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Abstract

Transformers based on the attention mechanism
have achieved impressive success in various areas.
However, the attention mechanism has a quadratic
complexity, significantly impeding Transformers
from dealing with numerous tokens and scaling up
to bigger models. Previous methods mainly utilize
the similarity decomposition and the associativity
of matrix multiplication to devise linear-time at-
tention mechanisms. They avoid degeneration of
attention to a trivial distribution by reintroducing
inductive biases such as the locality, thereby at the
expense of model generality and expressiveness.
In this paper, we linearize Transformers free from
specific inductive biases based on the flow net-
work theory. We cast attention as the information
flow aggregated from the sources (values) to the
sinks (results) through the learned flow capacities
(attentions). Within this framework, we apply the
property of flow conservation into attention and
propose the Flow-Attention mechanism of linear
complexity. By respectively conserving the in-
coming flow of sinks for source competition and
the outgoing flow of sources for sink allocation,
Flow-Attention inherently generates informative
attentions without using specific inductive biases.
Empowered by the Flow-Attention, Flowformer
yields strong performance in linear time for wide
areas, including long sequence, time series, vision,
natural language, and reinforcement learning. The
code and settings are available at this repository:
https://github.com/thuml/Flowformer.

1. Introduction

Recently, Transformers (Vaswani et al., 2017) have shown
immense capability in sequential modeling and been widely
used in various areas, such as natural language processing
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(Devlin et al., 2019; Liu et al., 2019; Brown et al., 2020),
computer vision (Dosovitskiy et al., 2021; Liu et al., 2021),
time series analysis (Zhou et al., 2021; Wu et al., 2021) and
reinforcement learning (Chen et al., 2021b; Janner et al.,
2021). Based on attention mechanisms, Transformers can
learn the relation between each pair of tokens in a sequence.

However, suffering from the quadratic complexity of pair-
wise relation modeling, it is computationally prohibitive for
Transformers to deal with long sequences and scale up to
bigger models. To tackle this essential obstacle for founda-
tion models (Bommasani et al., 2021), efficient and linear
Transformers have been explored. One category of methods
attempts to utilize the sparsity to reduce the model cap-
tured relations (Child et al., 2019; Vyas et al., 2020; Zaheer
et al., 2020). By substituting the dense matrix to a sparse
version, these models can obtain a lower complexity but in-
evitably sacrifice some valuable information, leading to the
trade-off dilemma between efficiency and performance. An-
other mainstream category tries to abandon the computation-
consuming query-key multiplication in the attention mech-
anism. The typical method is to substitute or approximate
the softmax-based similarity in Transformers. For example,
Linear Transformer (Katharopoulos et al., 2020) introduces
the decomposition method for similarity calculation and
further bypasses the query-key multiplication through the
associativity of matrix multiplication. However, without
using the softmax function, these methods cannot guarantee
the distinguishability of attention. This may result in near-
uniform attention of each token to all other tokens, namely
the degenerated attention, which damages the effectiveness
of the attention mechanism. Although some works try to
incorporate the concentration property to avoid the trivial
attention (Luo et al., 2021; Zhen et al., 2022), they have to
reintroduce specific inductive biases to Transformers, such
as the locality in sequence, sacrificing the model generality.
Thus, how to simultaneously obtain the non-trivial attention
and maintain the generality as the canonical attention is the
key challenge in the advance of linearizing Transformers.

Previous works demonstrate that the softmax function is
essential to avoid the trivial attention (Choromanski et al.,
2021; Peng et al., 2021). It is well-known that the softmax
function is originally proposed as a differentiable general-
ization of the “winner-take-all” picking maximum operation
(Bridle, 1989). Thus, the softmax function can introduce
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the competition among tokens in the attention mechanism,
enforcing higher attention only to the essential tokens and
thereby avoiding near-uniform attention weights. Based on
this insight, it is a natural solution to empower transformers
with built-in competition property to generate informative
attention that guarantees the modeling capability. However,
the competition mechanism is irrealizable for linear Trans-
formers because the attention weights to compete will incur
the quadratic complexity. To tackle the aforementioned
problems, we attempt to reconstruct the attention mecha-
nism from a new view of flow network (Ahuja et al., 1993),
where the competition property is naturally achieved. Note
that a flow network is a directed graph with information
flows from one node to another under the constraint of flow
capacity. Correspondingly, the attention mechanism can be
reformulated as aggregating the information from sources
(i.e., values) to sinks (i.e., results) through the learned flow
capacities (i.e., attentions). We further find that by conserv-
ing the incoming flow capacity for each sink, the outgoing
flow capacities of sources will compete with each other.
And by conserving the outgoing flow capacity of sources,
we can also obtain the competed incoming flow capacities
of sinks. Thus, benefiting from the flow conservation in flow
network, the competition mechanism can be accomplished
without specific inductive biases.

Based on the above insights, we introduce the flow con-
servation to the attention mechanism and further propose
the Flow-Attention mechanism, which can avoid the trivial
attention and simultaneously be free from specific inductive
biases. Technically, by conserving the incoming flow of
sinks (i.e., results), the source competition mechanism is ac-
complished and then applied for the non-trivial information
aggregation. After the information aggregation, the sink al-
location mechanism is obtained by conserving the outgoing
flow of sources (i.e., values) and then applied to filter the
aggregated information. Empowered by the Flow-Attention,
Flowformer in linear complexity achieves competitive or
better performance as the canonical Transformer in exten-
sive areas. The contributions are summarized as follows:

 This paper analyzes the attention mechanism from the
new view of the flow network. By introducing the flow
conservation to both the source and sink aspects, the
competition among tokens is naturally achieved.

* Based on flow conservation, we propose the Flow-
Attention with source competition and sink allocation
mechanisms, which can avoid degenerated attentions
without incorporating specific inductive biases.

* Empowered by Flow-Attention, our proposed Flow-
former yields strong performance in linear time on five
benchmarks, covering wide areas: long sequence, lan-
guage, vision, time series and reinforcement learning.

