu Wu 1 Huakun Luo 1 Haowen Wang 1 Jianmin Wang 1 Mingsheng Long 1

Haixu Wu

Huakun Luo

Haowen Wang

Jianmin Wang

Mingsheng Long

Solving PDEs: Discretization

Airplane

Challenges in Practical Industrial Design

Example: Estimate the drag coefficient of a given shape:

Surrounding Wind & Surface Pressure

Challenges in Practical Industrial Design

Example: Estimate the drag coefficient of a given shape:

Surrounding Wind & Surface Pressure

- 1. Large-scale meshes → Huge computation cost
- 2. Complex and unstructured geometrics \rightarrow Complex geometric learning
- 3. Multiphysics interaction \rightarrow Intricate physical correlations

Previous Work: Geometric Deep Learning

(1) Mesh

(2) Point Cloud

GraphSAGE, MeshGraphNet, etc

PointNet, Point Transformer, etc

Excels in geometry modeling but fail in physics learning

Previous Work: Geometry-General Neural Operators

(1) GNN as Operators

GNO, GINO, etc

geoFNO, SFNO, etc

Only focus on local physics or limited to periodic boundary

Transformer-based PDE Solvers

(1) Geometries as point sequences (2) Attention as Monte Carlo Integral

OFormer, Galerkin Transformer, etc

- 1. Quadratic complexity
- 2. Hard to capture physical correlations among massive points

Transformer-based PDE Solvers

(1) Geometries as point sequences (2) Attention as Monte Carlo Integral OFormer, Galerkin Transformer, etc

How to efficiently capture physical correlations underlying discretized meshes is the key to "transform" Transformers into practical PDE solvers

Related Work

(1) Linear Transformers

- 1. Less informative attention
- 2. Individual points is insufficient for physics learning

(2) Vision Transformer

Augment features with patch \checkmark

Not applicable to irregular meshes

A foundational Idea of Transolver

Previous Work

Being "trapped" to superficial and unwieldy meshes

Discretized Domain

Difficulties in Complexity, Geometry, Physics

A foundational Idea of Transolver

Discretized Domain

Previous Work

Being "trapped" to superficial and unwieldy meshes Difficulties in Complexity, Geometry, Physics

Transolver

Learning intrinsic physical states under

complex and large-scale geometrics

Physics Domain

Better Complexity, Geometry, Physics Modeling

Learning Physical States

(d) Slices for Shape-Net Car Surrounding Velocity, 3D Volumes

(e) Slices for Shape-Net Car Surface Pressure, 3D Mesh

Mesh points under **similar physical states** will be ascribed to the same **slice**

and then encoded into a physics-aware token.

Overview of Transolver

Transolver applies attention to learned physical states (Physics-Attention)

(1) Mesh \rightarrow physics (2) Attention (Integral) (3) Physics \rightarrow Mesh

Overview of Transolver

Mesh \rightarrow physics

1. Assign each point to slices with weights learned from features

$$\{\mathbf{w}_i\}_{i=1}^N = \left\{ \underbrace{\text{Softmax}}_{i=1} \left(\operatorname{Project}\left(\mathbf{x}_i\right) \right) \right\}_{i=1}^N$$

$$\mathbf{s}_j = \left\{ \mathbf{w}_{i,j} \mathbf{x}_i \right\}_{i=1}^N,$$
Softmark Softmar

N Points to **M** Slices

Softmax for low-entropy slices

Mesh \rightarrow physics

1. Assign each point to slices 2. Aggregate slices for physics-aware tokens

$$\mathbf{z}_{j} = \frac{\sum_{i=1}^{N} \mathbf{s}_{j,i}}{\sum_{i=1}^{N} \mathbf{w}_{i,j}} = \frac{\sum_{i=1}^{N} \mathbf{w}_{i,j} \mathbf{x}_{i}}{\sum_{i=1}^{N} \mathbf{w}_{i,j}}$$

$\mathsf{Mesh} \to \mathsf{physics}$

- 1. Why slices can learn physically internal-consistent information
- 2. Learning slice is different from splitting computation area Ascribe physically similar but spatially distant points to the same slice

