
HelmFluid: Learning Helmholtz Dynamics for Interpretable Fluid Prediction

Lanxiang Xing * 1 Haixu Wu * 1 Yuezhou Ma 1 Jianmin Wang 1 Mingsheng Long 1

Abstract
Fluid prediction is a long-standing challenge due
to the intrinsic high-dimensional non-linear dy-
namics. Previous methods usually utilize the non-
linear modeling capability of deep models to di-
rectly estimate velocity fields for future prediction.
However, skipping over inherent physical proper-
ties but directly learning superficial velocity fields
will overwhelm the model from generating pre-
cise or physics-reliable results. In this paper, we
propose the HelmFluid toward an accurate and
interpretable predictor for fluid. Inspired by the
Helmholtz theorem, we design a HelmDynamics
block to learn Helmholtz dynamics, which decom-
poses fluid dynamics into more solvable curl-free
and divergence-free parts, physically correspond-
ing to potential and stream functions of fluid. By
embedding the HelmDynamics block into a Multi-
scale Multihead Integral Architecture, HelmFluid
can integrate learned Helmholtz dynamics along
temporal dimension in multiple spatial scales to
yield future fluid. Compared with previous veloc-
ity estimating methods, HelmFluid is faithfully de-
rived from Helmholtz theorem and ravels out com-
plex fluid dynamics with physically interpretable
evidence. Experimentally, HelmFluid achieves
consistent state-of-the-art in both numerical simu-
lated and real-world observed benchmarks, even
for scenarios with complex boundaries. Code is
available at https://github.com/thuml/HelmFluid.

1. Introduction
Fluid is one of the basic substances in the physical world. Its
prediction is of immense importance in extensive real-world
applications, such as atmospheric prediction for weather
forecasting and airflow modeling for airfoil design, which
has attracted significant attention from both science and
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engineering areas. However, it is quite challenging to cap-
ture and predict the intricate high-dimensional non-linear
dynamics within the fluid due to imperfect observations,
coupled multiscale interactions, etc. In this paper, we focus
on a more practical scenario that predicts future states of
fluid from partially observed physical quantities.

Recently, deep models have achieved impressive progress
in solving complex physical systems (Karniadakis et al.,
2021; Wang et al., 2023). One paradigm is learning neural
operators to directly predict the future fluid field based on
past observations (Lu et al., 2021a; Li et al., 2021; Wu et al.,
2023). These methods focus on leveraging the non-linear
modeling capacity of deep models to approximate complex
mappings between past and future fluids. However, directly
learning neural operators may fail to generate interpretable
evidence for prediction results and incur uncontrolled errors.
Another mainstreaming paradigm attempts to estimate the
dynamic fields of fluid with deep models for future predic-
tion. It is notable that the superficial dynamics are actually
driven by underlying physical rules. Directly estimating
the velocity fields regarding less physical properties may
overwhelm the model from generating precise and plausible
prediction results (Sun et al., 2018; Zhang et al., 2022). As
shown in Figure 1, it is hard to directly capture the complex
dynamics of fluid, where the learned dynamics will be too
tanglesome to guide the fluid prediction.

To tackle the above challenges, we attempt to capture the
intricate dynamics with physical insights for accurate and
interpretable fluid prediction. In this paper, we dive into the
physical properties of fluid and propose the Helmholtz dy-
namics as a new paradigm to represent fluid dynamics. Con-
cretely, Helmholtz dynamics is inspired by the Helmholtz
theorem (Bladel, 1959) and attributes the intricate dynamics
to the potential and stream functions of fluid, which are
intrinsic physical quantities of fluid and can directly derive
the curl-free and divergence-free parts of fluid respectively.
Compared with superficial velocity fields, our proposed
Helmholtz dynamics decompose the intricate dynamics into
more solvable components, thereby easing the dynamics
learning process of deep models. Besides, this new dynam-
ics requires the model to learn the inherent properties of
fluid explicitly, which also empowers the prediction with
endogenetic physical interpretability.
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Figure 1. Comparison on dynamics and fluid modeling. Different from the numerical method (Ruzanski et al., 2011) and optical-flow-
based deep model (Sun et al., 2018), HelmFluid infers the dynamics from the inherent physics quantities: potential and stream functions.

Based on the above ideas, we present the HelmFluid model
with novel HelmDynamics blocks to capture the Helmholtz
dynamics for interpretable fluid prediction. HelmDynamics
is faithfully implemented from the Helmholtz decomposi-
tion, which can separately estimate the potential and stream
functions of fluid from learned spatiotemporal correlations
and further derive curl-free and divergence-free velocities.
As a flexible module, HelmDynamics can conveniently en-
code boundary conditions into the correlation calculation
process and adapt to complex boundary settings in multifar-
ious real-world applications. Further, we design the Multi-
scale Multihead Integral Architecture in HelmFluid to fit the
multiscale nature of fluid, which can integrate Helmholtz
dynamics learned by HelmDynamics blocks along temporal
dimension in multiple spatial scales to predict the future
fluid. Experimentally, HelmFluid achieves consistent state-
of-the-art in various scenarios, covering both synthetic and
real-world benchmarks with complex boundary settings.
Our contributions are summarized in the following:

• Inspired by the Helmholtz theorem, we propose the
Helmholtz dynamics to attribute intricate dynamics into
inherent properties of fluid, which decomposes intri-
cate dynamics into more solvable parts and empowers
the prediction process with physical interpretability.

• We propose HelmFluid with the HelmDynamics block
to capture Helmholtz dynamics. By integrating learned
dynamics along temporal dimension with the Multi-
scale Multihead Integral Architecture, HelmFluid can
predict future fluid with physically plausible evidence.

• HelmFluid achieves consistent state-of-the-art in ex-
tensive benchmarks, covering both synthetic and real-
world datasets, as well as various boundary conditions.

2. Related Work
As a foundation problem in science and engineering ar-
eas, fluid prediction has been widely explored. Traditional
methods can solve Navier-Stokes equations with numerical
algorithms, while they may fail in the real-world fluid due to
imperfect observations of initial conditions and inaccurate
estimation of equation parameters. Besides, these numerical

methods also suffer from huge computation cost. Recently,
owing to the great non-linear modeling capacity, data-driven
deep models for fluid prediction have attached substantial
interests, which can be roughly categorized into the follow-
ing paradigms according to whether learning velocity fields
explicitly or not.