2. Preliminaries
2.1. General View of Attention Mechanism

The attention mechanism is the key component of Trans-
formers (Vaswani et al., 2017), which can be used to explore
the underlying relations among tokens and adaptively aggre-
gate valuable information. The input of attention mechanism
contains three parts: queries Q € R™*%, keys K € R™*¢
and values V € R™*4, The i-th row of the result R of the
attention mechanism can be calculated as follows:

m

(Qi, K;) o
R, = sz— S K )V],ze{l, n}, (1)

where *; denotes the i-th row of matrix *. S(Q;, K;) cal-
culates the similarity between queries and keys. Thus, the
attention mechanism is to aggregate the information from
values based on the attention map calculated from queries
and keys. In the canonical Transformer (Vaswani et al.,
2017), S(Qi, K;) is set as exp(Q, K ) corresponding to
the softmax functlon The softmax functlon introduces the
competition between similarity weights, which is essential
to obtain a non-trivial attention. However, because of the
calculation of QK, the computation complexity of Eq. (1)
in vanilla Transformer is quadratic in the sequence length,
concretely O(nmd), resulting in the core limitation.

2.2. Efficient and Linear Transformers

To break through the complexity limitation of the canoni-
cal attention mechanism, efficient and linear Transformers
are widely explored. Categorized by the operation to the
attention map, the paradigms roughly involve the similarity-
decomposition and attention-sparsification methods.

Similarity-decomposition methods It is notable that the
quadratic complexity of canonical attention is caused by the
calculation of QK. This computation-consuming opera-
tion is indispensable because of the exponential definition
of S(-, -), while similarity-decomposition methods try to lin-
earize the attention by utilizing the decomposition of S|, -)
and the associativity of matrix multiplication. Technically,
if S(-, -) can be decomposed as the inner-product between
the non-linear projections ¢(-) of queries and keys,

5(Qi K;j) = (6(Qi), ¢(K;)) = ¢(Qi)o(K;)T,  (2)

then we can adopt associativity to reduce complexity. Under
this condition, Eq. (1) will be reformulated as follows:

)o(K;)T _
R, = Z e N
_ ¢(Qi>2j:1¢( j> v ie{l,--,n}
$Q) T oK)T T

in which the direct calculation of QK is avoided and re-
placed by the multiplication of keys and values, namely
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#(K)TV. Correspondingly, the complexity is O(nd?) and
linear in sequence length. One typical instance proposed by
Linear Transformer (Katharopoulos et al., 2020) is to set the
non-linear projection ¢(-) as elu(-)+ 1 using the exponential
linear unit. However, it is hard for Linear Transformer to
avoid degenerated attention without the softmax function.
Thus, RFA (Peng et al., 2021) and Performer (Choromanski
et al., 2021) adopt the random Fourier features (Rahimi &
Recht, 2007) and positive random features to approximate
the softmax respectively. But these two methods suffer from
the approximate error and have to choose specific kernels
to meet the theoretical guarantee of approximation. Be-
sides, SOFT (Lu et al., 2021), YOSO (Zeng et al., 2021) and
Nystromformer (Xiong et al., 2021) approximate softmax
function by Nystrom method, while they will bring tedious
iterations into calculation and cannot implement the causal
version of attention for autoregressive tasks. Recently, cos-
Former (Zhen et al., 2022) decomposes the similarity met-
ric based on the decomposition of cosine function, where
S(Qi, K;) is setas ¢(Q;)¢(K;) T cos(3 x ) and M is
a hyperparameter. Although it can concentrate the learned
attention, the design in cosFormer explicitly includes the lo-
cality inductive bias in temporal dimension, overlooking the
spatial position in vision, thereby sacrificing the generality.

Attention-sparsification methods This paradigm does
not change the similarity metric S(-,-) in the canonical at-
tention but attempts to reduce the model captured relations.
Typically, Sparse Transformer (Child et al., 2019) only cal-
culates the similarity between pre-selected query-key pairs,
thereby able to obtain the sparse attention matrix for effi-
ciency. Based on the low-rank hypothesis, Linformer (Wang
et al., 2020) adopts the projector to map the queries and keys
to a low dimension. Reformer (Kitaev et al., 2020) replaces
the dense dot-product attention with the locality-sensitive
hashing for similarity calculation. Clustered attention (Vyas
et al., 2020) reduces the complexity by grouping the queries.
BigBird (Zaheer et al., 2020) enhances the sparse attention
mechanism with the global token to accomplish the more
powerful information aggregation. Note that all the above
methods sacrifice information utilization. Thus, they have
to suffer the efficiency-performance dilemma.

Unlike prior methods, Flowformer adopts the similarity
decomposition and brings the flow conservation into design,
which can naturally achieve the competition among tokens
to avoid trivial attentions. Thus, Flowformer escapes from
the efficiency-performance dilemma and eliminates specific
inductive biases, thereby empowering stronger generality.

3. Method

As aforementioned, the core of linearizing Transformers is
to obtain the non-trivial attention and maintain the generality
simultaneously. To break with the above challenges, we

reanalyze the attention mechanism from a novel view of
the flow network. Inspired by the flow network theory, we
propose the Flow-Attention mechanism by conducting the
flow conservation on both the source and sink aspects. This
design can bring the competition mechanism to sources and
the allocation mechanism to sinks, avoiding trivial attentions
without incorporating specific inductive biases.

3.1. Attention Mechanism: A Flow Network View

From a new perspective, this paper attempts to reformu-
late the attention mechanism from the view of flow network
(Ahuja et al., 1993). As stated in Eq. (1), the canonical atten-
tion mechanism presents the procedure that the information
is aggregated from the values V to the results R. And the
aggregation weights (i.e., attention map) are calculated from
the similarity between queries Q and keys K.
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Figure 1. The flow network view for attention. The blue boxes
(sinks) represent the results R. The boxes (sources) rep-
resent the values V. The gray arrows (flow capacity) denote the
attention weights calculated from queries Q and keys K.

Correspondingly, we can interpret the attention mechanism
from the flow network view, as shown in Figure 1. Here,
we take the results R as sinks, which have only incoming
information flow for source aggregation, and the values V
as sources, which have only outgoing flow for providing in-
formation to sinks. Following the similarity-decomposition
method (Eq. (2)—(3)), we can define the similarity func-
tion S(Q, K) as #(Q)¢(K)T to achieve linear complexity,
where ¢(+) is the element-wise non-linear projection. Due
to the property of flow network, we choose ¢(+) as a non-
negative function to keep flow capacity positive.

As an important concept in flow network, the incoming and
outgoing flow of each node can reflect the global interac-
tion between each node and the whole flow network, which
can provide valuable global information. Under the atten-
tion mechanism context, the flow capacity is calculated by
queries and keys. Suppose we have n sinks and m sources.
The incoming flow I; € R of the ¢-th sink and the outgoing
flow O; € R of the j-th source can be calculated as:

m n

L= ¢(Qi) Y ¢(K;)", 05 =¢(K;) Y ¢(Qi)", @)

j=1 i=1
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Figure 2. The overall procedure of Flow-Attention. The source competition mechanism (red dotted line) is obtained by incoming flow
conservation to sinks. The sink allocation mechanism (blue dotted line) is accomplished by outgoing flow conservation to sources.

where i € {1,--- ,n} and j € {1,--- ,m}. Note that the
incoming flow I € R™*! and the outgoing flow O € R™*!
can be calculated in linear complexity by Eq. (4). Then, we
derive the Flow-Attention mechanism based on I and O.

