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ABSTRACT
Due to the storage and retrieval efficiency, hashing has been
widely applied to approximate nearest neighbor search for
large-scale multimedia retrieval. Cross-modal hashing, which
enables efficient retrieval of images in response to text queries
or vice versa, has received increasing attention recently. Most
existing work on cross-modal hashing does not capture the
spatial dependency of images and temporal dynamics of text
sentences for learning powerful feature representations and
cross-modal embeddings that mitigate the heterogeneity of
different modalities. This paper presents a new Deep Visual-
Semantic Hashing (DVSH) model that generates compact
hash codes of images and sentences in an end-to-end deep
learning architecture, which capture the intrinsic cross-modal
correspondences between visual data and natural language.
DVSH is a hybrid deep architecture that constitutes a visual-
semantic fusion network for learning joint embedding space
of images and text sentences, and two modality-specific hash-
ing networks for learning hash functions to generate compact
binary codes. Our architecture effectively unifies joint multi-
modal embedding and cross-modal hashing, which is based
on a novel combination of Convolutional Neural Networks
over images, Recurrent Neural Networks over sentences, and
a structured max-margin objective that integrates all things
together to enable learning of similarity-preserving and high-
quality hash codes. Extensive empirical evidence shows that
our DVSH approach yields state of the art results in cross-
modal retrieval experiments on image-sentences datasets,
i.e. standard IAPR TC-12 and large-scale Microsoft COCO.

Keywords
Deep hashing, cross-modal retrieval, multimodal embedding

1. INTRODUCTION
While multimedia big data of massive volumes and high

dimensions are pervasive in search engines and social net-
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works, it has attracted increasing attention to approximate
nearest neighbors search across different media modalities
that brings both computation efficiency and search quality.
Since correspondence data from different modalities may en-
dow semantic correlations, it is imperative to support cross-
modal retrieval that returns relevant results of one modality
in response to query of another modality, e.g. retrieval of
images with text query. An advantageous solution to cross-
modal retrieval is hashing methods, which compress high-
dimensional data into compact binary codes with similar
binary codes for similar objects [36]. This paper focuses on
cross-modal hashing that builds isomorphic hash codes for
efficient cross-media retrieval. To date, effective and efficient
cross-modal hashing remains a challenge, due to the hetero-
geneity across different modalities [31, 38], and the semantic
gap between low-level features and high-level semantics [32].

Many cross-modal hashing methods have been proposed
to exploit shared structures across different modalities in the
process of hash function learning and compress cross-modal
data in an isomorphic Hamming space [4, 22, 44, 45, 33, 37,
41, 27, 43, 39, 25, 29]. These cross-modal hashing methods
based on shallow architectures cannot exploit heterogeneous
correlation structure effectively to bridge different modali-
ties. Several recent deep models for multimodal embedding
[9, 20, 28, 18, 6, 10, 1] show that deep learning can capture
heterogeneous cross-modal correlations more effectively than
shallow learning methods. While these deep models have
been successfully applied to image captioning and retrieval,
they cannot generate compact hash codes for efficient cross-
modal retrieval. Meanwhile, latest deep hashing methods
[40, 23, 46, 5] yielded state of art results on many datasets,
but these methods are limited to single-modal retrieval.

In this work, we strive for the goal of efficient cross-modal
retrieval of images in response to natural sentence queries or
vice versa, as shown in Figure 1. This new hashing scenario,
different from previous work that uses unordered keyword
queries, is more desirable for practical applications, since it
is usually easier for users to describe the images by free-style
text sentences instead of a couple of keywords. The primary
challenge towards this goal is in the design of a model that
is rich enough to simultaneously reason about contents of
images and their representation in the domain of natural
language. Additionally, the model should be able to generate
compact hash codes that capture rich features of images and
sentences as well as the cross-modal correlation structures
to enable efficient cross-modal retrieval. To our knowledge,
this work is the first end-to-end learning approach to cross-
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Figure 1: Deep visual-semantic hashing (DVSH) for
cross-modal retrieval of images and text sentences.

modal hashing that enables efficient cross-modal retrieval of
images in response to sentence queries and vice versa.

This paper presents a new Deep Visual-Semantic Hashing
(DVSH) model that generates compact hash codes of images
and sentences in an end-to-end deep learning architecture,
which capture the spatial dependency of images and tempo-
ral dynamics of text sentences for learning powerful feature
representations and cross-modal embeddings that mitigate
the heterogeneity of different modalities. DVSH is a hybrid
deep architecture that constitutes a visual-semantic fusion
network for learning joint embedding space of images and
sentences, and two modality-specific hashing networks for
learning hash functions to generate compact binary codes.
Our architecture effectively unifies joint multimodal embed-
ding and cross-modal hashing, which is based on a seamless
combination of Convolutional Neural Networks over images,
Recurrent Neural Networks over sentences, and a structured
max-margin objective that integrates all things together to
enable the learning of similarity-preserving and high-quality
hash codes. Comprehensive empirical results show that our
DVSH model yields state of the art results in cross-modal
retrieval experiments on popular image-sentences datasets,
i.e. standard IAPR TC-12 and large-scale Microsoft COCO.

2. RELATED WORK
This work is related to cross-modal hashing, which has

been an increasingly popular research topic in machine learn-
ing, data mining, and multimedia retrieval communities [4,
22, 44, 45, 33, 31, 30, 37, 38, 41, 8, 16, 43, 27, 39, 25]. We
refer the readers to [36] for a comprehensive survey.

Prior cross-modal hashing methods can be roughly orga-
nized into unsupervised methods and supervised methods.
Unsupervised hashing methods learn hash functions that can
encode input data points to binary codes only using the un-
labeled training data. Typical learning criteria include re-
construction error minimization [8, 37], similarity preserva-
tion as graph-based hashing [22, 33], and quantization error
minimization as correlation quantization [39, 29]. Super-
vised hashing methods explore the supervised information
(e.g., relative similarity or relevance feedback) to learn com-
pact hash coding. Typical learning methods include metric
learning [4, 25], neural network [30], and correlation analysis
[43, 39]. As supervised hashing methods can explore seman-
tic information to enhance the cross-modal correlation and
reduce the semantic gap [32], they can achieve superior ac-
curacy than unsupervised methods for cross-modal retrieval.