Neural fluid simulator This paradigm of works attempts
to directly generate future fluid with deep models. One di-
rection is formulating partial differential equations (PDEs)
along with initial and boundary conditions as loss function
terms, and parameterizing the solution as a deep model
(Evans, 2010; Raissi et al., 2019; 2020; Lu et al., 2021b).
These approaches rely highly on exact physics equations,
thereby suffering from imperfect observations and inherent
randomness in real-world applications. Another branch of
methods does not require the exact formulation of governing
PDEs. They attempt to learn neural operators to approx-
imate complex input-output mappings in scientific tasks,
which enables the prediction of future fluid solely based
on past observations. For example, (Lu et al., 2021a) pro-
posed DeepONet in a branch-trunk framework with proven
universal approximation capability. FNO (Li et al., 2021)
approximates the integral operator through a linear transfor-
mation in the Fourier domain. Afterward, U-NO (Rahman
et al., 2023) enhances FNO with a multi-scale framework.
Later, Wu et al. (2023) proposed latent spectral models
(LSM) to solve high-dimensional PDEs in the latent space
by learning multiple basis operators. Still, these methods
may fail to provide interpretable evidence for prediction re-
sults, such as intuitive physics quantities or visible velocity
fields. Going beyond the above-mentioned methods, we
propose HelmFluid as a purely data-driven model but with
special designs to enhance physical interpretability.

Fluid dynamics modeling Estimating velocity fields is
a direct and intuitive way of predicting the future fluid.
Typically, optical flow (Horn & Schunck, 1981) is proposed
to describe the motion between two successive observations.
Recently, many deep models have been proposed to estimate
optical flow, such as PWC-Net (Sun et al., 2018) and RAFT
(Teed & Deng, 2020). However, since the optical flow was
originally designed for rigid bodies, it struggles seriously in
capturing fluid motion and will bring serious accumulation
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errors in the prediction process. Especially for fluid, Zhang
et al. incorporated physical constraints from Navier-Stokes
equations to refine the velocity field predicted by PWC-
Net (Sun et al., 2018) and further embedded the advection-
diffusion equation into the deep model to predict the future
fluid. Recently, Vortex (Deng et al., 2023) ensembles the
observable Eulerian flow and the hidden Lagrangian vortical
evolution to capture the intricate dynamics within the fluid.
Unlike previous works, we propose to learn the inherent
physical quantities of Helmholtz dynamics that explicitly
derive the velocity fields, and further predict the future fluid
with the Runge–Kutta temporal integral. This decomposes
the intricate dynamics into more solvable components and
facilitates our model with physical interpretability.

Computer graphics for fluid simulation Solving Navier-
Stokes equations with learning-based computer graphics
methods often uses a stream function paradigm to enforce
the incompressibility condition (Ando et al., 2015). Kim
et al. successfully synthesized plausible and divergence-free
2D and 3D fluid velocities from a set of reduced parameters
but requiring ground truth velocity supervision, a rarity in
real-world data. Recently, Liu et al. estimated the under-
lying physics of advection-diffusion equations, incorporat-
ing ground truth velocity and diffusion tensors supervision.
Franz et al. simulated a realistic 3D density and velocity se-
quence from single-view sequences without 3D supervision,
but it is not designed for predictive tasks as it utilizes future
information to calculate current density. Unlike previous
methods, our method learns the velocity field end-to-end
from physical quantities observed in the past via Helmholtz
dynamics, relying neither on ground truth velocity supervi-
sion nor on stream function. Such an unsupervised paradigm
enables our model to capture more intricate fluid dynamics
and extends its capability to a broader range of scenarios.

3. HelmFluid
In this paper, we highlight the key components of fluid pre-
diction as providing physical interpretability and handling
intricate dynamics. To achieve these objectives, we present
the HelmFluid model with HelmDynamics blocks to capture
the Helmholtz dynamics for 2D fluid, which is inspired by
the Helmholtz theorem and attributes superficial complex
dynamics to the inherent properties of fluid. Further, we
design the Multiscale Multihead Integral Architecture to in-
tegrate the learned dynamics along the temporal dimension
in multiple scales to predict the future states of fluid.

3.1. Learning Helmholtz Dynamics

Learning intricate velocity fluid directly from data may over-
whelm the model. Hence, we propose to learn Helmholtz
dynamics via a HelmDynamics block, which is a faithful im-
plementation of the the Helmholtz theorem that decomposes

complex fluid dynamics into more solvable components.

Helmholtz decomposition theorem Helmholtz decompo-
sition (Bladel, 1959) plays an important role in simulating
fluid dynamics, which can decompose a dynamic field into
a curl-free component and a divergence-free component for
simplification, and is highly related to the solvability theory
of Navier-Stokes equations (Faith A., 2013).

Given a 3D dynamic field F : V → R3 with a bounded
domain V ⊆ R3, we can obtain the following decomposition
based on the Helmholtz theorem:

F(r) = ∇Φ(r) +∇×A(r), r ∈ V. (1)

It is notable that Φ : V → R denotes the potential function,
which is a scalar field with its gradient field ∇Φ representing
the curl-free part of F guaranteed by ∇× (∇Φ) = 0. And
A : V → R3 denotes the stream function, which is a vector
field with ∇×A represents the divergence-free part of F
guaranteed by ∇(∇×A) = 0, thereby also indicating the
incompressibility of the flow field.

Helmholtz dynamics for 2D fluid Following mainstream
works and conventional settings (Li et al., 2021), and for con-
ciseness of presentation, this paper presents the HelmFluid
model on 2D fluid prediction. We project the Helmholtz
theorem into 2D space by restricting the z-axis component
of F to 0, i.e. F(r) = (Fx(r) ,Fy(r), 0)

T. This restriction
also vanishes the components of the stream function along
x-axis and y-axis, namely A(r) = ((0, 0,Az(r))

T, indicat-
ing that the stream function degenerates to a scalar field.
Generalizations and experiments on more practical 3D fluid
prediction are included in Appendix A.