3.2. Flow-Attention Mechanism

Recall that the softmax function can obtain non-trivial atten-
tion by introducing competition among tokens, which is the
indispensable component for avoiding the trivial attention.
However, the competition mechanism is irrealizable for lin-
ear Transformers because the attention weights to compete
will incur quadratic complexity. To tackle this dilemma, we
propose the Flow-Attention by introducing the flow conser-
vation into design in the spirit that “fixed resource will cause
competition”. Intuitively, as shown in Figure 3, outside the
attention mechanism, the information of values (V) is ob-
tained from previous layer and the information of results
(R) will be provided to the next layer. Without loss of gen-
erality, we set the information incoming from or outgoing
to other layers as the default value 1 for fixing the resource.
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Provide R v'\ il v R B ,; \ Obtain
information 4—. H I ' ::|<— information
to next layer / l:‘ | . . from previous layer
O, N
: | .
(a) Sink View | : (b) Source View

Figure 3. Information flow outside the attention mechanism.

In the deep model implementation, as shown in Figure 2,
Flow-Attention adopts the non-negative and non-linear pro-
jection ¢ for the computation of flow capacity. Inspired by
the flow network theory, we find that the competition mech-

anism is naturally achieved by introducing the conservation
property in both source and sink aspects. Specifically, by
conserving the incoming flow capacity for each sink as the
default value 1, i.e. fixing the information provided to next
layer (Figure 3), the outgoing flow capacities of sources will
compete with each other since their sum is constrained as
1. Similarly, by conserving the outgoing flow capacity for
each source as the default value 1, i.e. fixing the informa-
tion obtained from previous layer (Figure 3), we can also
obtain the competed incoming flow capacities of sinks. The
above two conservation processes can be achieved by the
following normalizing operations, which can well calibrate
the subsequently calculated flow capacities:

9(K) 0(Q) .
o’ 1’

where the ratio represents the element-wise division, @

is for the source conservation and @ is for the sink con-
servation. Through the normalization, the conservation of
flow capacity for each source and sink token are guaranteed,
which can be verified by the following equations:

source-j: H(K)T Z¢(Qi) — i1 $(Qi)e(K;)T 1
0 = 0;j
ink-i )N o (K )o(Qi)T
sink-i: M?;MKJ‘) — 21 ([:) (Qi) _,
(6)

which follows the same calculation as Eq. (4). The first
equation is for the outgoing flow capacity of j-th source after
the normalization @ and the second equation is for the
incoming flow capacity of i-th sink after the normalization

@. Both capacities are equal to the default value 1.

After the conservation processes in both source and sink
aspects, the competition is realized among the incoming
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flow of sink tokens and the outgoing flow among source
tokens respectively. The conserved information flows are:

R K T R n ; T
P-o@) 86—y YA )
j=1 J i=1 v

where T € R"*1 and O € R™*! denote the capacity of
conserved incoming flow and outgoing flow respectively.

Benefiting from the competition brought by the incoming
flow conservation of sinks, O denotes the information pro-
vided by the sources under the fixed sum of flow capacity,
which indicates the importance of each source. As for I,
it denotes the information obtained by each sink when the
source outgoing capacity is fixed as 1, which reflects the ca-
pacity of aggregated information that each sink is allocated.
Thus, as shown in Figure 2, we present the Flow-Attention
based on the above conserved information flows, which
includes the competition mechanism for sources and the al-
location mechanism for sinks. The overall equations of the
Flow-Attention mechanism can be formalized as follows:

Competition: V = Softmax(0) ® V
$(Q) Y
I (p(K)'V) (8)

~

Allocation: R = Sigmoid(I) ® A,

Aggregation: A =

where ©® denotes the element-wise multiplication. Note
that both Softmax and Sigmoid can be computed in linear
time. V € R™*4 represents the competed sources, which
is non-trivially re-weighted based on the incoming flow con-
servation. A € R™*¢ is the aggregated source information
and calculated by the associativity of matrix multiplication.
After the allocation mechanism with I to filter the incom-
ing flow capacity for each sink, we can obtain the results
R € R™*? of Flow-Attention. With above designs, Flow-
Attention involves the competition in both source and sink
aspects, thereby able to avoid trivial attention efficiently.
More implementation details of both the normal and causal
versions are provided in Appendix A.

Further, by replacing the attention mechanism in the Trans-
former family (Vaswani et al., 2017) with Flow-Attention,
we can obtain the Flowformer without changing other de-
signs but empower previous models with linear complexity.

Note that both the competition and allocation mechanisms
are conducted based on the flow capacity directly calculated
from queries and keys. Thus, different from cosFormer
(Zhen et al., 2022) or other linear variants, Flowformer is
without specific inductive bias, which empowers our model
with great generality. The calculation of Eq. (4) and (7) is
in linear complexity with respect to the sequence length. By
further utilizing the associativity of matrix multiplication,
Flow-Attention can be accomplished in linear complexity.

4. Experiments

To testify the effectiveness and generality of Flowformer,
we extensively experiment on five well-established bench-
marks, covering long sequence modeling, language process-
ing, computer vision, time series and reinforcement learning.
As shown in Table 1, the tasks on language modeling and
reinforcement learning can verify the performance of causal-
version Flow-Attention. See Appendix A.3 for more details.

Table 1. Summary of experiment benchmarks.

BENCHMARKS | TASK | VERSION | LENGTH
LRA (2020c) SEQUENCE | NORMAL | 1000~4000
WIKITEXT (2017) | LANGUAGE | CAUSAL 512
IMAGENET (2009) VISION NORMAL | 49~3136
UEA (2018) TIME SERIES | NORMAL | 29~1751
D4RL (2020) OFFLINE RL | CAUSAL 60

4.1. Long Sequence Modeling

Setup. Long-Range Arena (LRA, Tay et al. 2020c¢) is a
benchmark specially designed for efficient Transformers
with long input sequence. It contains five different tasks:
long sequence equation calculation (ListOps, Nangia &
Bowman 2018), byte-level text classification (Text, Maas
et al. 2011), document retrieval with the ACL Anthology
Network (Retrieval, Radev et al. 2013), image classifica-
tion based on the pixel sequence on CIFAR-10 (Image,
Krizhevsky 2009) and long-range spatial dependencies dis-
covery of images (Pathfinder, Linsley et al. 2018). For fair
comparison, we follow the official implementation and ex-
periment protocol of Long-Range Arena in Jax (Bradbury
et al., 2018) and replace the full attention mechanism in
vanilla Transformer with Flow-Attention. All the experi-
ments are conducted on 2 NVIDIA 2080 Ti GPUs.