Most of previous cross-modal hashing methods based on
shallow architectures cannot effectively exploit the heteroge-
neous correlation structure across different modalities. Lat-
est deep models for multimodal embedding [9, 20, 18, 6, 10,
15] have shown that deep learning can capture heterogeneous

cross-modal correlations more effectively for image caption-
ing and cross-modal reasoning, but it remains unclear how
to extend these deep models to cross-modal hashing. Recent
deep hashing methods [40, 23, 5, 46] have given state of the
art results on many datasets, but these methods can only
be applied to single-modal retrieval. To our knowledge, this
work is the first end-to-end learning approach to cross-modal
deep hashing that enables efficient cross-modal retrieval of
images in response to text-sentences queries and vice versa.

3. PRELIMINARY ON DEEP NETWORKS

3.1 Convolutional Neural Network (CNN)
To learn deep representation of visual data, we start with

AlexNet [21], the deep convolutional network (CNN) archi-
tecture which won the ImageNet ILSVRC 2012 challenge.
AlexNet comprises five convolutional layers (conv1–conv5)
and three fully connected layers (fc6–fc8), as in Figure 3.
Each fully-connected layer ` learns a nonlinear mapping h` =
a`
(
W `h`−1 + b`

)
, where h` is the `-th layer activation of

image x, W ` and b` are the weight and bias parameters of
the `-th layer, and a` is the activation function, taken as
rectifier linear units (ReLU) a`(x) = max(0,x) for layers
conv1–fc7. Different from fully connected layers, each con-
volutional layer is a three-dimensional array of size h×w×d,
where h and w are spatial dimensions, and d is the feature
or channel dimension. The first layer is input image, with
pixel size h × w and d color channels. Locations in higher
convolutional layers correspond to the locations in the image
they are connected to, which are called the receptive fields.

CNNs are built on translation invariance [6]. Their basic
components (convolution, pooling, and activation functions)
operate on local input regions, and depend only on relative
spatial coordinates. Writing xij for the image vector at
location (i, j) in a particular layer, and hij for the following
layer, these functions in convolutional layers compute hij by

hij = fks
(
{xsi+δi,sj+δj}0≤δi,δj≤k

)
, (1)

where k is called the kernel size, s is the stride or subsam-
pling factor, and fks determines the layer type: a matrix
multiplication for convolution or average pooling, a spatial
max for max pooling, or an elementwise nonlinearity for an
activation function, and so on for other types of layers. This
functional form is maintained under composition, with ker-
nel size and stride obeying the following transformation rule

fks ◦ gk′s′ = (f ◦ g)k′+(k−1)s′,ss′ . (2)

While a general deep network computes a general nonlinear
function, a network with only layers of this form computes
a nonlinear filter, which we call a deep filter or feature map.

3.2 Long Short-Term Memory (LSTM)
To learn deep representation of sequential data, we adopt

Long Short-Term Memory (LSTM) recurrent neural network
[14]. Though recurrent neural networks (RNNs) have proven
successful on tasks such as speech recognition and text gen-
eration, it can be difficult to train them to learn long-term
dynamics, likely due in part to the vanishing and explod-
ing gradients problem that can result from propagating the
gradients down through the many layers of the recurrent net-
work, each corresponding to a particular timestep. LSTMs
provide a solution by incorporating memory units that allow



the network to learn when to forget previous hidden states
and when to update hidden states given new information.
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Figure 2: A diagram of an LSTM memory cell.

In this paper, we adopt the LSTM unit as described in [35,
42, 6], which is a slight simplification of the one described
in [11], as shown in Figure 2. Let σ(x) = 1

1+exp−x be the

sigmoid function that maps real-valued inputs to [0, 1], and

let φ(x) = ex−e−x

ex+e−x = 2σ(2x) − 1 be the hyperbolic tangent

(tanh) function, similarly mapping its inputs to [−1, 1], the
LSTM updates for timestep t given inputs xt, ht−1 and ct−1:

it = σ (Wxixt + Whiht−1 + bi)

ft = σ (Wxfxt + Whfht−1 + bf )

ot = σ (Wxoxt + Whoht−1 + bo)

gt = φ (Wxcxt + Whcht−1 + bc)

ct = ft � ct−1 + it � gt

ht = ot � φ (ct) ,

(3)

where it, ft, ot, gt, ct, ht are respectively input gate, forget
gate, output gate, input modulation gate, memory cell and
hidden unit for timestep t. The weight matrix has the obvi-
ous meaning that Wxf is the input-forget gate matrix and
Whi is the hidden-input gate matrix, etc. Because the acti-
vation function of ft and it is sigmoid function, their values
are in [0, 1], and they are learned to control how much of the
memory cell to forget its previous memory or consider their
current inputs. Similarly, the output gate ot learns that how
much the memory cell transfers to hidden unit. Considering
the memory cell, which is a summation of two parts: the
previous memory cell ct−1 which is modulated by the forget
gate ft, and gt which is modulated by the input gate it.
These additional gates enable LSTM to learn more complex
and long-term temporal dynamics which cannot gain from
RNN. Additional depth can be added to LSTMs by stack-
ing them on top of each other, using the hidden state of the
LSTM in layer (`− 1) as the input to the LSTM in layer `.

The advantages of LSTMs for modeling sequential data
in vision and natural language problems are: (1) when inte-
grated with current vision systems, LSTMs are straightfor-
ward to fine-tune end-to-end; (2) LSTMs are not confined to
fixed length inputs or outputs, which allow simple modeling
for sequential data of varying lengths, such as text or video.