According to the Helmholtz decomposition theorem (Eq. 1),
the fluid dynamics can be equivalently decomposed into
curl-free and divergence-free parts for simplification. Thus,
we define Helmholtz dynamics FHelm(Φ,A) explicitly as
the function of potential and stream functions, which are
inherent physics quantities of fluid. Concretely, for a 2D
fluid defined in the domain V ⊆ R2, its Helmholtz dynamics
FHelm can be formalized by potential function Φ : V → R
and stream function A : V → R of fluid as follows:

FHelm(Φ,A) = ∇Φ+∇×A

=

(
∂Φ

∂x
,
∂Φ

∂y

)
︸ ︷︷ ︸
Curl-free Velocity

+

(
∂A

∂y
,−∂A

∂x

)
︸ ︷︷ ︸

Divergence-free Velocity

. (2)

According to the Helmholtz theorem (Eq. 1), the function
value of FHelm is equivalent to the real dynamic field F but
is more tractable. By incorporating Φ and A, Helmholtz
dynamics naturally decomposes the intricate fluid into more
solvable components and ravels out the complex dynam-
ics into intrinsic physics quantities, thus benefiting more
interpretable dynamics modeling (Bhatia et al., 2013).
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Figure 2. HelmDynamics block, which learns spatiotemporal correlations c(r) both in the domain and on the boundary to estimate
potential and stream functions of fluid from past observations for composing the Helmholtz dynamics.

HelmDynamics block To learn the Helmholtz dynamics,
we propose the HelmDynamics block to estimate the po-
tential and stream functions from past observations. As
shown in Figure 2, we first embed input observations into
two successive deep representations to keep the temporal
dynamics information explicitly. Given a sequence of T
frames x = [x1, · · · ,xT ],xi ∈ RH×W successively ob-
served from 2D fluid, this process can be written as

x̂T−1 = Embed
(
x(T−τ):(T−1)

)
x̂T = Embed

(
x(T−τ+1):T

)
,

(3)

where x̂T−1, x̂T ∈ Rdmodel×H×W are the feature tensors at
timestamps T − 1 and T respectively. Here, we embed
the observations from a τ lookback window to capture the
spatiotemporal information, which is to project the tempo-
ral dimension τ to the channel dimension dmodel by two
convolutional layers with an in-between activation function.

Next, following the convention in dynamics modeling (Sun
et al., 2018; Teed & Deng, 2020), we adopt spatiotemporal
correlations between fluid at the previous timestamp and the
current timestamp to represent the dynamics information.
Especially as physics quantities of fluid are highly affected
by boundary conditions, we go beyond previous approaches
and propose to further include boundary conditions S when
calculating the spatiotemporal correlations:

c(r) = Concat

([
x̂T (r) · x̂T−1(r

′)
]
r′∈Nr

,

[
1S(r

′) (x̂T (r) · x̂T−1(r
′))

]
r′∈Nr

)
, r ∈ V

(4)

where · denotes the inner-product operation and Nr denotes
the neighbors around position r. 1S(·) denotes the indicator
function, whose value is 1 when r′ ∈ S and 0 otherwise.
c(r) ∈ R2|Nr| represents the correlation map between the
current fluid at r and its |Nr| neighbors in the previous fluid,
with additional consideration on the boundary conditions
S. Thus, we obtain the extracted dynamics information c ∈
R2|Nr|×H×W . Subsequently, we can decode the potential
and stream functions from the dynamics information and

Divergence-free Velocity

+

Velocity
Field

Stream function AA

∇∇ΦΦ

∇ × A∇ × A

Curl-free VelocityPotential function ΦΦ

Figure 3. Transform potential and stream functions to velocity.

calculate the Helmholtz dynamics as follows:

Φ̂ = DecoderΦ (c) , Â = DecoderA (c) ,

F̂Helm = ∇Φ̂ +∇× Â,
(5)

where Φ̂, Â ∈ RH×W and F̂Helm ∈ R2×H×W represents
the learned 2D fields of curl-free velocity, divergence-free
velocity, and combined velocity respectively (Figure 3).
DecoderΦ and DecoderA are learnable deep layers instan-
tiated as two convolutional layers with an in-between acti-
vation function. We summarize the above process as

F̂Helm = HelmDynamics(x̂(T−1), x̂T ). (6)

Note that we follow the standard practice in RAFT (Teed
& Deng, 2020) and learn the fluid dynamics information
from spatiotemporal correlations c. However, rather than
directly learning the velocity field from c(r) as in RAFT, we
compose it from the learned potential and stream functions.
Experimentally, this allows us to learn a more reasonable
velocity field and enhances the accuracy of fluid prediction.

3.2. Multiscale Multihead Integral Architecture

After tackling intricate dynamics with the HelmDynamics
blocks, we further present the Multiscale Multihead Integral
Architecture to fuse learned dynamics along the temporal
dimension for predicting future fluid, consisting of a multi-
head integral block and a multiscale modeling framework.
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Figure 4. HelmFluid architecture (left part), which employs Runge-Kutta with BFECC (Kim et al., 2005) as a TempoIntegral Block to
integrate the learned Helmholtz dynamics along the temporal dimension (right part) at multiple scales with multiheads to generate future
fluid field. Especially, a residual connection across different scales is utilized to ensure the consistency of learned multiscale dynamics.

Multihead dynamics To predict the complex dynamics in
fluid, we propose a multihead design for temporal integral,
which is widely used in the attention mechanism to augment
nonlinear capacity of deep models (Vaswani et al., 2017).
The multihead design enables the model to capture different
dynamic patterns via multiple Helmholtz dynamics F̂Helm,i

learned within different heads. As shown in Figure 4, given
the deep representations x̂(T−1), x̂T ∈ Rdmodel×H×W of two
successive frames of fluid, we first split them into multiple
heads along the channel dimension, with each head i as
x̂(T−1),i, x̂T,i ∈ R

dmodel
M ×H×W , i ∈ {1, · · · ,M}, where M

is the number of heads. Then we compute the Helmholtz
dynamics from the deep representations for each head i:

F̂Helm,i = HelmDynamics(x̂(T−1),i, x̂T,i), (7)

where F̂Helm,i ∈ R2×H×W , i = 1, · · · ,M .

Multiscale modeling It is known in physics that the fluid
exhibits different properties at different scales. These multi-
scale dynamics entangle with each other, making the fluid
extremely intractable. Thus, we adopt a multiscale modeling
framework to enhance dynamics modeling.