Results. As shown in Table 2, Flowformer achieves state-
of-the-art performance in both the ListOps and Retrieval
tasks and competitive performance in other tasks. Overall,
Flowformer achieves competitive performance over previ-
ous methods (55.23—56.48). Besides, our model consis-
tently surpasses the vanilla Transformer in all five tasks,
even though the latter adopts the full attention mechanism
with quadratic complexity. In addition, we conduct the abla-
tion study to testify the effectiveness of each module in our
design. As we show, the competition and allocation mech-
anisms bring 1.23 (55.25—56.48) and 0.9 (55.58—56.48)
averaged promotion respectively.

Efficiency. We conduct experiments on LRA to evaluate the
efficiency of our model in dealing with long sequences. As
shown in Table 3, Flowformer presents great efficiency in
both the training and inference phases under different input
sequence lengths (1K~4K). Especially compared to Per-
former (Choromanski et al., 2021), Flowformer achieves the
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Table 2. Results on the Long-Range Arena. The best result is in bold and the second best is underlined. Classification accuracy is recorded.

MODEL \ ListOps T TEXT1T RETRIEVAL?T IMAGE1T PATHFINDER 1 \ AVG 1
LOCAL ATTENTION (TAY ET AL., 2021) 15.82 52.98 53.39 41.46 66.63 46.06
LINEAR TRANS. (KATHAROPOULOS ET AL., 2020) 16.13 65.90 53.09 42.34 75.30 50.55
REFORMER (KITAEV ET AL., 2020) 37.27 56.10 53.40 38.07 68.50 50.67
SPARSE TRANS. (CHILD ET AL., 2019) 17.07 63.58 59.59 44.24 71.71 51.24
SINKHORN TRANS. (TAY ET AL., 2020B) 33.67 61.20 53.83 41.23 67.45 51.29
LINFORMER (WANG ET AL., 2020) 35.70 53.94 52.27 38.56 76.34 51.36
PERFORMER (CHOROMANSKI ET AL., 2021) 18.01 65.40 53.82 42.77 77.05 51.41
SYNTHESIZER (TAY ET AL., 20204A) 36.99 61.68 54.67 41.61 69.45 52.88
LONGFORMER (BELTAGY ET AL., 2020) 35.63 62.85 56.89 42.22 69.71 53.46
TRANSFORMER (VASWANI ET AL., 2017) 36.37 64.27 57.46 42.44 71.40 54.39
BIGBIRD (ZAHEER ET AL., 2020) 36.05 64.02 59.29 40.83 74.87 55.01
COSFORMER (ZHEN ET AL., 2022) 37.90 63.41 61.36 43.17 70.33 55.23
FLOWFORMER W/0 COMPETITION 36.80 63.48 61.66 42.39 71.90 55.25
FLOWFORMER W/O ALLOCATION 37.00 63.78 61.33 42.52 73.26 55.58
FLOWFORMER 38.70 64.29 62.24 43.20 73.95 56.48

Table 3. Efficiency analysis (steps per second) on the Long-Range Arena in both inference and training phases. Experiments are conducted
on 2 NVIDIA 2080 Ti GPUs. The best performance is in bold and the second is underlined. “-” indicates the out-of-memory situation.

MODEL SPEED

| INFERENCE (STEPS PER SECOND)

TRAIN (STEPS PER SECOND)

SEQUENCE LENGTH \ 1K 2K 3K 4K 1K 2K 3K 4K
TRANSFORMER (VASWANI ET AL., 2017) \ 81.83 25.26 - - 22,12  7.50 - -
LOCAL ATTENTION (TAY ET AL., 2021) 98.28 96.51 94.60 95.60 46.75 43.05 3542 30.34
LINEAR TRANS. (KATHAROPOULOS ET AL., 2020) | 97.33 96.14 94.03 93.69 48.66 48.78 41.66 35.44
REFORMER (KITAEV ET AL., 2020) 60.92 60.30 39.37 2698 46.07 2293 14.34 9.56
SPARSE TRANS. (CHILD ET AL., 2019) 78.30 23.33 - - 21.74  7.30 - -
SINKHORN TRANS. (TAY ET AL., 2020B) 91.42 9221 92.72 80.67 4593 36.21 28.11 23.83
LINFORMER (WANG ET AL., 2020) 96.56 96.84 94.74 93.59 4557 44.11 37.28 31.58
PERFORMER (CHOROMANSKI ET AL., 2021) 99.60 96.80 96.52 96.42 47.34 48.30 41.00 36.14
SYNTHESIZER (TAY ET AL., 2020A) 65.44 - - - 5.16 - - -
LONGFORMER (BELTAGY ET AL., 2020) 73.56 - - - 13.09 - - -
BIGBIRD (ZAHEER ET AL., 2020) 82.50 54.12 37.83 29.34 27.34 16.95 12.00 9.33
COSFORMER (ZHEN ET AL., 2022) 96.46 9558 95.19 94.69 46.50 45.24 3949 35.09
FLOWFORMER \ 98.83 96.21 95.65 95.82 49.76 47.18 41.93 36.79

competitive speed for inference and the better efficiency for
training. Not only with comparable efficiency, Flowformer
also surpasses Performer by a large margin (51.41—56.48).

4.2. Language Modeling

Setup. We conduct the language modeling experiment on
the WikiText-103 (Merity et al., 2017), which is to estimate
the probability distribution of a token given the previous
ones. We use this task to testify the causal version of Flow-
Attention. Following the well-established experiment set-
ting (Peng et al., 2021), the sequence length is set as 512
for both training and evaluation. The model architecture
consists of 6 decoder layers with 8 heads and 512 hidden
channels for attention mechanism (Ott et al., 2019). The
number of hidden channels for the feed-forward layers is
set as 2048. All the models are trained from scratch without
pre-training on 4 NVIDIA TITAN RTX 24GB GPUs for
150K updates after a 6K-steps warm-up.

Table 4. Results on language modeling with WikiText-103 (Merity
et al., 2017). A lower perplexity indicates the better results.