Overview of Transolver

Attention among physics tokens

$$\mathbf{q}, \mathbf{k}, \mathbf{v} = \text{Linear}(\mathbf{z}), \ \mathbf{z}' = \text{Softmax}\left(\frac{\mathbf{qk}^{\mathsf{T}}}{\sqrt{C}}\right) \mathbf{v}$$

Canonical attention among physics tokens

- 1. Complexity: $\mathcal{O}(N^2C) \rightarrow \mathcal{O}(M^2C)$
- 2. Capture interactions among physics states
- 3. Theorem: Attention as learnable integral operator

Overview of Transolver

Theoretical Understanding of Transolver

1. Corollary of Attention is a learnable integral

Since attention mechanism is applied to tokens encoded from slices, **the step 2** (attention part of Transolver) is a learnable integral for the <u>physics domain</u>

Is Physics-Attention still an input domain integral?

$$\mathcal{G}(\boldsymbol{u})(\mathbf{g}^*) = \int_{\Omega} \kappa(\mathbf{g}^*, \boldsymbol{\xi}) \boldsymbol{u}(\boldsymbol{\xi}) \mathrm{d} \boldsymbol{\xi}$$

Theoretical Understanding of Transolver

$$\begin{split} \mathcal{G}(\boldsymbol{u})(\mathbf{g}) &= \int_{\Omega} \kappa(\mathbf{g},\boldsymbol{\xi}) \boldsymbol{u}(\boldsymbol{\xi}) \mathrm{d}\boldsymbol{\xi} \\ &= \int_{\Omega_s} \kappa_{\mathrm{ms}}(\mathbf{g},\boldsymbol{\xi}_s) \boldsymbol{u}_s(\boldsymbol{\xi}_s) \mathrm{d}\boldsymbol{g}^{-1}(\boldsymbol{\xi}_s) & (\kappa_{\mathrm{ms}}(\cdot,\cdot):\Omega\times\Omega_s \to \mathbb{R}^{C\times C} \text{ is a kernel function}) \\ &= \int_{\Omega_s} \kappa_{\mathrm{ms}}(\mathbf{g},\boldsymbol{\xi}_s) \boldsymbol{u}_s(\boldsymbol{\xi}_s) |\det(\nabla_{\boldsymbol{\xi}_s}\boldsymbol{g}^{-1}(\boldsymbol{\xi}_s))| \mathrm{d}\boldsymbol{\xi}_s \\ &= \int_{\Omega_s} \left(\frac{\int_{\Omega_s} w_{\mathbf{g},\boldsymbol{\xi}'_s} \kappa_{\mathrm{ss}}(\boldsymbol{\xi}'_s,\boldsymbol{\xi}_s) \mathrm{d}\boldsymbol{\xi}'_s}{\int_{\Omega_s} w_{\mathbf{g},\boldsymbol{\xi}'_s} \mathrm{d}\boldsymbol{\xi}'_s} \right) \boldsymbol{u}_s(\boldsymbol{\xi}_s) |\det(\nabla_{\boldsymbol{\xi}_s}\boldsymbol{g}^{-1}(\boldsymbol{\xi}_s))| \mathrm{d}\boldsymbol{\xi}_s & (\kappa_{\mathrm{ms}} \text{ is a linear combination of } \kappa_{\mathrm{ss}} \text{ with weights } \boldsymbol{w}_{*,*}) \\ &= \int_{\Omega_s} \int_{\Omega_s} w_{\mathbf{g},\boldsymbol{\xi}'_s} \int_{\Omega_s} \underbrace{\frac{\kappa_{\mathrm{ss}}(\boldsymbol{\xi}'_s,\boldsymbol{\xi}_s)}{\Lambda_{\mathrm{tention among slice tokens}} \frac{\boldsymbol{u}_s(\boldsymbol{\xi}_s)}{\mathrm{slice token}} |\det(\nabla_{\boldsymbol{\xi}_s}\boldsymbol{g}^{-1}(\boldsymbol{\xi}_s))| \mathrm{d}\boldsymbol{\xi}_s \mathrm{d}\boldsymbol{\xi}'_s & (\mathrm{Suppose that } \int_{\Omega_s} w_{\mathbf{g},\boldsymbol{\xi}'_s} \mathrm{d}\boldsymbol{\xi}'_s = 1) \\ &\approx \underbrace{\sum_{j=1}^{M} \mathbf{w}_{i,j}}_{\mathrm{Eq.}(4)} \underbrace{\sum_{t=1}^{M} \frac{\exp\left(\left(\mathbf{W}_{\mathbf{q}}\boldsymbol{u}_s(\boldsymbol{\xi}_{s,j})\right) \left(\mathbf{W}_{\mathbf{k}}\boldsymbol{u}_s(\boldsymbol{\xi}_{s,t})\right)^{\mathsf{T}/\tau}\right)}_{\mathrm{Eq.}(3)} \\ &= \sum_{j=1}^{M} \mathbf{w}_{i,j} \underbrace{\sum_{t=1}^{M} \frac{\exp(\mathbf{q}_j \mathbf{k}_t^{\mathsf{T}/\tau})}{\sum_{p=1}^{M} \exp(\mathbf{q}_j \mathbf{k}_p^{\mathsf{T}/\tau})} \mathbf{v}_t, & \text{All the designs in Transolver can be directly derived.} \end{split}$$