Given input embeddings x̂(T−1), x̂T ∈ Rdmodel×H×W , we
adopt a multiscale encoder to obtain deep representations
in L scales: x̂l

(T−1), x̂
l
T ∈ Rdl

model×⌊ H

2(l−1)
⌋×⌊ W

2(l−1)
⌋
, l ∈

{1, · · · , L}. As the dynamics at larger scales are less af-
fected by noise and more capable of giving a reliable back-
ground velocity field for the smaller scales, we ensemble
the learned dynamics from coarse to fine to ease the mul-
tiscale dynamics modeling process. As shown in Figure 4,
we obtain the velocity field v̂l

i at the l-th scale by

v̂l
i =

{
F̂l

Helm,i, l = L

F̂l
Helm,i +Upsample(v̂l+1

i ), 1 ≤ l < L
(8)

where v̂l
i ∈ R2×H×W , and Upsample(·) is the bilinear

interpolation to keep resolution compatible. We incorporate
the idea of residual learning for multiscale dynamics to align
the velocity values. This ensures the consistency of velocity
field at the fine scale with that at the coarse scale.

TempoIntegral block To predict the future fluid field, we
integrate the feature space along the temporal dimension.
Concretely, for scale l ∈ 1, 2, ..., L and head i ∈ 1, 2, ...,M ,
we integrate the deep representation x̂l

T,i by its correspond-
ing velocity field v̂l

i. As shown in Figure 4, for a position r,
we take the second-order Runge-Kutta method (DeVries &
Wolf, 1994) as the numerical integral method to estimate its
position in the future dt time: rli

′ = r+ v̂l
i(r+ v̂l

i(r)
dt
2 )dt.

This equation can directly deduce the next step representa-
tion by moving the pixel at r to r′. Following the convention
in temporal integral, we adopt the back-and-forth error com-
pensation and correction (BFECC, (Kim et al., 2005)) for
better position mapping, which enhances the Runge-Kutta
with an ensemble of bidirectional integral. Since the mapped
coordinates rli

′ may not be integer positions on regular grids,
we further use bilinear interpolation to yield representations
on regular grids. We summarize the whole temporal integral
process for each head i at each scale l as

x̂l
(T+1),i = Interpolate

(
BFECC

(
x̂l
T,i, v̂

l
i

))
x̂l
(T+1) = Concat

([
x̂l
(T+1),i

]
i=1,··· ,M

)
.

(9)

Eventually, we progressively aggregate the predicted con-
text features from large to small scales and obtain the final
prediction of the fluid field with a projection layer. More
details of the model architecture including implementation
of the BFECC method are deferred to Appendix B.2.

4. Experiments
We extensively evaluate HelmFluid on five benchmarks, in-
cluding both simulated and real-world observed scenarios,
covering known and unknown boundary settings (see Fig-
ure 5). Extensions to 3D fluid are included in Appendix
A. Descriptions of datasets, baselines, and implementation
details are listed in Appendix B.

Baselines We compare HelmFluid with nine competitive
baselines, including one numerical method DARTS (Ruzan-
ski et al., 2011), four neural fluid simulators: LSM (Wu
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Sea Temperature

(b) Real World Data(a) Simulated Data

Spreading Ink Navier-Stokes Bounded N-S ERA5 Z500

BENCHMARK BOUNDARY LENGTH

NAVIER-STOKES UNKNOWN 10
BOUNDED N-S KNOWN 10

ERA5 Z500 KNOWN 10
SEA TEMPERATURE UNKNOWN 10

SPREADING INK KNOWN 46-63

Figure 5. Summary of five experiment benchmarks, including (a) simulated and (b) real-world data.

Table 1. Performance comparison on the Navier-Stokes dataset under different resolutions. Relative L2 is recorded. For clarity, the best
result is in bold and the second best is underlined. The relative promotion is calculated between the best and second-best models, that is
1− The best error

The second best error . The timewise error curve is recorded from the 64× 64 settings.

MODEL 64× 64 128× 128 256× 256

DARTS (RUZANSKI ET AL., 2011) 0.8046 0.7002 0.7904
U-NET (RONNEBERGER ET AL., 2015) 0.1982 0.1589 0.2953
FNO (LI ET AL., 2021) 0.1556 0.1028 0.1645
MWT (GUPTA ET AL., 2021) 0.1586 0.0841 0.1390
U-NO (RAHMAN ET AL., 2023) 0.1435 0.0913 0.1392
LSM (WU ET AL., 2023) 0.1535 0.0961 0.1973

HELMFLUID (OURS) 0.1261 0.0807 0.1310
PROMOTION 12.1% 4.0% 5.8% * + , - . / 0 1 2 *)
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et al., 2023), U-NO (Rahman et al., 2023), WMT (Gupta
et al., 2021), FNO (Li et al., 2021), two fluid-dynamics-
modeling solutions: Vortex (Deng et al., 2023), PWC-Net
with fluid Refinement (Zhang et al., 2022), one vision back-
bone widely-used in fluid modeling: U-Net (Ronneberger
et al., 2015), and one model specialized for weather fore-
casting: FourcastNet (Pathak et al., 2022). Here, LSM
and U-NO are previous state-of-the-art models in fluid pre-
diction. Note that due to the inconsistent settings in fluid
prediction, some of the baselines are not suitable for all
benchmarks. Thus, in the main text, we only provide com-
parisons to baselines on their official benchmarks. But to
ensure transparency, we also provide the complete results
for other baselines in Table 21.

4.1. Simulated Data

Navier-Stokes with unknown boundary This dataset
is simulated from a viscous, incompressible fluid field on
a two-dimensional unit torus, which obeys Navier-Stokes
equations (Li et al., 2021). The task is to predict the future
10 steps based on the past 10 observations.

As presented in Table 1, HelmFluid significantly surpasses
other models, demonstrating its advancement in fluid predic-
tion. In comparison with the second-best model, HelmFluid
achieves 12.1% relative error reduction (0.1261 vs. 0.1435)
in the 64 × 64 resolution setting and achieves consistent
state-of-the-art in all time steps. Besides, HelmFluid per-
forms best for the inputs under various resolutions, verifying
its capability to handle the dynamics at different scales.

To intuitively present the model capability, we also provide

Table 2. Model performance comparison on Bounded N-S dataset.

MODEL RELATIVE L2

DARTS (RUZANSKI ET AL., 2011) 0.1820
U-NET (RONNEBERGER ET AL., 2015) 0.0846
FNO (LI ET AL., 2021) 0.1176
MWT (GUPTA ET AL., 2021) 0.1407
U-NO (RAHMAN ET AL., 2023) 0.1200
LSM (WU ET AL., 2023) 0.0737

HELMFLUID (OURS) 0.0652
PROMOTION 11.5%

several showcases in Figure 6. In comparing to U-NO and
LSM, HelmFluid precisely predicts the fluid motion, espe-
cially the twist parts, which involve complex interactions
among several groups of fluid particles. Besides, Helm-
Fluid also generates the learned velocity field for each step,
which reflects the rotation and diffusion of fluid, empow-
ering prediction with interpretable evidence. These results
demonstrate the advantages of HelmFluid in capturing com-
plex dynamics and endowing model interpretability.