MODEL \ PERPLEXITY |
TRANSFORMER (2017) 33.0
LINEAR TRANS. (2020) 38.4
REFORMER (2020) 33.6
PERFORMER (2021) 37.5
TRF-TRANSFORMER (2021) 33.6
TRF-TRANSFORMER-GATE (2021) 31.3
COSFORMER (2022) 34.1
FLOWFORMER W/0 COMPETITION 31.2
FLOWFORMER W/0O ALLOCATION 32.2
FLOWFORMER 30.8

Results. We can find that Flowformer achieves the best
performance in language modeling task from Table 4 and
even outperforms the vanilla Transformer (Vaswani et al.,
2017). Since the language modeling is an autoregressive
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Figure 4. Visualization of learned attention. We present the sum of attention weights to each frame patch in the last layer of the model.
For Flowformer, we visualize the competition weights Softmax(0) € R™**, which is applied to sources for non-trivial aggregation.

task, these experiments can also verify the effectiveness of
Flow-Attention in the causal version. Besides, we conduct
the ablation study for both the competition and allocation
mechanisms. The results prove the effectiveness of these
two modules, where competition and allocation mechanisms
bring 1.4 and 0.4 absolute reductions in perplexity respec-
tively. It is also notable that, both the competition and allo-
cation mechanisms are based on flow conservation. Thus,
any one of them can avoid trivial attention to some extent.

4.3. Image Recognition

Setup. We testify the capability of Flowformer in image
recognition by experimenting on the ImageNet-1K (Deng
et al., 2009). This dataset contains 1.28M training images
and 50K validation images with 1,000 classes. Each image
is in the resolution of 224 x 224. The Top-1 accuracy and
Top-5 accuracy are recorded as the metrics. To fully evaluate
our proposed Flowformer, we demonstrate the experiments
in the following two aspects:

* Compare different attentions under the same Trans-
former architecture. We present Flowformer with 19
layers in a four-stage hierarchical structure, where the
channels are in {96, 192,384, 768} and the input se-
quence length for each stage is in {3136, 784, 196,49}
correspondingly. Global average pooling and linear
projection are employed at the end of the model for
classification. We take extensive efficient Transformers
as baselines, as well as ViT (2021).

* Apply the Flow-Attention to the specific-designed vi-
sion Transformer, such as DeiT (Touvron et al., 2021),
which adopts the token distillation for data efficiency.

All the experiments are conducted on 8 NVIDIA TITAN
RTX 24GB GPUs for 300 epochs.

Table 5. Accuracy results (%) on ImageNet-1K (Deng et al., 2009).
A higher accuracy indicates the better performance.

PARAMSFLOPSTOP-1ToOP-5
MODEL COMPLEX. (MB) (G) | Acc. Acc.
VIT-BASE (2021) O(n?d) 86 554|779 /
VIT-LARGE (2021) 0O(n?d) 307 190.7]76.5 /
FULL ATTN. (2017) O(n?d) 41 6.7 |78.7 94.3
LINEAR TRANS. (2020)| O(nd?) 41 6.3 179.0 94.1
REFORMER (2020) O ((nlogn)d) 37 6.0 [79.6 94.7
LONGFORMER (2020) O(nd?) 38 6.3 [77.6 93.1
PERFORMER (2021) O(nd?) 41 6.3 |78.1 93.2
NYSTROMFORMER (2021)| O(nd?) 41 6.3 [77.2 93.0
YOSO-E (2021) O(nd?) 41 5.8 179.0 94.3
SOFT (2021) O(nd?) 37  5.81(79.2 945
COSFORMER (2022) O(nd?) 41 6.3 |68.3 88.0
FLOWFORMER O(nd?) 41 6.3 |80.6 94.9
DEIT-S (2021) O(n?d) 22 4.6 179.8 95.0
DEIT+FLOWFORMER | O(nd?) 22 4.2 |80.0 94.8

Results. Table 5 shows that Flowformer achieves the strong
performance in both the Top-1 and Top-5 accuracy metrics
along with the linear complexity. Besides, Flowformer is the
best linear Transformer and even surpasses the vanilla Trans-
former (Top-1: 78.7 v.s. 80.4). It is notable that, comparing
to Flowformer, cosFormer (Zhen et al., 2022) provides a
relatively poor result (Top-1: 68.3 v.s. 80.4). This is because
that cosFormer directly incorporates the locality inductive
bias along the patch sequence and does not consider the
spatial position. This experiment also demonstrates the im-
portance of specific-inductive-bias-free design, which can
be naturally satisfied in Flowformer.
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Table 6. Accuracy results (%) on time series classification. A higher accuracy indicates the better performance. As for the baselines of
the Transformer family, we include the the canonical Transformer (Trans.), Linear Transformer (Linear.), Reformer (Re.), Longformer
(Long.), Performer (Per.), cosFormer (cos.) and etc for a comprehensive comparison.

| DEEP MODELS
CLASSICAL METHODS

DATASET / MODEL ‘ RNN TCN TRANSFORMER AND ITS EFFICIENT VARIANTS

DTW XGBoOSTROCKET LSTM UNsSUPER.TRANS.LINEAR. RE. LONG. PER. YOSO-E SOFT cos. FLow.

(1994) (2016) (2020) (1997) (2019) (2017) (2020) (2020)(2020)(2021) (2021) (2021)(2022)(OURS)
ETHANOLCONCENTRATION| 32.3 437 452 323 289 327 319 319 323 31.2 31.2 323 335 33.8
FACEDETECTION 529 63.3 64.7 577 528 673 67.0 68.6 62.6 67.0 673 648 67.1 67.6
HANDWRITING 28.6 15.8 58.8 152 533 32.0 347 274 39.6 32.1 309 289 347 33.8
HEARTBEAT 71.7 732 756 722 756 76.1 76.6 77.1 78.0 75.6 76.5 77.1 75.6 77.6
JAPANESEVOWELS 949 865 96.2 79.7 989 987 99.2 97.8 989 98.1 98.6 983 99.2 98.9
PEMS-SF 71.1 983 75.1 399 68.8 82.1 82.1 82.7 83.8 80.9 852 83.2 80.9 83.8
SELFREGULATIONSCP1| 77.7 84.6 90.8 68.9 84.6 922 925 904 90.1 91.5 91.1 91.1 91.8 92.5
SELFREGULATIONSCP2 53.9 489 533 46.6 556 539 56.7 56.7 556 56.7 539 550 55.6 56.1
SPOKENARABICDIGITS 96.3 69.6 71.2 319 956 984 98.0 97.0 944 984 989 984 98.8 98.8
UWAVEGESTURELIBRARY | 90.3 759 944 412 884 856 850 856 87.5 853 884 856 850 86.6
AVERAGE ACCURACY ‘ 67.0 66.0 72.5 48.6 703 719 724 71.5 720 71.9 722 71.5 722 73.0