4. DEEP VISUAL-SEMANTIC HASHING
In cross-modal retrieval systems, the database consists of

objects from one modality and the query consists of objects
from another modality. In this paper, we study a novel cross-

modal hashing scheme, where we are given image-sentence
pairs each corresponding to an image and a text sentence
that correctly describes the image. We uncover the correla-
tion structure between images and texts by learning from a
training set of N bimodal objects {oi = (xi,yi)}Ni=1, where
xi ∈ RDx denotes the Dx-dimensional feature vector of the
image modality, and yi =<yi1,yi2, ...,yiT> ∈ RDy×T de-
notes sentence i consisting of word sequences, where yit ∈
RDy is a one-hot vector that denotes a word of time t in
sentence i (the nonzero element of yit denotes the index of
the word in the vocabulary of size Dy). Some pairs of the bi-
modal objects are associated with similarity labels sij , where
sij = 1 implies oi and oj are similar and sij = −1 indicates
oi and oj are dissimilar. In supervised cross-modal hashing,
S = {sij} is constructed from the semantic labels of data
points or the relevance feedback from click-through data.

We propose a novel Deep Visual-Semantic Hashing (DVSH)
approach to cross-modal retrieval, which learns end-to-end
(1) a bimodal fusion function f (x,y) :

(
RDx ,RDy×T

)
7→

{−1, 1}K , which maps images and texts into aK-dimensional
joint Hamming embedding space H so that the embeddings
of each image-sentence pair are tightly fused to bridge dif-
ferent modalities whilst the similarity information conveyed
in given bimodal object pairs S is preserved; and (2) two

modality-specific hashing functions fx (x) : RDx 7→ {−1, 1}K

and fy (y) : RDy×T 7→ {−1, 1}K , which encode each image
x and sentence y from database and query to compact bi-
nary hash codes u ∈ {−1, 1}K and v ∈ {−1, 1}K in the joint
embedding space H to enable efficient cross-modal retrieval.

The proposed cross-modal deep hashing approach (DVSH)
in Figure 3 is an end-to-end deep architecture for cross-
modal hashing, which comprises both convolutional neural
network (AlexNet) for learning image representations and
recurrent neural network (LSTM) for learning text represen-
tations. The architecture accepts pairwise input (oi,oj , sij)
and processes them in an end-to-end deep representation
learning and hash coding pipeline: (1) a deep visual-semantic
fusion network for learning isomorphic hash codes in the
joint embedding space such that the representations of each
image-sentence pair is tightly fused and correlated; (2) an
image hashing network and a sentence hashing network for
learning nonlinear modality-specific hash functions that en-
code each unseen image and sentence to compact hash codes
in the joint embedding space; (3) a new cosine max-margin
loss to preserve the pairwise similarity information and en-
hance the robustness to outliers; (4) a novel bitwise max-
margin loss to control the quality of the binary hash codes.

4.1 Visual-Semantic Fusion Network
The challenge of cross-modal retrieval arises in that cross-

modal data (images and texts) have significantly different
statistical properties (heterogeneous), which makes it very
difficult to capture the correlation across modalities based on
hand-crafted features. Recently, it has been witnessed that
deep learning methods [3], such as deep convolutional net-
works (CNNs) [21] and deep recurrent networks (RNNs) [35],
have made performance breakthroughs on many real-world
perception problems. Deep architectures are very powerful
for extracting the multimodal embedding shared by different
modalities since they can extract nonlinear feature represen-
tations to bridge different modalities effectively [2, 9, 34, 19,
20, 6, 18]. We thus leverage deep networks for cross-modal
joint embedding by designing a deep visual-semantic fusion
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Figure 3: The architecture of Deep Visual-Semantic Hashing (DVSH), an end-to-end deep hashing approach
to image-sentence cross-modal retrieval. The architecture comprises four key components: (1) a deep visual-
semantic fusion network (unifying CNN and LSTM) for learning isomorphic hash codes in the joint embedding
space; (2) an image hashing network (CNN) and a sentence hashing network (LSTM) for learning nonlinear
modality-specific hash functions that map inputs to the joint embedding space; (3) a new cosine max-margin
loss to preserve the pairwise similarity information; (4) a novel bitwise max-margin loss to control the quality
of binary hash codes. Colored ones are modules modified or newly-crafted in this paper. Best viewed in color.

network as illustrated in the left part of Figure 3, which
maps the deep feature representations of images and texts
into the shared visual-semantic embedding space such that
the correspondence relations conveyed in the image-sentence
pair can be maximized whilst the pairwise similarity infor-
mation conveyed in the similarity labels can be preserved.

The proposed deep visual-semantic fusion network works
by passing each visual input xi (an image in our case) through
the deep convolutional neural network (CNN) to produce a
fixed-length vector representation hxi . Note that, we replace
the softmax classifier in the fc8 layer of the original AlexNet
[21] with a feature map, which maps the image features from
the fc7 layer to new features of K-dimension. We adopt the
LSTM as our sequence model, which maps an input yit of
each sequence (a sentence in our case) at timestep t and a
hidden state hyi(t−1) of previous timestep (t−1) to an output

zyit and updates hidden state hyit. Therefore, inference must
be run sequentially (i.e. from top to bottom in Figure 3), by
computing the activations in order using Equation (3), that
is, updating the t-th state based on the (t− 1)-th state.

To integrate CNN and LSTM into a unified deep visual-
semantic embedding model, the computed feature-space rep-
resentation hxi of the visual input xi is fused into the second
layer of the LSTM model over each state, as illustrated in
Figure 3. Specifically, the activation hi of the fusion layer
(the LSTMs with green color) for the t-th state (a word) in
the sequence (text sentence) can be calculated as follows:

hit = f (hxi + hyit) , (4)

where f(·) denotes the updates made to the timestep t of the

second-layer LSTM by substituting xt , hxi +hyit into Equa-
tion (3). Note that, to reduce the gap between the activation
hit of the fusion layer and the final binary hash codes ui and
vi, we first squash the activations hit to [−1, 1] using the hy-
perbolic tangent (tanh) activation function φ(x) = tanh(x)
in Equation (3). This fusion operation is very important to
embody the multimodal visual-semantic embedding space.