Bounded N-S with known boundary This dataset simu-
lates a wide pipe scenario, where the incompressible fluid
moves from left to right, passing by several solid columns
with position and size fixed in the dataset. The goal is to
predict the future 10 steps based on past 10 observations.

HelmFluid also performs best in this challenging task and
presents a consistent advantage in all prediction steps. While
U-Net seems to be close to HelmFluid in averaged relative
L2, it fails to capture the Karmen vortex phenomenon and
results in blurry predictions (Figure 7), which will seriously
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Figure 6. Showcase comparison and learned Helmholtz dynamics on the Navier-Stokes dataset under the 64× 64 input resolution.

* + , - . / 0 1 2 *)
Ik^]b\mbhg�Lm^i

)

)')1

)'*/

K^
eZ

mbo
^�

E+

Mbf^pbl^�K^eZmbo^�E+

?GH
N&GH
FPM
ELF
A^ef?enb]
N&G^m

Ground Truth (T=10) U-Net LSMHelmFluid (Ours)

Prediction Step

Figure 7. Timewise error and showcases on Bounded N-S dataset. For clarity, we highlight and zoom in the key parts of fluid in red boxes.

Table 3. Model comparison on the ERA5 Z500 dataset.

MODELS RMSE

U-NET (RONNEBERGER ET AL., 2015) 632.94
FNO (LI ET AL., 2021) 596.80
MWT (GUPTA ET AL., 2021) 596.45
U-NO (RAHMAN ET AL., 2023) 596.84
LSM (WU ET AL., 2023) 561.27
FOURCASTNET (PATHAK ET AL., 2022) 594.49

HELMFLUID (OURS) 521.44
PROMOTION 7.1%

impede its interpretability. In contrast, HelmFluid precisely
predicts the Karmen vortex around boundaries with eidetic
texture. This result benefits from the learning paradigm
designed based on Helmholtz dynamics.

Besides, we provide the comparison of learned dynamics
among HelmFluid, DARTS (2011) and PWC-Net (2022)
in Figure 1. HelmFluid shows impressive capturing of the
dynamics accurately, even for vortices around solid columns.
This capability stems from HelmFluid’s design in learning
potential and stream functions instead of directly learning
velocities, thereby mitigating overwhelming the model by
intricate dynamics. It is notable that the numerical method
DARTS degenerates seriously in both quantitative results
(Table 2) and learned dynamics (Figure 1), which highlights
challenges in this task and the advantage of HelmFluid.

4.2. Real-world Data

ERA5 Z500 with known boundary This dataset is pro-
cessed from the fifth generation of ECMWF reanalysis

Table 4. Model comparison on the Sea Temperature dataset.

MODELS RELATIVE L2 MSE

DARTS (RUZANSKI ET AL., 2011) 0.3308 0.1094
U-NET (RONNEBERGER ET AL., 2015) 0.1735 0.0379
FNO (LI ET AL., 2021) 0.1935 0.0456
MWT (GUPTA ET AL., 2021) 0.2075 0.0506
U-NO (RAHMAN ET AL., 2023) 0.1969 0.0472
LSM (WU ET AL., 2023) 0.1759 0.0389

HELMFLUID (OURS) 0.1704 0.0368
PROMOTION 1.8% 2.9%

(ERA5) data (Hersbach et al., 2020). Following the practice
of weather forecasting, we choose the geopotential height at
500 hPa (Z500) with a resolution of 2.5◦ and a time interval
of 3 hours as our data. The goal is to predict the geopotential
height for 10 timesteps given 2 observations.

The Root Mean Square Error (RMSE) for Z500 is detailed
in Table 3, revealing that HelmFluid consistently outper-
forms all other comparative baselines. Notably, it surpasses
FourcastNet (2022), the pioneering model to leverage ERA5
reanalysis data for medium-range meteorological forecasts.
This superior performance indicates that HelmFluid is adept
at predicting real-world atmospheric fluid dynamics and has
the potential to advance weather forecasting capabilities.
More showcases can be found in Figure 22.

Sea Temperature with unknown boundary This dataset
consists of the reanalysis ocean temperature data (MDS)
provided by ECMWF. We adapted the data in four 64× 64
regions located in different oceans. The goal is to predict
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U-NetHelmFluid (Ours) LSM VortexObservations Numerical Velocity

Optical Flow

Vortex VelocityHelmFluid Velocity

Step 20
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Figure 8. Showcases of prediction results (future 20 and 40 steps) and learned velocity fields (future 40 steps) on the Spreading Ink dataset.
We also show velocity fields of the first timestep estimated by numerical method (DARTS) and deep optical flow (PWC-Net).

Table 5. Model comparison on Spreading Ink. Averaged Percep-
tual loss, Relative L2 and MSE of three sub-videos are reported.

MODELS METRICS

U-NET (RONNEBERGER ET AL., 2015) 3.596 / 0.2620 / 0.0176
FNO (LI ET AL., 2021) 4.095 / 0.2776 / 0.0198
U-NO (RAHMAN ET AL., 2023) 5.604 / 0.2971 / 0.0227
VORTEX (DENG ET AL., 2023) 3.949 / 0.2483 / 0.0161
LSM (WU ET AL., 2023) 3.760 / 0.2698 / 0.0187

HELMFLUID (OURS) 3.323 / 0.2183 / 0.0125
PROMOTION 7.6% / 12.1% / 22.3%

the temperature for the next 10 days based on 10 past days.

The results in Table 4 demonstrate that HelmFluid can han-
dle real-world data well and outperform all baselines. It is
worth noting that the test set is collected from different re-
gions with respect to the training and validation sets, which
involves the distribution shift problem. Thus, these results
also verify the generality and transferability of HelmFluid.

Spreading Ink with known boundary This benchmark
consists of three videos collected by Deng et al., involving
more than 100 successive frames respectively. Following
the experiment setting in Vortex (2023), the goal is to predict
the last 1/3 frames of the video using the first 2/3.