Experiments

Six standard benchmarks, two practical design tasks

More than 20 baselines
Standard PDE-Solving Benchmarks

	POINT CLOUD	Struc	TURED MES	Н	R EGULAR GRID		
Model	ELASTICITY	PLASTICITY	Airfoil	Pipe	NAVIER-STOKES	DARCY	
FNO (LI ET AL., 2021)	/	/	/	/	0.1556	0.0108	
WMT (GUPTA ET AL., 2021)	0.0359	0.0076	0.0075	0.0077	0.1541	0.0082	
U-FNO (WEN ET AL., 2022)	0.0239	0.0039	0.0269	0.0056	0.2231	0.0183	
GEO-FNO (LI ET AL., 2022)	0.0229	0.0074	0.0138	0.0067	0.1556	0.0108	
U-NO (RAHMAN ET AL., 2023)	0.0258	0.0034	0.0078	0.0100	0.1713	0.0113	
F-FNO (TRAN ET AL., 2023)	0.0263	0.0047	0.0078	0.0070	0.2322	0.0077	
LSM (WU ET AL., 2023)	0.0218	0.0025	<u>0.0059</u>	0.0050	0.1535	<u>0.0065</u>	
GALERKIN (CAO, 2021)	0.0240	0.0120	0.0118	0.0098	0.1401	0.0084	
HT-NET (LIU ET AL., 2022)	/	0.0333	0.0065	0.0059	0.1847	0.0079	
OFORMER (LI ET AL., 2023C)	0.0183	0.0017	0.0183	0.0168	0.1705	0.0124	
GNOT (HAO ET AL., 2023)	<u>0.0086</u>	0.0336	0.0076	0.0047	0.1380	0.0105	
FACTFORMER (LI ET AL., 2023D)	/	0.0312	0.0071	0.0060	0.1214	0.0109	
ONO (XIAO ET AL., 2024)	0.0118	0.0048	0.0061	0.0052	<u>0.1195</u>	0.0076	
TRANSOLVER (OURS)	0.0064	0.0012	0.0053	0.0033	0.0900	0.0057	
KELATIVE I KOMOTION	25.070	29.470	10.270	29.170	24.770	12.370	