The aforementioned timestep-wise fusion tights the visual

and textual embeddings hxi and hyit to a unified embedding.
However, each timestep t produces a joint embedding hit,
while we would expect that each image-text pair produces
only one fusion code to make cross-modal retrieval efficient.
To this end, we are motivated by the technique of mean em-
beddings of distributions [12] and generate pair-level fusion
code hi for each image-sentence pair by weighted averaging:

hi =

T∑
t=1

πithit

T∑
t=1

πit

=

T∑
t=1

πitf (hxi + hyit)

T∑
t=1

πit

, (5)

where πit ∈ {1, 0} is the indicator variable, πit = 1 if word
t is present in timestep t, and πit = 0 otherwise. We handle
these cases because the text sentences are of variable-length
and some sentences are shorter than the number T of states
in the LSTMs. It is important to note that, the derived joint
visual-semantic embedding hi not only captures the spatial
dependencies over images and temporal dynamics over sen-
tences using CNN and LSTM respectively, but also captures
the cross-modal relationship in a multimodal Hamming em-
bedding space. To achieve an optimal joint embedding space
for binary coding, the joint embeddings should be made to
preserve the pairwise similarity information in training data
S and to be separated well by bitwise hyperplane hik = 0.

4.1.1 Cosine Max-Margin Loss
In order to make the learned joint visual-semantic embed-

dings maximally preserve the similarity information across
different modalities, we propose the following criterion: for
each pair of objects (oi,oj , sij), if sij = 1, indicating that
oi and oj are similar, then their hash codes ui and vj must
be similar across different modalities (image and sentence),
which is equivalent to requiring that their joint visual-semantic
embeddings hi and hj should be similar. Correspondingly, if
sij = −1, indicating that oi and oj are dissimilar, then their
joint visual-semantic embeddings hi and hj should be dis-

similar. We use the cosine similarity cos(hi,hj) =
hi·hj

‖hi‖‖hj‖



for measuring the closeness between hi and hj , where hi · hj
is the inner-product of hi and hj , and ‖ · ‖ denotes the Eu-
clidean norm of a vector. For similarity-preserving learning,
we propose to minimize the following cosine max-margin loss

L =
∑
sij∈S

max

(
0, µc − sij

hi · hj
‖hi‖ ‖hj‖

)
, (6)

where µc > 0 is the margin parameter, which is fixed to µc =
0.5. This objective encourages similar image-sentences pairs
to have a higher cosine similarity than dissimilar pairs, by a
margin. Similar to the support vector machines (SVMs), the
max-margin loss enhances the robustness to outliers. The
cosine max-margin loss is particularly powerful for cross-
modal correlation analysis, since the vector lengths are very
diverse in different modalities and may make many distance
metrics (e.g. Euclidean distance) as well as loss functions
(e.g. squared loss) misspecified. To date this problem has
not been studied in cross-modal deep hashing methods [36].

4.1.2 Bitwise Max-Margin Loss
For each image-sentence pair oi = (xi,yi), to reduce the

gap between its joint embedding hi and its modality-specific
binary codes ui and vi, we require that the joint embedding
hi to be close to its signed code sgn(hi) ∈ {−1, 1}K , which is
equivalent to minimizing ‖|hi|−1‖2. However, as a common
knowledge, such squared loss is not robust to outliers. Thus
we propose to minimize a novel bitwise max-margin loss as

Q =

N∑
i=1

K∑
k=1

max (0, µb − |hik|), (7)

where µb > 0 is the bitwise margin parameter, which is fixed
to µb = 0.5. This objective encourages the joint embedding
to separate apart from the hyperplane hik = 0 corresponding
to the k-th bit, by a margin, hence we call it bitwise max-
margin. Note that, minimizing the bitwise max-margin loss
will lead to lower quantization error when binarizing the con-
tinuous embeddings ui ∈ RK and vi ∈ RK to binary hash
codes, which allows us to learn high-fidelity binary codes.

4.2 Modality-Specific Hashing Network
The proposed deep visual-semantic fusion network will

produce isomorphic joint embeddings that are sharable as
the bridge to correlate different modalities, which effectively
mitigates the cross-modal heterogeneity by deep representa-
tions of images and texts and the deep fusion between them.
However, two major problems remain: (1) the fusion net-
work cannot extend the embedding model to out-of-sample
images and texts; (2) the fusion network require bimodal ob-
jects (both image and text modalities should be available)
to predict the joint embeddings. In other words, the fusion
network cannot be directly applied to cross-modal retrieval,
where only one modality is available for the database or the
query. Most importantly, it does not provide a mechanism
to map each unimodal input to the joint embedding space.
This thus motivates us to craft two more hashing networks
for directly learning the modality-specific hashing functions.
The key difference between the hashing network and the
fusion network is: in the fusion network, we map each in-
put to its modality-specific representation and then unify all
modalities by elementwise summation in Equation (4); in the
hashing network, however, we directly map each input to the

joint embedding space learned by the fusion network. Hence
the hashing network can address the above two problems.

4.2.1 Image Hashing Network
The image hashing network is crafted to learn the hashing

function for the image modality. It is similar to the CNN
module of the fusion network: we directly copy the conv1–
fc7 layers from AlexNet [21], and replace the softmax clas-
sifier in fc8 layer with a hash function that transforms the
feature representation of input image xi to hash code ui.
To guarantee that the hash code ui produced by the hash-
ing network lie in the joint embedding space, we require the
hash code ui and the joint embedding hi corresponding to
the same training image xi to be close with the squared loss:

Lx =
1

2N

N∑
i=1

ui −

T∑
t=1

πithit

T∑
t=1

πit


2

. (8)

4.2.2 Sentence Hashing Network
The sentence hashing network is crafted to learn the hash-

ing function for the text modality. It is similar to the LSTM
module of the fusion network, but by removing the visual
input branch. We replace the softmax classifier in the out-
put layer of the LSTM with a hash function that transforms
the feature representation of input sentence yi to hash code
vi. Again, to guarantee that the hash code vi lie in the joint
embedding space, we require the hash code vi and the joint
embedding hi corresponding to the same training sentence
yi to be similar in each timestep t under the squared loss:

Ly =
1

2N

N∑
i=1

T∑
t=1

πit(vit − hit)
2

T∑
t=1

πit

. (9)

Note that for both hashing networks, bimodal objects are
only required in the training phase. After the hash functions
are learned, we can directly encode any out-of-sample input.

