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Summary

I Principled approaches to domain adaptation: Conditional Domain
Adversarial Networks (CDAN)

I Two technical contributions:
I Multilinear Conditioning: capture the cross-covariance between domain-specific

feature representations and classifier predictions to improve the discriminability
I Entropy Conditioning: control the uncertainty of (target) classifier predictions

to guarantee the transferability

I New domain adaptation theory on the generalization error bound
I State-of-art results on many vision & simulation-to-real datasets

I Open Problems
I Randomized method for multilinear operation with lower approximation error
I Complexity analysis for the domain adaptation theory involving neural networks

I Code@: https://github.com/thuml/CDAN

Deep Domain Adaptation

Deep Learning across Domains following Non-IID Distributions P 6= Q

Model ModelRepresentation

P(x,y)≠Q(x,y)
2D Renderings Real Images

Source Domain Target Domain

http://ai.bu.edu/visda-2017/f :x→ y f :x→ y

Basic Approaches to Domain Adaptation

Matching distributions across source and target domains s.t. P ≈ Q
I Reduce marginal distribution mismatch: P(X) 6= Q(X)
I Reduce conditional distribution mismatch: P(Y |X) 6= Q(Y |X)
I Challenge: fail to align different domains of multimodal distributions

Song et al. Kernel Embeddings of Conditional Distributions. IEEE, 2013. 
Goodfellow et al. Generative Adversarial Networks. NIPS 2014.

Kernel Embedding Adversarial Learning
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embeddings of a joint distribution ( , )P X Y  and the product of its 
marginals ( ) ( ),P X P Y  i.e., hsic ( , ) : .X Y C F FXY X Y

27n n= - 7  
Similarly, this statistic also has advantages over the kde-based 
statistic. We will further discuss these tests in the next section, 
following our introduction of finite sample estimates of the 
distribution embeddings and test statistics.

FINITE SAMPLE KERNEL ESTIMATOR
While we rarely have access to the true underlying distribution, 

( ),P X  we can readily estimate its embedding using a finite sample 
average. Given a sample { , , }D x xX m1 f=  of size m drawn inde-
pendent and identically distributed (i.i.d.) from ( ),P X  the empiri-
cal kernel embedding is
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See Figure 3 for an illustration of the kernel embedding and its 
empirical estimator. This empirical estimate converges to its pop-
ulation counterpart in RKHS norm, ,FX Xn n-t  with a rate of 

( )O m ( / )
p

1 2-  [15], [16]. We note that this rate is independent of the 
dimension of ,X  meaning that statistics based on kernel embed-
dings circumvent the curse of dimensionality.

Kernel embeddings of joint distributions inherit the 
previous two properties of general embeddings: injectivity 

and easy empirical estimation. Given 
m pairs of training examples DXY = 
{( , ), , ( , )}x y x ym m1 1 f  drawn i.i.d. from 

( , ),P X Y  the covariance operator CXY  
can then be estimated as
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See Figure 4 for an illustration of the 
kernel joint embedding and its empirical 
estimator.

By virtue of the kernel trick, most of 
the computation required for statistical 
inference using kernel embeddings can 
be reduced to the Gram matrix manipu-
lation. The entries in the Gram matrix K  
correspond to the kernel value between 
data points xi and ,x j  i.e., ( , ),K k x xij i j=  
and therefore its size is determined by 
the number of data points in the sample 
(similarly Gram matrix G has entries 

( , )) .G k y yij i j=  The size of the Gram 
matrices is in general much smaller than 
the dimension of the feature spaces 
(which can be infinite). This enables effi-
cient nonparametric methods using the 
kernel embedding representation. For 
instance, the empirical mmd can be com-
puted using kernel evaluations,
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For comparison, the L2 distance between kernel density esti-
mates is

kde kde( ( ) ( ))x x dx2-
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u/ , respectively. Furthermore, it can be shown that a 

two-sample test based on the L2 distance between kernel density 
estimates has less power against local departures from the null 
hypothesis than the mmd\  [19, Sec. 3.3], [19, Sec. 5], due to the 
shrinking kernel bandwidth with increasing sample size. There 
are also many domains such as strings and graphs [13] where 
kernel methods can be used, but where probability densities may 
not be defined. Finally, hyperparameters of the kernel func-
tions, such as the bandwidth v in the Gaussian kernel 

v( ),exp x x 2-- l  can be chosen to maximize the test power, 
and minimize the probability of Type II error in two-sample tests 