The quantitative results are listed in Table 5. HelmFluid still
performs well in this long-term forecasting task. In addition
to the relative L2 and MSE, it also consistently achieves the
lowest VGG perceptual loss, implying that the prediction
results of HelmFluid can maintain the realistic texture and
intuitive physics. As for showcases in Figure 8, we find
that HelmFluid can precisely capture the diffusion of ink.
Even for the future 40 frames, HelmFluid still performs well
in capturing the hollow position and surpasses numerical
methods, optical flow and Vortex, in learning the velocity.

4.3. Model analysis

Efficiency analysis To evaluate model practicability, we
also provide efficiency analysis in Figure 9. In comparison
with the second-best model U-NO, HelmFluid presents a

Table 6. Ablation on the HelmDynamics block, which includes
learning w/o HelmDynamics on the 64×64 Navier-Stokes dataset,
and learning w/o boundary conditions on Bounded N-S dataset.

DATA MODEL RELATIVE L2

NAVIER- DIRECTLY LEARNING VELOCITY 0.1412
STOKES LEARNING HELMDYNAMICS 0.1261

PROMOTION 10.7%

BOUNDED W/O BOUNDARY CONDITIONS 0.0846
N-S W/ BOUNDARY CONDITIONS 0.0652

PROMOTION 22.9%

favorable trade-off between efficiency and performance. In
particular, HelmFluid surpasses U-NO by 12.1% in relative
L2 with comparable running time. See Appendix D for full
results and comparisons under aligned model size.

Ablations To highlight advantages of learning Helmholtz
dynamics, we compare HelmFluid with its two variants: di-
rectly learning the velocity field and removing the boundary
condition design. As shown in Table 6, directly estimating
the velocity field will cause 10.7% performance drop. A
plausible reason is that deep models can be overwhelmed
by complex fluid interactions, and thus learning Helmholtz
dynamics is beneficial. Also, our design in incorporating
boundary condition is essential. Empowered by the Helm-
Dynamics block, our model can conveniently utilize the
boundary information, unleashing its potential in handling
fluid with complex boundaries. Complete quantitative and
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Figure 9. Efficiency comparison evaluated on the 64× 64 Naiver-
Stokes and 128× 128 Bounded N-S averaged from 103 iterations.
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Figure 10. Showcases of the 3D Smoke Dataset, visualization from 3D perspective and 2D horizontal slice are both provided.
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Figure 11. Tracking of the local maxima of Bounded N-S.

visual comparisons are included in Appendices C and E.

Dynamics tracking This paper is based on the Eulerian
specification of fluid. As a supplement, we also provide a
Lagrangian perspective to analyze model predictions. Tech-
nically, we locate the local maxima of fluid and keep track-
ing it in the subsequent frames. The closer the predicted
trajectory of the point is to its real counterpart, the better
tracking of the point is indicated. As shown in Figure 11,
the trajectory predicted by HelmFluid is the closest to the
ground truth, verifying the capability of HelmFluid in cap-
turing the intricate dynamics of fluid.

Generalization on boundary conditions HelmFluid in-
corporates boundary conditions as additional data for corre-
lation calculations, enhancing its predictive capabilities. To
evaluate the model’s performance under various boundary
conditions, we undertook a modification of the Bounded
Navier-Stokes dataset by altering the geometric form of the
solid columns from circular to square, thereby introducing
a distinct set of boundary conditions for testing. We tested
on three different training-testing scenarios, including zero-
shot testing on the alternative dataset, fine-tuning the model
parameters on the alternative dataset followed by testing,
and blending two distinct datasets for separate testing. All
the models are trained with the same number of epochs.

As shown in Table 7, direct zero-shot testing on a new
dataset leads to a significant degradation in model perfor-
mance. However, merely fine-tuning for 3 epochs achieved
comparable or even superior test results on the original
dataset. In the scenario of mixed training, test metrics on
both datasets improve by 2.9% and 16.7%, respectively.

Table 7. Experimental results for generalized boundary conditions,
circle denotes the original Bounded N-S dataset, while square
denotes the modified dataset. The underlined metric indicates
training performance with the test set being identical.

DATASET CIRCLE SQUARE

TRAINED ON CIRCLE 0.0731 0.1501
FINTUNED 3 EPOCHS ON CIRCLE - 0.0791
FINTUNED 100 EPOCHS ON CIRCLE - 0.0781

TRAINED ON SQUARE 0.1503 0.0855
FINTUNED 3 EPOCHS ON SQUARE 0.0710 -
FINTUNED 100 EPOCHS ON SQUARE 0.0691 -

TRAINED ON CIRCLE AND SQUARE 0.0618 0.0712

This proves the generalizability of HelmFluid in handling
various boundary conditions and demonstrates an improve-
ment as the dataset grows in size and diversity.

4.4. Extend HelmFluid to 3D Fluid

The form of Helmholtz decomposition implies its applica-
bility across arbitrarily high dimensions. To address fluid
prediction in three-dimensional scenarios, we extend the
HelmFluid model to 3D and experiment on the simulated 3D
smoke buoyancy dataset with known boundary. As shown in
Figure 10, HelmFluid generates smoke that closely matches
the shape and position of the ground truth, effectively reflect-
ing the variations in location and intensity of the smoke. See
Appendix A for details of the dataset and implementation.

5. Conclusions and Future Work
In this paper, we present the HelmFluid model towards ac-
curate and interpretable fluid prediction. Instead of directly
learning velocity fields, we propose to learn the Helmholtz
dynamics, which casts the intricate dynamics of fluid into
inherent physics quantities. With HelmDynamics blocks
and Multiscale Multiscale Integral Architecture, HelmFluid
can precisely estimate the potential and stream functions
for Helmholtz dynamics, which empowers the prediction
process with physical interpretability. HelmFluid achieves
consistent state-of-the-art on both simulated and real-world
datasets, even for scenarios with complex boundaries. In the
future, we plan to further extend HelmFluid to large-scale
datasets, such as world climate and ocean current modeling.
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A. Extend HelmFluid to 3D Fluid
Here we present the potential extension of HelmFluid to 3D fluid prediction. According to the formalization of Helmholtz
decomposition F(r) = ∇Φ(r) +∇×A(r), r ∈ V. For 2D cases in the main text, the velocity component on the z-axis
is set to be zero, thereby Ax(r) = Ay(r) = 0. By extending the HelmDynamics block to learn Φ̂ ∈ R1×D×H×W and
Â ∈ R3×D×H×W , where D is the additional depth dimension of 3D fluid, we can adapt HelmFluid to 3D fluid prediction.
Then, following the Helmholtz decomposition presented in Eq. 1, we can easily obtain the inferred 3D vector velocity field,
thereby enabling HelmFluid to achieve the velocity-aware 3D fluid prediction.