Efficiency. In addition to the theoretical complexity anal-
ysis, we also provide the parameter and computation effi-
ciency comparison in Table 5. Note that, compared to the
canonical attention mechanism, Flow-Attention brings no
extra model parameters. Thus, a promising way is to incor-
porate the Flow-Attention along with other well-designed
vision Transformers, which can obtain comparable results
with linear complexity, such as DeiT v.s. DeiT+Flowformer
(Top-1: 79.8 — 80.0, Flops: 4.6 — 4.2). Since Flowformer
is linear in sequence length, with the longer patch sequence,
the efficiency promotion will be more remarkable, which is
important for the models to scale up.

Class: Birdhouse

Class: Airliner Class: Bird

-~

Figure 5. Allocation weights Sigmoid(I) heatmap in Flowformer.

Attention visualization. To further elaborate the difference
between Flowformer and other Transformers, we visualize
the learned attention in Figure 4. We can find that both
the Flowformer and canonical Transformer (Vaswani et al.,
2017) can capture the essential parts correctly, while the
latter will consume the quadratic complexity and the atten-
tion may be distracted by the background context. In con-
trast, without competition mechanism, Linear Transformer
(Katharopoulos et al., 2020) fails in attending to the right
area and presents a degenerated attention map. As for the
cosFormer (Zhen et al., 2022), due to the unsuitable intro-

duction of sequence dimension locality and the overlook of
spatial position, the attention is only concentrated on the up-
per part of frames, which will impede the model capability.
Based on above comparisons, we can verify the advantages
of Flow-Attention in informative attention learning.

Allocation visualization. As stated in Eq. (8), the learned
allocation weights can reflect the capacity that each sink ac-
cepts. From Figure 5, we find that inflow capacities remain
large on the essential parts, which means that these parts
require more global information from sources for classifica-
tion and matches our expectation.

4.4. Time Series Classification

Setup. We adopt the time series classification task to eval-
uate the model performance for temporal sequences. We
select 10 multivariate datasets from UEA Time Series Clas-
sification Archive (Bagnall et al., 2018) for experiments and
follow the data pre-processing in (Zerveas et al., 2021). We
use 2 layers for Transformer-based models with 512 hidden
channels and 8 heads for the attention mechanism. In addi-
tion to the deep models, we also compare our model with
classical methods: DTW (Berndt & Clifford, 1994), XG-
Boost (Chen & Guestrin, 2016) and Rocket (Dempster et al.,
2020). Rocket is the state-of-the-art model for time series
classification. All the experiments are conducted on one
single NVIDIA TITAN RTX 24GB GPU for 100 epochs.

Results. Flowformer achieves the best performance on the
time series classification benchmark (Table 6). Besides
other linear Transformers and deep models, Flowformer
also surpasses the state-of-the-art classical methods Rocket
(Dempster et al., 2020) and is the only method that beats
classical methods on the averaged performance. This result
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Table 7. Reward results on D4RL (Fu et al., 2020). A higher reward or a lower deviation indicates the better performance.

ENVIRONMENT BC AWAC DT LINEAR TRANS. REFORMER PERFORMER COSFORMER | FLOWFORMER
(1989) (2020) (2021A) (2020) (2020) (2021) (2022) (OURS)
MEDIUM-EXPERT
HALFCHEETAH | 55.2 42.8 83.84+3.3 78.24+3.2 81.5+1.6 85.1+2.1 85.54+2.9 90.84+0.4
HOPPER 52.5 55.8 104.0%+2.5 107.24+0.9 104.2£9.8 93.5£13.9 98.1+£7.4 109.941.0
WALKER 107.5 74.5 107.7+0.6 67.2+27.3 71.4+£1.8 72.6+2.4 100.5+14.5 108.0+0.4
MEDIUM
HALFCHEETAH | 42.6 43.5 42.440.1 42.3£0.2 42.240.1 42.1£0.2 42.14+0.3 42.240.2
HOPPER 52.9 57.0 64.2+1.1 58.7+£0.4 59.9+0.7 59.7+7.5 59.8+3.8 66.9+2.5
WALKER 75.3 72.4  70.6x3.2 57.9+10.6 65.8+4.9 63.3£10.7 71.4+£1.2 71.7£2.5
MEDIUM-REPLAY
HALFCHEETAH | 36.6 40.5 34.6+0.6 32.1£1.5 33.6+0.7 31.7£0.9 32.8+3.6 34.7£1.5
HOPPER 18.1 37.2 79.7£7.4 74.3+7.0 66.1+2.6 64.6+£24.2 59.3+16.5 75.5+14.5
WALKER 26.0 27.0 62.945.0 62.1+£7.4 50.1£3.5 61.3+£6.7 60.5£9.9 62.0+£3.1
AVG REWARD \ 51.9 50.1 72.2+2.6 64.4+6.5 63.9£2.9 63.8+7.6 67.8+£7.6 \ 73.5+£2.9

can verify the temporal modeling capacity of Flowformer,
which is essential for sequential data. See Appendix D.2 for
the case study in attention visualization.

4.5. Reinforcement Learning

Setup. We consider the continuous control tasks from D4RL
benchmark (Fu et al., 2020) to evaluate the model perfor-
mance on the offline reinforcement learning (Offline RL)
(Lange et al., 2012; Levine et al., 2020). We select the
HalfCheetah, Hopper and Walker as experiment environ-
ments, which are to control the movement of robot. To
obtain a comprehensive evaluation, we experiment on dif-
ferent datasets pre-collected with three different behavior
policies: Medium-Expert, Medium and Medium-Replay.
Since the offline RL is an autoregressive task, it can also be
used to testify the causal-version Flow-Attention. For com-
parison, we include the Decision Transformer (DT, Chen
et al. 2021a), Behavior Cloning (BC, Pomerleau 1989),
AWAC (Nair et al., 2020), Linear Transformer (Linear
Trans., (Katharopoulos et al., 2020)), Reformer (Kitaev
et al., 2020), Performer (Choromanski et al., 2021) and
cosFormer (Zhen et al., 2022) as baselines, where DT is
the state-of-the-art models for offline RL and adopts the
canonical Transformer as the backbone. We adopt 3 layers
with 256 hidden channels and 4 heads in all experiments
for Flowformer and other Transformers. We repeat each
experiment three times with different seeds on one single
NVIDIA 2080 Ti GPU for 10 epochs.