Transolver achieves 22% error reduction over the second-best model

Practical Design Tasks

		Shape-Ne	ET CAR			AIRFRA	ANS	
MODEL*	$ $ Volume \downarrow	Surf \downarrow	$C_D\downarrow$	$ ho_D \uparrow$	Volume \downarrow	Surf \downarrow	$C_L\downarrow$	$ ho_L\uparrow$
SIMPLE MLP	0.0512	0.1304	0.0307	0.9496	0.0081	0.0200	0.2108	0.9932
GRAPHSAGE (HAMILTON ET AL., 2017)	0.0461	0.1050	0.0270	0.9695	0.0087	0.0184	0.1476	<u>0.9964</u>
POINTNET (QI ET AL., 2017)	0.0494	0.1104	0.0298	0.9583	0.0253	0.0996	0.1973	0.9919
GRAPH U-NET (GAO & JI, 2019)	0.0471	0.1102	0.0226	0.9725	0.0076	0.0144	0.1677	0.9949
MESHGRAPHNET (PFAFF ET AL., 2021)	0.0354	0.0781	0.0168	0.9840	0.0214	0.0387	0.2252	0.9945
GNO (LI ET AL., 2020A)	0.0383	0.0815	0.0172	0.9834	0.0269	0.0405	0.2016	0.9938
GALERKIN (CAO, 2021)	0.0339	0.0878	0.0179	0.9764	0.0074	0.0159	0.2336	0.9951
GEO-FNO (LI ET AL., 2022)	0.1670	0.2378	0.0664	0.8280	0.0361	0.0301	0.6161	0.9257
GNOT (HAO ET AL., 2023)	0.0329	0.0798	0.0178	0.9833	<u>0.0049</u>	<u>0.0152</u>	0.1992	0.9942
GINO (LI ET AL., 2023A)	0.0386	0.0810	0.0184	0.9826	0.0297	0.0482	0.1821	0.9958
3D-GEOCA (DENG ET AL., 2024)	<u>0.0319</u>	<u>0.0779</u>	<u>0.0159</u>	<u>0.9842</u>	/	/	/	/
TRANSOLVER (OURS)	0.0207	0.0745	0.0103	0.9935	0.0037	0.0142	0.1030	0.9978

Design-oriented metrics: Drag/lift coefficients and their Spearman's correlation

Transolver performs best in both physics and design-oriented metrics

Efficiency

Favorable efficiency and performance balance

Transolver is faster than linear Transformers in large-scale meshes.

Physics-Attention Visualization

Slice visualization on Elasticity

Transolver is mesh-free, precisely captures states even on broken meshes

Physics-Attention Visualization

-0.014Kullback–Leibler (KL) divergence between-0.012attention weights and uniform distribution-0.010-0.008-0.008BENCHMARKSGALERKINTRANSOLVER
(CAO, 2021)GURS)

- 0.004		<u> </u>	<u> </u>	· · ·
- 0.002	ELASTICITY (972 MESH POINTS) DARCY (7,225 MESH POINTS)	0.3803 0.2739		.7795 .8274

Physics-Attention can learn more informative physical correlations

Showcases

Transolver excels in solving multiphysics PDEs on hybrid geometrics

Pursuing PDE Foundation Models: Scalability

- **1. Resolution:** Consistent performance at varied scales
- 2. Data: Benefiting from larger training data
- 3. Parameter: Benefiting from more parameters

Pursuing PDE Foundation Models: Generalization

	OOD RE	EYNOLDS		NGLES	
Models	$ C_L \downarrow$	$ ho_L\uparrow$	$ C_L \downarrow$	$ ho_L\uparrow$	Re $^{10^4}$ - $^{10^5}$
SIMPLE MLP	0.6205	0.9578	0.4128	0.9572	
GRAPHSAGE (2017)	0.4333	0.9707	0.2538	0.9894	
POINTNET (2017)	0.3836	0.9806	0.4425	0.9784	
GRAPH U-NET (2019)	0.4664	0.9645	0.3756	0.9816	
MESHGRAPHNET (2021)	1.7718	0.7631	0.6525	0.8927	Re > 10
GNO (2020A)	0.4408	0.9878	0.3038	0.9884	
GALERKIN (2021)	0.4615	0.9826	0.3814	0.9821	
GNOT (2023)	0.3268	0.9865	0.3497	0.9868	Angle of attack
GINO (2023A)	0.4180	0.9645	0.2583	<u>0.9923</u>	
TRANSOLVER (OURS)	0.2996	0.9896	0.1500	0.9950	Flow direction