4.3 Deep Visual-Semantic Hashing
In this paper, we enable joint representation learning and

hash coding in an end-to-end deep architecture. Specifically,
(1) we guarantee robust similarity-preserving representation
learning by minimizing the cosine max-margin loss (6); (2)
we guarantee the high-quality of compact binary hash codes
by minimizing the bitwise max-margin loss (7); (3) we en-
able effective and efficient out-of-sample code generation by
minimizing the squared losses (8)–(9). Integrating these loss
functions in a joint optimization problem that is taken over
the deep visual-semantic hashing (DVSH) network, it yields

min
Θ
O = L+ λQ+ β (Lx + Ly) , (10)

where Θ ,
{
W `
∗ , b

`
∗
}
∗∈{x,y,u,v} denotes the set of network

parameters, λ and β are the penalty parameters for trading
off the relative importance of the bitwise max-margin loss
and modality-specific squared loss. Through joint optimiza-
tion (10) over the deep visual-semantic hashing network, we
can jointly learn an isomorphic joint embedding space that
effectively bridges the image and text modalities, and two
modality-specific hashing functions that respectively map
the image and text inputs to compact binary codes in the



joint embedding space, which enables effective and efficient
cross-modal retrieval. With the trained fusion network and
hashing networks, we can obtain K-bit binary hash codes by
simple sigh thresholding sgn(u) and sgn(v) for each modal-
ity, where sgn(·) is the element-wise sign function that for
i = 1, . . . ,K, sgn(zi) = 1 if zi > 0, otherwise sgn(zi) = −1.
It is worth noting that, since we have minimized the bitwise
max-margin loss in Equation (10) during training, this final
binarization step will incur relatively small loss of retrieval
quality, which will also be validated in the empirical study.

4.4 Algorithms and Training Details
The CNN module is pre-trained on the ImageNet classi-

fication task [21]. The LSTM module is pre-trained on the
MS COCO dataset [24] using the neural language model [35].
These two components are fined-tuned during the training of
the proposed DVSH model. We jointly train the new layers
(colored modules in Figure 3) of visual-semantic fusion net-
work and modality-specific hashing network with mini-batch
stochastic gradient descent (SGD) method. And the hyper-
parameters of the model are selected by cross-validation.

We derive the learning algorithms for the DVSH model in
Equation (10), and show rigorously that both cosine max-
margin loss and bitwise max-margin quantization loss can be
optimized efficiently through the standard back-propagation
(BP). For notation brevity, we define the point-wise loss as

Oi ,
∑

j:sij∈S

Lij + λ

K∑
k=1

Qik + β (Lxi + Lyi ) . (11)

To improve the convergence stableness, we let the loss of
hashing network make no effect to the updates of the fusion
network during the training of DVSH. We derive the gradi-
ent of point-wise loss Oi w.r.t. W `

x,k, the parameter of the
k-th unit of `-th layer of the CNN part of the fusion network:

∂Oi
∂W `

x,k

=
∑

j:sij∈S

∂Lij
∂W `

x,k

+ λ
∂Qik
∂W `

x,k

=

 ∑
j:sij∈S

∂Lij

∂ĥ`ik
+ λ

∂Qik

∂ĥ`ik

 ∂ĥ`ik
∂W `

x,k

= δ`x,ikh
`−1
i ,

(12)

where ĥ`i = W `
xh

`−1
i + b`x is the output of the `-th layer

before activation a`(·), δ`x,ik ,
∑

j:sij∈S

∂Lij

∂ĥ`
ik

+ λ ∂Qik

∂ĥ`
ik

is the

point-wise residual term that measures how much the k-th
unit in the `-th layer is responsible for the error of point xi in
the network output. For an output unit k, we can measure
the difference between the network’s activation and the true
target value, and use that to define the residual δlx,ik as

δlx,ik =
∑

j 6=i:sij∈S

I

(
µc − sij

hli · hlj∥∥hli∥∥∥∥hlj∥∥ > 0

)

·

[
−sij

(
hljk∥∥hli∥∥ ∥∥hlj∥∥ − hlik

〈
hli,h

l
j

〉∥∥hli∥∥3 ∥∥hlj∥∥
)]

ȧl(ĥlik)

+ λI (hik < 0) I (µb − |hik| > 0) ȧl(ĥlik),

(13)

where l is the output layer of LSTMs, ȧl(·) is the derivative
of the l-th layer activation function, and I(A) is an indicator
function, I(A) = 1 if A is true and I(A) = 0 otherwise. For a

hidden unit k in the (`−1)-th layer, we compute the residual
δ`−1
x,ik based on a weighted average of the errors of all the units

k′ = 1, . . . , n`−1 in the (` − 1)-th layer that use h`−1
i as an

input, which is consistent with standard back-propagation,

δ`−1
x,ik =

(n`−1∑
k′=1

δ`x,ik′W
`−1
x,kk′

)
ȧ`−1
x

(
ĥ`−1
ik

)
, (14)

where n`−1 is number of units in the (` − 1)-th layer. The
residuals in all layers can be computed by back-propagation.