Results. As shown in Table 7, it is notable that compared to
the vanilla Transformer used in DT, previous efficient Trans-
formers degenerate a lot and cannot provide a stable result.
Especially, the averaged rewards of Reformer (Kitaev et al.,
2020) and Performer (Choromanski et al., 2021) decrease se-

riously (72.2 v.s. 63.9 and 63.8 respectively), indicating that
the locally sensitive hashing or random Fourier features may
be not suitable for the global dependency modeling under
the reinforcement learning context. In contrast, Flowformer
still shows a competitive performance on this challenging
control task in the comparison with DT (72.2 v.s. 73.5), jus-
tifying the generality of our proposed Flowformer in offline
reinforcement learning.

5. Conclusions

This paper focuses on Transformer linearization and at-
tempts to tackle this problem from a new view of the flow
network. By introducing the flow conservation to the atten-
tion mechanism, we present the Flow-Attention mechanism,
which can naturally achieve the competition mechanism
for sources and the allocation mechanism for sinks to filter
the aggregated source information. Empowered by Flow-
Attention, Flowformer can achieve the linear complexity and
avoid degenerated attention without specific inductive bi-
ases. With great generality, Flowformer achieves the strong
performance on extensive areas, covering vision, language,
long sequence, time series, and reinforcement learning.

Our future work includes scaling up the proposed efficient
Flowformer to build general-purpose pre-trained models
facilitating a wider range of upstream and downstream tasks.
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A. Implementation Details
A.1. Pseudo-code for Flow-Attention

We present the pseudo-code of normal Flow-Attention in Algorithm 1 and the causal version in Algorithm 2. Especially, in
the causal version, we adopt the Causal-Dot-Product (Katharopoulos et al., 2020) for the information aggregation.

Algorithm 1 Multi-head Flow-Attention Mechanism (normal version).
1: Input: Q € R"*?¢ K € R"*? V ¢ Rm*d
: QK,V =5plit(Q),split(K),split(V) /1 Q € Rvxhxi K 'V e Rmxhxq,

\S]

3: Q,K=Sigmoid(Q), Sigmoid(K)

4: I =sSum| Q ®Broadcast (Sum(K7 dim=0), dim=0),dim=2> /1T e RM*h

5: O = Sum (K ® Broadcast (Sum(Q, dim=0), dim=0),dim=2> // O € Rm*h
6: T = Sum (Q ® Broadcast (Sum(K/O, dim=0), dim=0) , dim=2) /T € Rnxh
7. O = Sum <K (® Broadcast (Sum(Q/I, dim=0), disz) , dim—2> /I O € Rmxh

e

: R =Matmul (Q/I,Matmul(K,V © Softmax(6)>> ©) Sigmoid(f) /IR € Rn>*hx3,

9: Return R

Algorithm 2 Multi-head Flow-Attention Mechanism (causal version).

1: Input: Q € R4 K € R"*? V ¢ R"*¢

2: D =Broadcast (Arrange(n), dim=l) /I D € R™xh

3 Q, K,V =5plit(Q),split(K),split(V) /1 Q, K,V e Rv<hxj
4: Q,K = Sigmoid(Q), Sigmoid(K)
5

1= Sum(Q ©® Cusum(K, dim=0), dim=2)/D /I T e R
6: 0= Sum(K ©® Cusum(Q, dim=0), dim=2)/D /1 O € R*xh
7. 1= Sum(Q ©® Cusum(K/O, dim=0), dim=2)/D /I T € Rnxh
8 O= Sum(K © Cusum(Q/I, dim=0), dim=2)/D /1 O € Rmxh
9: O = <Exp(6)/Cusum(Exp(6),dim=0)> ®©D /I O € Rnxh

10: R = Causal-Dot-Product(Q/(I®D),K,V©® 6) ® sigmoid(I) /IR € Rnxhxq
11: Return R

A.2. Flowformer Architecture

Suppose the model contains L layers with length-n input X € R™*dmu_ The overall equations of the I-th layer are:

7! = Layer-Norm (Flow—Attention(Xl_ Lxi-t xi-t )+ X!t )

©))
X! = Layer-Norm (Feed-Forward(Zl) + Zl),

where X! € R™*? | € {1,---,L} denotes the output of the [-th layer with d channels. The initial input X° =
Embedding(X) € R™"*4 represents the embedded raw data. Z' € R"* is the I-th layer’s hidden representation.
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A.3. Experiment Configuration

For the Long-Range Arena (Tay et al., 2020c) and the WikiText-103 (Merity et al., 2017) benchmarks, we just following the
official public protocol in Long-Range Arena' and Fairseq”. Here are the configurations for the other three benchmarks. All
details can be found in our code: https://github.com/thuml/Flowformer.

ImageNet-1K The image with resolution 224 x 224 is split into several patches by convolution at the beginning. Inside
the model, we adopt the convolution layer for down sampling between different stages. Thus, different from the model
architecture in ViT (Dosovitskiy et al., 2021), we adopt a hierarchical architecture of Transformer without classification
token. The global information is aggregated with the global average pooling layer in the end with the last projector for
classification. The details are summarized in Table 8.

Table 8. Hierarchical architecture for vision recognization task.

PARAMETERS \ STAGE1 STAGE2 STAGE3 STAGE4
LAYERS 3 3 10 3
CHANNELS 96 192 384 786
HEADS 16 16 16 16
INPUT SEQUENCE LENGTH \ 3136 784 196 49

UEA Here is the statistical details of the UEA time series classification dataset. As shown in Table 9, this benchmark
includes various types of subsets, such as the low or high dimension, long or short length, sufficient or insufficient data,
many or few class numbers. Thus, experiments on this benchmark can provide a comprehensive comparison.

Table 9. Statistical Results of the UEA dataset.