Transolver still performs best (Spearman's correlation ~ 99%) in OOD settings

Pursuing PDE Foundation Models: Versatile

Model	$ MSE\downarrow$
GNN (SANCHEZ-GONZALEZ ET AL., 2020) GNN + TRANSOLVER (OURS)	0.0182 0.0069
RELATIVE PROMOTION	62.1%

Transolver can also be extended to Lagrangian Settings (Ever-changing geometrics)

Open Source

E Code · Issues · Pull requests		n ∣~ Insights 🔅 Settings		Q Type () to search	>_ + ▼ ⊙ îì <i>E</i>
	Transolver Public		☆ Edit Pins ▼	🧐 Fork 0 → 🛉 Starred 1	•
8	🤊 main 👻 🤔 1 Branch 🛇 0 Tags	Q Go to file	t) Add file - <> Code -	About	鐐
4	wuhaixu2016 Update exp_elas.py		9e0addd · 2 days ago 🕚 7 Commits	About code release of "Transolver: A Fast Transformer Solver for PDEs on Congral Cogmetrics" ICMI 2024	
	Airfoil-Design-AirfRANS	Update requirements.txt	3 days ago	https://arxiv.org/abs/2402.02366	
	Car-Design-ShapeNetCar	update vis	3 days ago	🛱 Readme	
1	PDE-Solving-StandardBenchmark	Update exp_elas.py	2 days ago	제 MIT license	
1	pic	init code	3 days ago	-/- Activity Custom properties 	
Γ] .gitignore	Initial commit	last week	☆ 1 star	
[LICENSE	Initial commit	last week	 3 watching 4 O forke 	
[Physics_Attention.py	init code	3 days ago	Report repository	
C	B README.md	init code	3 days ago	Releases	
E	미 README 책 MIT license			No releases published <u>Create a new release</u>	
	Transolver (ICML 20	24)		Packages	
	Transolver: A Fast Transformer Solver for	PDEs on General Geometries [paper]		No packages published Publish your first package	
	In real-world applications, PDEs are typic	ally discretized into large-scale mesh	es with complex geometries. To	Languages	
	capture intricate physical correlations hid following features:	dden under multifarious meshes, we p	ropose the Transolver with the	• Python 97.9%	D
	Going beyond previous work, Transc	lver calculates attention among lear	ned physical states instead of	 Jupyter Notebook 1.3% Shell 0.8% 	
	 mesh points, which empowers the m Transolver achieves 22% error redularge-scale industrial simulations 	nodel with endogenetic geometry-ge ction over previous SOTA in six stan	neral capability. dard benchmarks and excels in	Suggested workflows Based on your tech stack	

Code is available at https://github.com/thuml/Transolver

A Roadmap to Practical Neural PDE Solvers

Industrial simulation with CAE

Neural PDE Solver (Our work)

Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers

Hang Zhou, Yuezhou Ma, Haixu Wu⊠, Haowen Wang, Mingsheng Long⊠ School of Software, BNRist, Tsinghua University, China

Hang Zhou

Yuezhou Ma

Haixu Wu

Haowen Wang Mingsheng Long

Machine Learning for PDEs

Karniadakis, G. et al. Physics-informed machine learning, Nature Review Physics 3, 422-440 (2021)

Generalizability of Neural PDE Solvers

> PINNs

- 1. Formalize the specific PDE equations as objective functions during training
- 2. Struggle to generalize to unseen PDEs
- 3. Re-training required to solve new PDEs
- Neural operators
 - 1. learning from pre-computed simulation data
 - 2. Cannot efficiently adapt to PDEs with varying components
 - 3. Computational costly and data-demanding

Unisolver: A Unification of Two Paradigms

In addition to simulated data, Unisolver also defines and utilizes

a complete set of PDE components.