[FIG3] Kernel embedding of a distribution and finite sample estimate.
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[FIG4] Kernel embedding of a joint distribution and finite sample estimate.
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Main Idea of This Work

Distribution Embeddings with Statistics: multilinear � concatenation
I Capture cross-covariance statistics across multiple random vectors
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mapping distributions into infinite-dimensional feature 
spaces, we can ultimately capture all the statistical features of 
arbitrary distributions. By virtue of the so-called kernel trick, 
we are able to avoid working explicitly with the infinite-
dimensional features, instead expressing our algorithms 
entirely in terms of Gram matrices of training samples. The infi-
nite and implicit nature of the feature spaces provides us a rich 
yet efficient framework for handling arbitrary distributions and 
high-dimensional data.

The conditional embedding framework represents the 
building blocks from probabilistic graphical models, such as mar-
ginal distributions over single variables, joint distributions over 
variable pairs, triplets, and more, as infinite-dimensional vectors, 
matrices, tensors, and high-order tensors, respectively; further-
more, the operations fundamental to probabilistic reasoning and 
graphical models, i.e., conditioning, sum rule, product rule, and 
Bayes’ rule, become linear transformations and relations between 
the embeddings (see Figure 2 for the analogy between discrete 
probability tables and kernel embeddings of distributions). We 
may combine these building blocks so as to reason about interac-
tions between a large collection of variables, even in the absence 
of parametric models.

The kernel conditional embedding framework has many 
advantages. First, it allows us to model data with diverse statisti-
cal features without the need to make restrictive assumptions 
about the type of distributions and relations. Second, it allows us 
to apply a large pool of linear and multilinear algebraic (tensor) 
tools to accomplish learning tasks in the presence of sophisti-
cated dependency structures, giving rise to methods for structure 
discovery, inference, parameter learning, and latent feature 

extraction. Third, this framework can be applied not only to con-
tinuous variables, but also can be generalized to variables that 
may take values on strings, graphs, groups, manifolds, and other 
domains on which kernels may be defined. Fourth, the computa-
tion can be implemented in practice by simple linear algebraic 
manipulation of kernel matrices.

We will mainly focus on two applications: the first being 
a belief propagation algorithm for inference in nonpara-
metric graphical models (i.e., estimating depth from still 
image features, reported in [7]), and the second being a 
dynamical systems model (i.e., predicting camera movements 
from video features, reported in [4]). In the first application, 
multimodal components in graphical models often make 
inference in these models intractable. Previous approaches 
using particle filtering and ad hoc approximation with mix-
tures of Gaussians are slow and inaccurate. Using kernel 
embeddings of conditional distributions, we are able to 
design a more accurate and efficient algorithm for the prob-
lem. In the second application, both the observations and 
hidden states of the hidden Markov model are complex high-
dimensional variables, and it is not easy to capture the struc-
ture of the data using parametric models. Kernel embeddings 
of conditional distributions and kernel Bayes’ rule can be 
used to model such problems with better accuracy. Finally, 
there exist many other recent applications of kernel embed-
dings of conditional distributions to signal processing and 
machine-learning problems, including Markov decision pro-
cesses (MDPs) [9], partially observable MDPs (POMDPs) [10], 
hidden Markov models [6], and general latent variable graphi-
cal models [8].