To validate the capabilities of HelmFluid on 3D fluid prediction scheme, we generated 3D smoke buoyancy dataset by
modifying the 3D solver (under MIT license) from https://github.com/BaratiLab/FactFormer/. 3D smoke buoyancy problem
is governed by the incompressible Navier-Stokes equation coupled with advection equation (Li et al., 2023):

∂u(x, t)

∂t
+ u(x, t) · ∇u(x, t) = ν∇2u(x, t)− 1

ρ
∇p(x, t) + f(x, t), x ∈ (0, L)3, t ∈ (0, T ],

∂d(x, t)

∂t
+ u(x, t) · ∇d(x, t) = 0, x ∈ (0, L)3, t ∈ (0, T ],

∇ · u(x, t) = 0, x ∈ (0, L)3, t ∈ [0, T ],

u(x, 0) = 0, d(x, 0) = d0(x), f(x, t) = [0, 0, ηd(x, t)] x ∈ (0, L)3, t ∈ (0, T ],

(10)

where L is set 32, η is the buoyancy factor. The goal is to predict the future 10 steps based on the past 10 frames. We
generated 1000 trajectories for training and 200 for testing and provided 3D showcases and 2D slices in Figure 12.
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Figure 12. Showcases of the 3D Dataset, visualization from 3D perspective and 2D horizontal slice are provided.

B. Implementation Details
B.1. Dataset

We summarize the experiment datasets in Table 8. More details can be found in the following.
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Table 8. A summary of experiment datasets. Note that the Spreading Ink dataset is different from other benchmarks, which only contains
three video sequences. We strictly follow the Vortex (Deng et al., 2023) to split the video for training, validation and test. For example, in
the training phase of video 1, we use the first 70 frames for training and the subsequent 30 frames for validation. As for the test, we use
the first 100 frames as input and predict the following 50 frames.

DATASET (INPUT, PREDICT LENGTH) (TRAINING, VALIDATION, TEST) OBSERVED STATE REYNOLD NUMBERS

NAVIER-STOKES (10,10) (1000,200,200) VORTICITY ∼ 104

BOUNDED N-S (10,10) (1000,200,200) GRAYSCALE ∼ 300
ERA5 Z500 (2,10) (20425, 2087, 4174) GEOPOTENTIAL UNKNOWN
SEA TEMPERATURE (10,10) (170249, 17758, 65286) TEMPERATURE UNKNOWN
SPREADING INK VIDEO 1 (100, 50) ONE VIDEO SEQUENCE RGB IMAGE UNKNOWN
SPREADING INK VIDEO 2 (126, 63) ONE VIDEO SEQUENCE RGB IMAGE UNKNOWN
SPREADING INK VIDEO 3 (93, 46) ONE VIDEO SEQUENCE RGB IMAGE UNKNOWN

Navier-Stokes Navier-Stokes equations describe the motion of a viscous incompressible field. In this paper, we follow (Li
et al., 2021) and generate fluid on a 2D torus with the following equation:

∂u

∂t
+ (u · ∇)u− ν∇2u = −1

ρ
∇p+ g

∇ · u = 0

∇× u(x, 0) = ω0(x), x ∈ (0, 1)2,

(11)

where u ∈ R2 represents the velocity field, p denotes the pressure, and ρ is the fluid density, which we assumed to be
constant in the incompressible fluid field. ν ∈ R+ is the kinematic viscosity representing the intrinsic nature of the fluid,
which is assumed to be constant. g ∈ R2 represents the summation of all the external forces applied on the fluid field.
Vorticity is calculated by the velocity field, ω = ∇× u. At time zero, the initial vorticity field ω0 is given. The goal is to
predict the following vorticity fields from given observations.

We randomly sampled the initial vorticity w0 on a two-dimensional unit torus from a Gaussian distribution and solved the
equation with a numerical method to obtain the future velocity field. After generating the fluid field with 256× 256 spatial
resolution and 10−4 second temporal resolution, we downsampled it to a sequence of 1 second per frame and corresponding
spatial resolution. Thus, each sequence consists of 20 frames with a total duration of 20 seconds. We fixed the viscosity
ν = 10−5 for all three sub-datasets of different resolutions. To verify the model capacity in different resolutions, we
generate three subsets ranging from 64× 64 to 256× 256 with 1000 training sequences, 200 validation sequences and 200
test sequences. The goal is to predict the future 10 steps based on the past 10 observations.

Bounded N-S In real-world applications, we usually need to handle the complex boundary conditions in fluid prediction.
Specifically, suppose a 512× 512 sized two-dimensional space with top and bottom as boundaries, with free space outside
the image. We let a randomly colored fluid flow from left to right. To test the model performance under scenarios with
complex boundaries, we randomly sampled fifteen circles of different sizes as obstacles and uniformly placed them in the
512× 512 space. Then we used Taichi (Hu et al., 2019) as a simulator engine to generate fluid within top-down boundaries
with a numerical fluid solver for the advection equation (Baukal Jr et al., 2000), and generated a sufficiently long sequence
with one initial source condition. The generated fluid field contains the Karmen vortex phenomenon (Bayındır & Namlı,
2021) with many vortices of various sizes, making this problem extremely challenging.

Towards the flow field dataset, after the colored fluid field spreads over the space from left to right, we sample frames in
the frequency of 60 steps and add the sampled frames into the dataset. To remove the noise from chromatic aberration,
we transform all the samples into grayscale. Then we downsample the image to 128 × 128 and split the long sequence
into disjoint subsequences with 20 timesteps. After randomly dividing them into train, validation, and test sets, we finally
obtained the training, validation, and test set, which contains 1000, 200, and 200 sequences, respectively. The goal is to
predict the future 10 steps based on the past 10 observations.

ERA5 Z500 We downsampled the geopotential height at 500 hPa (Z500) from the ERA5 global reanalysis data to a
resolution of 2.5◦, resulting in a grid size of 72× 144.For our experiments, we utilized data from 2013 to 2019 for training,
2020 as validation, and 2021 and 2022 as test sets, obtaining more than 20,000 sequences. To mitigate the influence of
geographic location bias on the Z500 predictions, we implemented a normalization technique by subtracting the Z500 values
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at each location from the corresponding average from 2013 to 2019. The task is to forecast the subsequent 10 frames of data,
predicated on the preceding two observations. This equates to a predictive horizon of 30 hours into the future.