For the hashing networks, we derive the gradient of point-
wise loss Oi w.r.t. W `

u,k and W `
v,k, the network parameter of

the k-th unit of `-th layer in the hashing networks for image
and sentence, respectively. The derivatives are as follows,

∂Oi

∂W `u
u,k

= β
∂Lxi

∂W `u
u,k

= βδ`uu,ikû
`u−1
i ,

∂Oi

∂W `v
v,k

= β
∂Lyi
∂W `v

v,k

= βδ`vv,ikv̂
`v−1
i ,

(15)

where û`i = W `
uu

`−1
i + b`u is the `-th layer output before

activation a`(·), δ`u,ik , ∂Lx
i

∂û`
ik

is the point-wise residual term

that measures how much the k-th unit in the `-th layer is
responsible for the error of point ui in the network output
(similar definitions apply to the sentence hashing network):

δluu,ik = ului − hlit =

ului −

T∑
t=1

πith
l
it

T∑
t=1

πit

 ,

δlvv,ik =

T∑
t=1

πit
(
vlvit − hlit

)
T∑
t=1

πit

,

(16)

where lu is the output layer of the image hashing network,
and ȧlu(·) is the derivative of the lu-th layer activation func-
tion. For a hidden unit k in the (`u−1)-th layer, we compute

the residual δ`u−1
u,ik based on a weighted average of the errors

of all the units k′ = 1, . . . , n`u−1 in the (`u−1)-th layer that

use u`u−1
i as an input, which is consistent with standard BP.

As the only differences between standard back-propagation
(BP) and our algorithm are the residual terms defined in
Equations (13)(16), we analyze the computational complex-
ity for (13) and (16). Denote the number of similarity pairs
S available for training as |S| and the number of bimodal
objects available for training as N , then it is easy to verify
that the overall computational complexity is O(|S|+N).

5. EXPERIMENTS
We conduct extensive experiments to evaluate the efficacy

of the proposed DVSH model with several state of the art
hashing methods on two widely-used benchmark datasets.
Datasets, codes and configurations will be publicly available.

5.1 Evaluation Setup
The evaluation is conducted on two benchmark cross-modal

datasets: Microsoft COCO [24] and IAPR TC-12 [13].
Microsoft COCO1 The current release of this recently

proposed dataset contains 82,783 training images and 5000

1
http://mscoco.org
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Figure 4: Precision-recall curves of cross-modal retrieval on Microsoft COCO and IAPR TC-12 @ 32 bits.
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Figure 5: Precision@top-R curves of cross-modal retrieval on Microsoft COCO and IAPR TC-12 @ 32 bits.

testing images. For each image, it provides five sentences
annotations, belonging to 90 most frequent categories as
ground truth labels. After pruning images with no category
information, we get 82,120 training images and 4,960 test-
ing images, from which we generate 410,600 training image-
sentence pairs and 24,800 testing image-sentence pairs.

IAPR TC-122 This dataset consists of 20,000 images
collected from a wide variety of domains, such as sports and
actions, people, animals, cities, landscapes, and so forth. For
each image, it provides at least one sentence annotation. On
average there are about 1.7 sentence annotations for each
image. Besides, it provides category annotations generated
from segmentation tasks3 with 275 concepts. For evaluation,
we prune the original IAPR TC-12 to form a new dataset,
which consists of 18715 images belonging to 22 most frequent
concepts, and then generate 33447 image-sentence pairs.

For the propose deep-hashing approach DVSH, we directly
use the raw pixels as the image input and word sequences
as the sentence input, which consists of one-hot vectors each
representing a word of the sentence. As a common practice
for fair comparison, for traditional shallow-hashing meth-
ods, we use AlexNet [21, 7] to extract deep fc7 features for
each image in two benchmark dataset by a 4096-dimensional
vector, and represent each sentence by a bag-of-word vector.

All image and text features are available at the datasets’
website. For Microsoft COCO, we randomly select 25,000
image-sentence pairs as training set, 5000 pairs as validation
set and 5000 pairs as query set. For IAPR TC-12 dataset,
we randomly select 5000 pairs as the training set, 1000 pairs
as the validation set and 100 pairs per class as the test query
set. The pairwise similarity labels for training are randomly
constructed using semantic labels or concepts, and each pair

2
http://imageclef.org/photodata

3
http://imageclef.org/SIAPRdata

is considered similar (dissimilar) if they share at least one
(none) semantic label, a common protocol used by [25, 23].

We compare the cross-modal retrieval performance of our
approach with eight state of the art cross-modal hashing
methods, including three unsupervised methods IMH4 [33],
CVH5 [22] and CorrAE6 [8], and five supervised methods
CMSSH5 [4], CM-NN7 [30], SCM7 [43], QCH7 [39] and
SePH8 [25], where CorrAE and CM-NN are deep meth-
ods and the rest are shallow methods. To our best knowl-
edge, there is no cross-modal deep hashing method based
either on CNNs or RNNs, hence we extend the state of the
art deep network hashing (DNH) method for image retrieval
[23] to cross-modal retrieval as a strong baseline, denoted as
DNH-C. This baseline is modified by applying multi-layer
perceptrons to the sentence modality with the same triplet
hinge loss as image modality, and adding a least square loss
to reduce the gap between the codes of different modalities.

We follow [39, 43, 25, 23] to evaluate the retrieval perfor-
mance based on three metrics: Mean Average Precision(MAP),
precision-recall curves, and precision@top-R curves. We adopt
MAP@R = 500 following the baseline methods [39, 25].

We implement the DVSH model in the open-source Caffe
framework [17]. For training network, we employ the AlexNet
architecture [21] and a factored-2-layer LSTM [20], fine-tune
convolutional layers conv1–conv5 and fully-connected layers
fc6–fc7 that were copied from the pre-trained model, and
train LSTM layers and feature-map layer fc8, all via back-
propagation. As the fc8 layer is trained from scratch, we
set its learning rate to be 10 times that of the lower layers.
For hashing networks, we employ AlexNet for image network

4
http://staff.itee.uq.edu.au/shenht/UQ IMH

5
http://www.cse.ust.hk/˜dyyeung/code/mlbe.zip

6
https://github.com/fangxiangfeng/deepnet

7
Since code is not publicly available, we implement it by ourselves.

8
We thank the authors for kindly providing the codes.



Table 1: Mean Average Precision (MAP) Comparison of Cross-Modal Retrieval Tasks on Two Datasets

Task Method
Microsoft COCO [24] IAPR TC-12 [13]