DATASET \ TRAINSIZE TESTSIZE NUMDIMENSIONS SERIESLENGTH NUMCLASSES
ETHANOLCONCENTRATION 261 263 3 1751 4
FACEDETECTION 5890 3524 144 62 2
HANDWRITING 150 850 3 152 26
HEARTBEAT 204 205 61 405 2
JAPANESEVOWELS 270 370 12 29 9
PEMS-SF 267 173 963 144 7
SELFREGULATIONSCP1 268 293 6 896 2
SELFREGULATIONSCP2 200 180 7 1152 2
SPOKENARABICDIGITS 6599 2199 13 93 10
UWAVEGESTURELIBRARY 120 320 3 315 8

D4RL This benchmark is for offline RL (Lange et al., 2012; Levine et al., 2020), which is to learn the policy from a
pre-collected dataset and then perform the action in the online environment. This task is challenging not only because of the
difficulty of continuous control also due to the extrapolation error caused by the out-of-distribution actions. We experiment
on the HalfCheetah, Hopper and Walker environments (Figure 6) and train the model with the datasets collected by different
policies. We follow the configuration in Decision Transformer (Chen et al., 2021b) for experiments.

HalfCheetah Hopper Walker

Figure 6. HalfCheetah, Hopper and Walker environments.

"https://github.com/google-research/long-range-arena
https://github.com/pytorch/fairseq
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B. Ablation studies

B.1. Ablation on Activate Function for Non-negative Operation

As stated in Eq. (4), to satisfy the non-negative requirement in flow network, we set the activate function ¢ as the sigmoid
function. In section, we compare the Flowformer performance under different choices of ¢, such as elu(-) + 1.0, Relu(-).
As shown in Table 10, all the choices of ¢(-) can achieve state-of-the-art performance. Benefiting from the optimization
property and numerical stability, the sigmoid function achieves the best averaged performance.

Table 10. Ablation results on the Long-Range Arena under different choices of activate function.

MODEL \ ListOps T TEXTT RETRIEVAL?T IMAGET PATHFINDER T \ AVG 1
ELU(-) + 1.0 38.65 64.09 61.76 43.75 71.80 56.01
RELU(+) 38.45 63.90 62.17 42.85 72.96 56.07
SIGMOID FUNCTION (FINAL VERSION) |  38.70 64.29 62.24 43.20 73.95 | 56.48

B.2. Ablation on Activate Functions for Competition and Allocation

As shown in Eq. (8), the final design of Flowformer chooses the Softmax for Competition and the Sigmoid for Allocation,
denoted by Softmax-Sigmoid. Obviously, there are 4 different types of choices. As shown in Table 11, we experiment
on every choice exhaustively and find that Softmax-Sigmoid is the best. These results indicate that in Flow-Attention,
Softmax is more suitable for Competition and Sigmoid fits the Allocation better. It is because the former is to highlight the
tokens and the latter is to control the information flow as stated in the main text.

Table 11. Accuracy results (%) on LRA (averaged from 5 sub-tasks).

MODEL ‘ COMPETITION ALLOCATION ‘ AVG AcCcC.
CHOICE 1 Sigmoid Sigmoid 52.36
CHOICE 2 Sigmoid Softmax 53.11
CHOICE 3 Softmax Softmax 55.41
FLOWFORMER Softmax Sigmoid 56.48

C. Preliminaries of Flow Network

A flow network (Ahuja et al., 1993) is a directed graph where each edge has a capacity and each edge receives a flow. The
amount of flow on an edge cannot exceed the capacity of the edge. The conservation property can be intuitively explained as
follows: for each node, the incoming flow capacity is equal to the outgoing flow capacity.

In our paper, in addition to considering the inner source-sink flow shown in Figure 1, we demonstrate that attention
mechanisms also exchange information with model’s other parts. As presented in Figure 3, Outside the attention mechanism,
the information of values (V) is obtained from previous layer and the information of results (R) will be provided to the next
layer. Without loss of generality, we set the information incoming from or outgoing to other layers as the default value 1.
Eq. (6) of the main text is to prove that, by conducting normalization operations formalized in Eq. (7), the incoming flow of
each sink and the outgoing flow of each source are equal to 1 respectively, which is exactly the default value that we set for
information flow between other layers. Thus, our design follows the flow conservation property well. It is also notable that
our design is inspired by flow conservation property and the key insight is “fixed resource will cause competition”.

D. More Attention Visualizations

We provide more attention visualizations on different tasks for a better intuitive understanding.

D.1. Image Recognition

In this section, we provide the attention visualization from various classes in the ImageNet-1K. As shown in Figure 9,
Flowformer can capture the essential part in the image precisely. While the canonical Transformer (Vaswani et al., 2017)
may appear the distraction problem and Linear Transformer (Katharopoulos et al., 2020) could show a trivial attention
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without the attention concentration. We also visualize the learned allocation weights for corresponding classes in Figure 7,
which can also cover the most informative parts for classification.

Class: Owl Class: Koala Class: Barometer Class: Baseball Class: Catamaran Class: Lantern

~

Figure 7. Visualization of learned allocation weights Sigmoid(I) of Flowformer.

D.2. Time Series Classification

We provide the attention visualization for the SpokenArabicDigits dataset. This dataset contains times series of mel-frequency
cepstrum coefficients (MFCCs) corresponding to spoken Arabic digits from O to 9. Note that all the Transformer-based
models achieve a great performance in this dataset, including Transformer (Vaswani et al. 2017, 98.4% accuracy), Linear
Transformer (Katharopoulos et al. 2020, 98.0%), cosFormer (Zhen et al. 2022, 98.8%) and Flowformer (ours, 98.8%). Thus,
we provide the visualization only to demonstrate how these attentions work in time series.

Generally, we can find that Flowformer successively pays non-trivial attention to different phases of the time series for
different classes (Figure 8). Concretely, as shown in Figure 8(a), Flowformer pays more attention on the intervals [5, 10] and
[30, 35], where are important for the classification of the two-stage pronunciation for “zero” (['zirou]). Besides, Flowformer
pays more attention to the distinguishable part in “two” ([tu:], Figure 8(b)) and “three” ([0ri:], Figure 8(c)). While for the
vanilla Transformer, it may be distracted by unimportant fluctuations (Figure 8(c)). As for the Linear Transformer and
cosFormer, they may fail to capture the second phase in the pronunciation of “zero” (Figure 8(a)).
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Figure 8. Learned attention in the SpokenArabicDigits dataset. We plot the competition weights Softmax(a) for Flowformer.
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Canonical Transformer Linear Transformer

Canonical Transformer Linear Transformer

2|
Canonical Transformer Linear Transformer cosFormer

Linear Transformer cosFormer

Flowformer (Ours)

Input Frame (Baseball)

Input Frame (Catamaran) Flowformer (Ours) Canonical Transformer Linear Transformer cosFormer

Input Frame (Lantern) Flowformer (Ours) Canonical Transformer Linear Transformer cosFormer

Figure 9. Comparison of learned attention in the ImageNet-1K dataset.