Complete PDE Components

Motivating example: vibrating string equation

$$\begin{array}{ll} \partial_{tt}u - a^{2}\partial_{xx}u = f(x,t), & (x,t) \in (0,L) \times (0,T), & (1a) \\ u(0,t) = 0, \ u(L,t) = 0, & t \in (0,T], & (1b) \\ u(x,0) = \phi(x), \ \partial_{t}u(x,0) = \psi(x), & x \in [0,L]. & (1c) \end{array}$$

- The coefficient *a* represents physical quantity such as tension, linear density
- f represents the external force driving the vibrations of the string
- Equation (1b) sets boundary conditions at endpoints
- Equation (1c) specifies initial conditions
- The domain geometry spans the range $[0, L] \times [0, T]$

Complete PDE Components

Motivating example: vibrating string equation

$$\begin{array}{ll} \partial_{tt}u - a^{2}\partial_{xx}u = f(x,t), & (x,t) \in (0,L) \times (0,T), & (1a) \\ u(0,t) = 0, \ u(L,t) = 0, & t \in (0,T], & (1b) \\ u(x,0) = \phi(x), \ \partial_{t}u(x,0) = \psi(x), & x \in [0,L]. & (1c) \end{array}$$

The analytical solution of the above equations is:

- The PDE is solved under complex interactions between equation components
- The impact of the external force is imposed point-wisely
- The coefficient exerts a consistent influence over the domain

Complete PDE Components

Categorization of PDE components

Category	Component	Description
Domain-wise components	Equation formulation Equation coefficient Boundary condition type	The symbolic expression of the PDE Coefficients in the PDE equation Type of boundary condition (e.g., Dirichlet, Neumann)
Point-wise components	External force Domain geometry Boundary value function	Forces acting at specific points The shape and size of the domain Value functions at the domain boundaries

- Category PDE components into domain- and point-wise components:
- Here the equation formulation refers to the symbolic expression of PDEs, which can be encoded by Large Language Models

Universal Components Embedding

D Embedding of equation formulation

- \checkmark Utilizing a LLM to embed the symbolic expression of the PDE
- ✓ The symbolic expression is represented by the LaTeX code

Prompt: "\partial_{tt} u - a^2\partial_{xx} u = f(x,t)"

D Embedding of other components

- ✓ **Domain-wise** components are embedded by a 2-layer MLP
- ✓ Point-wise components are patchified and embedded into tokens
- Deep condition consolidation
 - ✓ Embedded conditions of each categories are aggregated together
 - ✓ Make for easy adaptation to novel PDE components in downstream tasks

PDE-Conditional Transformer

1 Unify Embedding 2 Condition Aggregation

PDE-Conditional Transformer

PDE-Conditional Transformer

					1				
Benchmarks	#Dim	#Resolution	# Samples	#Size	Symbols	Coefficient	Force	Geometry	Boundary
HeterNS	2D+Time	(64,64,10)	15k	4.6 GB	×	\checkmark	\checkmark	×	×
PDEformer [45]	1D+Time	(256,100)	3M	300 GB	\checkmark	\checkmark	\checkmark	×	\checkmark
DPOT [10]	2D+Time	(128,128,10)	74.1k	384 GB	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

- HeterNS contains multiple viscosity coefficients and external force
- PDEformer proposes a large-scale dataset with 3M samples of 1D PDEs, including multiple equation coefficients, external force and boundary conditions
- DPOT collects 12 datasets from FNO, PDEBench, PDEArena and CFDBench, with PDEs varying in coefficients, external force, geometries and boundary conditions

Heterogeneous 2D Navier-Stokes Equation

Generalize to unseen coefficients

HeterNS	Viscosity ν	8e-6	1e-5	3e-5	5e-5	8e-5	1e-4	3e-4	5e-4	8e-4	1e-3	2e-3
	Params	OOD	ID	OOD								
FNO	4.7M	0.0702	0.0669	0.0373	0.0225	0.0141	0.0114	0.0088	0.0031	0.0084	0.0011	0.2057
Factformer	9.4M	0.0489	0.0438	0.0489	0.0128	0.0297	0.0064	0.1386	0.0018	0.0631	0.0010	0.3207
ViT	4.8M	0.0458	0.0432	0.0353	0.0206	0.0119	0.0098	0.0100	0.0031	0.0174	0.0015	0.1878
Unisolver	4.1M	0.0336	0.0321	0.0178	0.0094	0.0064	0.0051	0.0066	0.0015	0.0096	0.0008	0.1504
Promotion	-	26.6%	25.7%	49.6%	26.6%	46.2%	20.3%	34.0%	16.7%	-	20.0%	19.9%