[FIG2] Analogy between discrete and kernel embedding representations of marginal distributions and joint distributions of variable 
pairs and triplets. Probabilistic operations, such as conditioning, sum rule, product rule, and Bayes’ rule become linear operations on 
the embedding representations. The discrete case is a specific instance of our embedding framework, given an appropriate choice 
of kernel.
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CDAN: Multilinear Conditioning
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Conditional adaptation of distributions over representation & prediction

min
G
E(G )− λE(D,G )

min
D
E(D,G ),

(1)

E(D,G ) = −Exsi∼Ds
log [D (f si ⊗ gs
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CDAN: Randomized Multilinear Conditioning
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Conditional adaptation of distributions over representation & prediction

T⊗ (f, g) = f ⊗ g (3)

T� (f, g) =
1√
d

(Rff)� (Rgg) (4)

T (h) =

{
T⊗ (f, g) if df × dg 6 4096

T� (f, g) otherwise
(5)

CDAN: Entropy Conditioning
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CDAN: Generalization Error Bound

The probabilistic bound of the target risk εQ(G ) of hypothesis G is
given by the source risk εP(G ) plus the distribution discrepancy:

εQ (G ) 6 εP (G )+[εP (G ∗) + εQ (G ∗)]+ |εP (G ,G ∗)− εQ (G ,G ∗)| . (7)

The distribution discrepancy |εP (G ,G ∗)− εQ (G ,G ∗)| is bounded by
|εP (G ,G ∗)− εQ (G ,G ∗)| 6

∣∣E(f,g)∼PG
[g 6= G ∗ (f)]− E(f,g)∼QG

[g 6= G ∗ (f)]
∣∣

6 sup
G ∗∈H

∣∣E(f,g)∼PG
[|g − G ∗ (f)| 6= 0]− E(f,g)∼QG

[|g − G ∗ (f)| 6= 0]
∣∣

6 sup
δ∈∆

∣∣E(f,g)∼PG
[δ (f, g) 6= 0]− E(f,g)∼QG

[δ (f, g) 6= 0]
∣∣

6 sup
D∈HD

∣∣E(f,g)∼PG
[D (f, g) 6= 0]− E(f,g)∼QG

[D (f, g) 6= 0]
∣∣ ,

(8)

i.e., the distribution discrepancy is bounded by domain discriminator.

Experimental Results

Table: Accuracy (%) on Office-31 for Unsupervised Domain Adaptation

Method A → W D → W W → D A → D D → A W → A Avg

AlexNet 61.6±0.5 95.4±0.3 99.0±0.2 63.8±0.5 51.1±0.6 49.8±0.4 70.1

DANN 73.0±0.5 96.4±0.3 99.2±0.3 72.3±0.3 53.4±0.4 51.2±0.5 74.3

JAN 74.9±0.3 96.6±0.2 99.5±0.2 71.8±0.2 58.3±0.3 55.0±0.4 76.0

CDAN 77.9±0.3 96.9±0.2 100.0±.0 75.1±0.2 54.5±0.3 57.5±0.4 77.0

CDAN+E 78.3±0.2 97.2±0.1 100.0±.0 76.3±0.1 57.3±0.2 57.3±0.3 77.7

ResNet-50 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1

DANN 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2

JAN 85.4±0.3 97.4±0.2 99.8±0.2 84.7±0.3 68.6±0.3 70.0±0.4 84.3

CDAN 93.1±0.2 98.2±0.2 100.0±.0 89.8±0.3 70.1±0.4 68.0±0.4 86.6

CDAN+E 94.1±0.1 98.6±0.1 100.0±.0 92.9±0.2 71.0±0.3 69.3±0.3 87.7

Table: Accuracy (%) on Office-Home for Unsupervised Domain Adaptation
Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

AlexNet 26.4 32.6 41.3 22.1 41.7 42.1 20.5 20.3 51.1 31.0 27.9 54.9 34.3
DANN 36.4 45.2 54.7 35.2 51.8 55.1 31.6 39.7 59.3 45.7 46.4 65.9 47.3
JAN 35.5 46.1 57.7 36.4 53.3 54.5 33.4 40.3 60.1 45.9 47.4 67.9 48.2

CDAN 36.2 47.3 58.6 37.3 54.4 58.3 33.2 43.9 62.1 48.2 48.1 70.7 49.9
CDAN+E 38.1 50.3 60.3 39.7 56.4 57.8 35.5 43.1 63.2 48.4 48.5 71.1 51.0
ResNet-50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DANN 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3

CDAN 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8
CDAN+E 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
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Figure: Analysis of conditioning strategies, distribution discrepancy, and convergence.
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