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

I → T

CMSSH [4] 0.4047 0.4886 0.4405 0.4480 0.3445 0.3371 0.3478 0.3738
CVH [22] 0.3731 0.3677 0.3657 0.3570 0.3788 0.3686 0.3620 0.3540
IMH [33] 0.6154 0.6505 0.6573 0.6770 0.4632 0.4901 0.5104 0.5212

CorrAE [8] 0.5498 0.5559 0.5695 0.5809 0.4951 0.5252 0.5578 0.5890
CM-NN [30] 0.5557 0.5602 0.5847 0.5938 0.5159 0.5419 0.5766 0.6003

SCM [43] 0.5699 0.6002 0.6307 0.6487 0.5880 0.6110 0.6282 0.6370
QCH [39] 0.5723 0.5954 0.6132 0.6345 0.5259 0.5546 0.5785 0.6054
SePH [25] 0.5813 0.6134 0.6253 0.6339 0.5070 0.5130 0.5151 0.5309

DNH-C [23] 0.5353 0.5560 0.5693 0.5824 0.4801 0.5093 0.5259 0.5349
DVSH 0.5870 0.7132 0.7386 0.7552 0.5696 0.6321 0.6964 0.7236

T → I

CMSSH [4] 0.3747 0.3838 0.3400 0.3601 0.3633 0.3770 0.3645 0.3482
CVH [22] 0.3734 0.3686 0.3645 0.3711 0.3790 0.3674 0.3636 0.3560
IMH [33] 0.6068 0.6793 0.7280 0.7403 0.5157 0.5259 0.5337 0.5274

CorrAE [8] 0.5593 0.5807 0.6109 0.6262 0.4975 0.5195 0.5329 0.5495
CM-NN [30] 0.5793 0.5984 0.6195 0.6448 0.5119 0.5394 0.5487 0.5649

SCM [43] 0.5581 0.6188 0.6583 0.6858 0.5876 0.6045 0.6200 0.6262
QCH [39] 0.5742 0.6057 0.6375 0.6669 0.4997 0.5364 0.5652 0.5885
SePH [25] 0.6127 0.6496 0.6723 0.6929 0.4712 0.4801 0.4812 0.4955

DNH-C [23] 0.5250 0.5592 0.5902 0.6339 0.4692 0.4838 0.4905 0.5053
DVSH 0.5906 0.7365 0.7583 0.7673 0.6037 0.6395 0.6806 0.6751

and a 2-layer LSTM for sentence network, with the feature-
map layers (fc8 of AlexNet and the output layer of LSTM)
trained from scratch. We use the mini-batch stochastic gra-
dient descent (SGD) with 0.9 momentum and the learning
rate annealing strategy implemented in Caffe, cross-validate
learning rate from 10−5 to 1 with a multiplicative step-size
10, and fix mini-batch size as 50. Following [6], we adopt 20
and 25 as the maximum number of words in each sentence
for Microsoft COCO and IAPR-TC12 datasets, respectively.

The DVSH approach involves two penalty parameters λ
and β for trading off the relative importance of bitwise max-
margin loss (7) and squared losses (8) and (9), which can
be automatically selected using cross-validation. And we
can always achieve good empirical results with λ = 0.1 and
β = 1. For comparison methods, we use cross-validation to
carefully tune their parameters for best results. Each exper-
iment repeats five runs and the average results are reported.

5.2 Results and Discussions
We compare our approach DVSH with the nine state of the

art methods on the two datasets in terms of MAP, precision-
recall curves and precision@top-R curves of two cross-modal
retrieval tasks: image query on sentence database (I → T ),
and sentence query on image database (T → I).

We evaluate all methods with different lengths of hash
codes, i.e. 16, 32, 64 and 128 bits, and report their MAP
results in Table 1. From the experimental results, we can
observe that DVSH substantially outperforms all state of the
art methods for most cross-modal tasks on the benchmark
datasets which well demonstrates its effectiveness. Specifi-
cally, compared to the best shallow baseline SCM with deep
AlexNet-fc7 features as input, DVSH achieves absolute in-
creases of 8.6%/8.3% and 3.9%/4.0% in average MAP for
two cross-modal tasks I → T and T → I on Microsoft
COCO and IAPR TC-12 datasets. SePH does not per-
form well in comparison to SCM, due to its assumption of
t-distribution in the learning procedure, which does not hold

on our datasets. Compared to the cross-modal deep hash-
ing methods, DVSH outperform CM-NN by large margins
12.5%/10.3% and 9.7%/10.9%. As we expected, DVSH also
outperforms the cross-modal extension of the state of the art
deep hashing method DNH-C. But DNH-C cannot outper-
form the shallow methods with deep features as input (SCM,
QCH and SePH), which implies that different architectures
and loss functions should be crafted together to achieve op-
timal performance. This motivates us to craft an end-to-end
deep hashing architecture for cross-modal retrieval.

The precision-recall curves with 32 bits for the two cross-
modal tasks I → T and T → I on two datasets Microsoft
COCO and IAPR TC-12 are shown in Figure 4, respectively.
DVSH shows the best cross-modal retrieval performance at
all recall levels. Figure 5 shows the precision@top-R curves
of all comparison methods with 32 bits on the two datasets,
which shows how the precision changes with the number R
of top-retrieved results. Again, we can observe that DVSH
significantly outperforms all state of the art methods, which
shows that DVSH is also suitable for applications that prefer
higher precision while tolerating fewer top-retrieved results.