Generalize to unseen external force

HeterNS	Force ω	0.5	1	1.5	2	2.5	3	3.5
	Params	OOD	ID	OOD	ID	OOD	ID	OOD
FNO	4.7M	1.110	0.0640	0.1742	0.0661	0.1449	0.1623	0.2974
Factformer	9.4M	0.9998	0.0326	0.1110	0.0438	0.1243	0.0803	0.2257
ViT	4.8M	0.7900	0.0348	0.1412	0.0432	0.1240	0.1000	0.2080
Unisolver	4.1M	0.0980	0.0244	0.0770	0.0321	0.0720	0.0720	0.1740
Promotion	-	87.6%	25.2%	30.6%	25.7%	41.9%	10.3%	16.4%

Heterogeneous 2D Navier-Stokes Equation

All showcases generated with the same initial condition but with varied

coefficients. Different viscosities presents quite different dynamics.

1D Time-dependent PDEs proposed by PDEformer

- Models are pretrained on a dataset with 3 million 1D PDEs with varied coefficients, external force, boundary conditions and equation symbols
- Then tested on OOD downstream PDE datasets generated by PDEBench,

including the Burgers equation and the advection equation

1D Time-dependent PDEs	Tasks	Pretrain			Advection		
	Params	Periodic	Robin	$\mid \nu = 0.1$	$\nu = 0.01$	$\nu = 0.001$	$\beta = 0.1$
PDEformer-L	22M	0.0211	0.0238	0.00744	0.0144	0.0393	0.0178
Unisolver	19M	0.0107	0.0108	0.00513	0.00995	0.0299	0.0138
Promotion	-	49.3%	54.6%	31.0%	30.9%	23.9%	22.5%
PDEformer-L (FT-100)	22M	-	-	0.00364	0.0112	0.0331	0.00975
Unisolver (FT-100)	19M	-	-	0.00105	0.00474	0.0170	0.00420
Promotion	-	-	-	71.2%	57.7%	48.6%	59.6%

2D Mixed PDEs proposed by DPOT

The models are pretrained on 12 datasets collected by DPOT, with varied

coefficients, external force, boundary conditions and geometries

2D	Equations	FI	NO-NS	- <i>v</i>	PDEBench-CNS-(M, ζ)					SWE	PDEA	ena-NS	CFDBench-NS	Mean
Mixed PDEs	Params	1e-5	1e-4	1e-3	(1, 0.1)	(1, 0.01)) (0.1, 0.1) ((0.1, 0.01)	-	-	-	Force	Geometry	-
DPOT-S	30M	5.53	4.42	1.31	1.53	3.37	1.19	1.87	3.79	0.66	9.91	31.6	0.70	5.50
Unisolver	33M	4.17	3.36	0.61	1.23	2.89	1.01	1.59	4.39	0.45	6.87	27.4	0.54	4.54
Promotion	-	24.6%	24.0%	53.4%	19.6%	14.2%	15.1%	15.0%	-	31.8%	30.7%	13.3%	22.9%	17.5%
DPOT-S-FT	30M	4.49	3.42	0.68	1.52	2.11	1.50	1.51	1.71	0.22	8.92	29.0	0.44	4.63
Unisolver-FT	33M	3.82	2.79	0.31	0.95	1.99	1.01	1.34	1.37	0.20	6.67	26.8	0.47	3.98
Promotion	-	14.9%	18.4%	54.4%	37.5%	5.69%	32.6%	11.3%	19.8%	9.1%	25.2%	7.6%	-	14.0%

Scalability

We progressively increase the **training data by 60 times** and **the model parameters by 21 times**, plotting the Relative L2 error on a log-log scale

A Roadmap to Practical Neural PDE Solvers

Industrial simulation with CAE

Neural PDE Solver (Our work)

A Roadmap to Practical Neural PDE Solvers

Mingsheng Long School of Software, Tsinghua University July 2024