5.3 Empirical Analysis
To extensively evaluate the effectiveness of the compo-

nents newly-crafted in this paper, including the cosine max-
margin loss for similarity-preserving learning (6), the bitwise
max-margin loss for controlling the quality of binary codes
(7), and the modality-specific hashing networks for generat-
ing out-of-sample hash codes (8)–(9), we design four variants
of the DVSH approach: (a) DVSH-B is the DVSH variant
without binarization (sgn(h) is not performed), which may
serve as the upper bound of performance. (b) DVSH-Q is
the DVSH variant without bitwise max-margin loss (7); (c)
DVSH-I is the DVSH variant by replacing the cosine max-
margin loss (6) with the widely-used inner-product squared

loss L =
∑
sij∈S

(
sij − 1

K
〈hi,hj〉

)2
[26, 40]; (d) DVSH-H

is the DVSH variant without using the hashing networks (8)



Table 2: Mean Average Precision (MAP) of DVSH Variants for Cross-Modal Retrieval Tasks on Two Datasets

Task Method
Microsoft COCO [24] IAPR TC-12 [13]

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

I → T

DVSH-B 0.6658 0.7408 0.7532 0.7645 0.6260 0.6761 0.7359 0.7554
DVSH 0.5870 0.7132 0.7386 0.7552 0.5696 0.6321 0.6964 0.7236

DVSH-Q 0.5746 0.7019 0.7145 0.7505 0.5385 0.6113 0.6869 0.7097
DVSH-I 0.5264 0.5745 0.6056 0.6391 0.4792 0.5035 0.5583 0.5890
DVSH-H 0.4856 0.5244 0.5545 0.5786 0.4575 0.4975 0.5493 0.5690

T → I

DVSH-B 0.7605 0.8192 0.8034 0.8194 0.6285 0.6728 0.6922 0.6756
DVSH 0.5906 0.7365 0.7583 0.7673 0.6037 0.6395 0.6806 0.6751

DVSH-Q 0.5530 0.7105 0.7541 0.7569 0.5684 0.6153 0.6618 0.6693
DVSH-I 0.5185 0.5353 0.5805 0.6136 0.4903 0.5496 0.5890 0.6012
DVSH-H 0.5025 0.5368 0.5688 0.5939 0.4396 0.4853 0.5185 0.5337

and (9), which means that we use the fusion network with
single-modal features (image or sentence) to generate hash
codes. MAP results of all variants are shown in Table 2.

From Table 2, we may have the following observations:
(a) By using cosine max-margin loss, DVSH outperforms

DVSH-I by large margins of 11.2%/15.1% and 12.3%/9.2%
in average MAP on the two benchmark datasets. The squared
inner-product loss has been widely adopted in previous work
[26, 40]. However, this loss does not link well the pairwise
distances between points (taking values in (−∞,+∞) when
using continuous relaxation) to the pairwise similarity labels
(taking binary values {-1,1}). In contrast, the proposed co-
sine max-margin loss (6) is inherently consistent with the
training pairs. Besides, the margin µc in (6) can also control
the robustness of similarity-preserving learning to outliers.

(b) By optimizing bitwise max-margin loss (7), DVSH in-
curs small decreases 3.3%/8.7% and 4.3%/1.8% in average
MAP when quantizing continuous embeddings of DVSH-B
into binary codes. In contrast, without optimizing bitwise
max-margin loss, DVSH-Q incurs larger decreases 4.6%/10.7%
and 6.2%/3.9% in average MAP. Especially for shorter length
of hash codes (16 bits), DVSH-Q suffers from huge decreases
of 9.1%/20.8% and 8.8%/6.0% while DVSH incurs smaller
MAP decreases 7.9%/17.0% and 5.6%/2.5%. This validates
that the bitwise max-margin loss (7) can effectively reduce
the quantization error and achieve higher-quality hash codes.

(c) As we have expected, the performance of DVSH-H
drops by huge decreases 16.3%/16.3% and 13.7%/15.5% in
average MAP w.r.t. the carefully-crafted DVSH approach.
This validates that the visual-semantic fusion network can-
not perform well if it is used to generate out-of-sample hash
codes which may have only single-modal inputs. This result
motivates us to integrate the modality-specific hashing net-
works into DVSH, our end-to-end deep hashing architecture.

5.4 Parameter Sensitivity
In this section, we further discuss the performance of DVSH

w.r.t the two model parameters λ and β to validate the ro-
bustness of our approach. Here we compute the MAP score
@ 64 bits on both the cross-modal retrieval tasks by varying
λ between 0.005 and 5 and β between 0.02 and 20. The sensi-
tivity performance of DVSH with respect to two parameters
is illustrated in Figure 6(a) and 6(b). From the figure, we
see that DVSH can consistently outperform all the baseline
methods by large margins when varying λ between 0.005 and
1, and β between 0.1 and 5. When λ→ 0, DVSH deprecates
to DVSH-Q which learns hash codes without bitwise max-
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Figure 6: The MAP of DVSH @ 64 bits versus the
parameter λ ∈ [0.005, 5] and β ∈ [0.02, 20] for the
two cross-modal retrieval tasks (I → T and T → I).

margin loss (7). We observer the retrieval performance of
DVSH first increases and then decreases as λ and β vary and
demonstrates a desirable bell-shaped curve. This justifies
our motivation of jointly learning deep features whilst min-
imizing the bitwise max-margin loss (7) and squared losses
(8) and (9), since a good trade-off between them can enable
effective learning of high-quality hash codes. The results also
validate that DVSH is robust against parameter selection.

6. CONCLUSION
This paper presented a novel deep visual-semantic hash-

ing (DVSH) model to enable efficient cross-modal retrieval
of images in response to text sentences and vice versa. Our
DVSH model generates compact hash codes of images and
sentences in an end-to-end deep learning architecture, which
effectively unifies joint multimodal embedding with cross-
modal hashing. In particular, by embedding convolutional
neural networks over images into recurrent neural networks
over sentences, we jointly capture the spatial dependency of
images and temporal dynamics of text sentences for learn-
ing powerful feature representations and cross-modal embed-
dings that mitigate the heterogeneity of different modalities.
Comprehensive empirical evidence shows that our DVSH
model yields state of the art performance in cross-modal
retrieval experiments on image-sentences datasets, i.e. stan-
dard IAPR TC-12 and large-scale Microsoft COCO. In the
future, we plan to extend DVSH to data from social me-
dia and mobile computing, and to heterogeneous scenarios
where inter-modal relationship information is not available.
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