Sea Temperature We downloaded 20 years of daily mean sea water potential temperature on the sea surface from the
reanalysis ocean data (MDS) provided by ECMWF. For experiments, we use cropped 64× 64 temperature data in Atlantic,
Indian, and South Pacific for training and validation, to be more exact, from 2000 to 2018 for training with 170,249
sequences and from 2019 to 2020 for validation with 17,758 sequences. Additionally, we use the sea temperature in the
North Pacific from 2000 to 2020 for testing, including 65,286 sequences. For each 64× 64 cropped area, we normalize it in
spatial and temporal dimensions to ensure the observations are in a standard distribution, which can make the task free from
the noises of sudden change and observation errors, and mainly focus on the dynamics modeling. Since there exists the
region shift between training and test sets, this benchmark not only requires the model to capture complex dynamics in
the ocean but also maintain good generality. The task is to predict the future 10 frames based on the past 10 observations,
corresponding to predicting sea surface temperature in the 10 coming days based on 10 past days’ observations.

Spreading Ink The dataset consists of three open source short videos from (Deng et al., 2023). The length of three videos
are 150, 189, and 139, respectively. Following the experiment setting in Vortex (2023), we split the training and test sets in
chronological order by the ratio of 2:1 for each video. Given all the training parts, the goal is to predict all the testing frames
at once. For example, for the first video, we need to train our model on the first 100 frames and directly adopt this model to
predict all the future 50 frames at once, namely the long-term forecasting task. Since the prediction horizon is much longer
than other tasks, this problem poses special challenges in handling accumulative errors. Also, for real fluid video datasets,
our concerns also include the model’s portrayal of motion continuity and the realism of the generated video.

B.2. Implementations

In this section, we illustrate the concrete design for incorporating boundary conditions, the aggregation operation, and
BFECC with Runge-Kutta Integral within the Multihead Multiscale Integral Architecture.

Boundary Conditions Here we detail the implementation of incorporating boundary conditions as a supplementary of
Eq. 4. For given boundary conditions S and the position r, we calculate the correlation on the intersection between boundary
S and r neighbour Nr. Concretely, we multiply the boundary mask 1S to embedded neighbour feature x̂T−1(r

′), that is,

1S(r
′) (x̂T (r) · x̂T−1(r

′)) = (x̂T (r) · 1S(r
′) (x̂T−1(r

′))) , r′ ∈ V. (12)

This will preserve the number of neighbor correlation channels, and for r′ /∈ S, the correlation values will be set to zero.

Aggregation Operation Given learned deep representations of prediction x̂l
(T+1), x̂

l+1
(T+1) at the (l + 1)-th and l-th scales,

the aggregation operation integrates information between different scales, which can be formalized as follows:

x̂l
(T+1) = Conv

(
Concat

[(
Upsample

(
x̂l+1
(T+1)

))
, x̂l

(T+1)

])
, l from (L− 1) to 1,

where we use bilinear interpolation for the operator Upsample(·).

BFECC with Runge-Kutta Integral As mentioned in the main text, the second-order Runge-Kutta method can be
expressed as RK2(r,v) = r+ v(r+ v(r)dt2 )dt, where r ∈ RH×W and v ∈ R2×H×W . Relying solely on the Runge-
Kutta method for temporal integration may result in error accumulations during advection. To address this issue, BFECC
employs a combination of forward and backward integrals, which can be formulated as follows:

r′Forth = RK2(r,v)

r′Back = RK2(r′Forth,−v)

r̃ = r+
r− r′Back

2
BFECC(r,v) = RK2(r̃,v)

(13)

For a given point r, we initially integrate with the velocity vector v to obtain r′Forth. Subsequently, we utilize r′Forth in
conjunction with −v to perform another integral, resulting in r′Back. The disparity between r and r′Back signifies the deviation
between forward and backward integrals, with half of this difference employed to correct the initial position r.
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B.3. Metrics and Standard Deviations

In all four datasets, we report the mean value of relative L2 of three repeated experiments with different random seeds as
a main metric. Experimentally, the standard deviations of relative L2 are smaller than 0.001 for Navier-Stokes, Bounded
N-S and Sea temperature and smaller than 0.003 for Spreading Ink. For scientific rigor, we keep four decimal places for
all results. For the Sea Temperature dataset, we report the MSE loss following the common practice in meteorological
forecasting. For the Spreading Ink dataset, we used VGG Perceptual Loss (Johnson et al., 2016) to measure the realism of
the generated fluids. Given n step predictions {x̂i}i=1,··· ,n and corresponding ground truth {xi}i=1,··· ,n, x̂i,xi ∈ RH×W ,
the above-mentioned metrics can be calculated as follows:

MSE =
1

n

n∑
i=1

1

H ×W
∥xi − x̂i∥22, Relative L2 Loss =

√∑n
i=1 ∥xi − x̂i∥22√∑n

i=1 ∥xi∥22
.

Specifically, for the Spreading Ink dataset and Bounded N-S dataset with prescribed boundary conditions S, we exclusively
calculate the loss function within the specified boundary and subsequently report the average. Let D denote the region inside
the container, and thus, MSE and Relative L2 can be computed as follows:

MSE =
1

n

n∑
i=1

1

|D|
∑

(j,k)∈D

(xijk − x̂ijk)
2, Relative L2 Loss =

√∑n
i=1

∑
(j,k)∈D(xijk − x̂ijk)2√∑n

i=1

∑
(j,k)∈D x2

ijk

,

where xijk represents the value at position (j, k) of i−th frame, and |D| represents the number of grid points in D.

B.4. Model and Experiment Configurations

All the experiments are implemented in PyTorch(Paszke et al., 2019), and conducted on a single NVIDIA A100 40GB GPU.
We repeat all the experiments three times with random seeds selected from 0 to 1000 and report the average results. We train
the model with Adam optimizer (Kingma & Ba, 2015) for all baselines. See Table 9 for details.

Table 9. Experiment configurations in HelmFluid for different benchmarks.

BENCHMARK LEARNING RATE BATCH SIZE

NAVIER-STOKES 5× 10−5 10
BOUNDED N-S 5× 10−5 5
ERA5 Z500 5× 10−5 5
SEA TEMPERATURE 5× 10−5 10
SPREADING INK 5× 10−5 5

In this section, we provide a detailed overview of the model configurations for HelmFluid. Given that fluid dynamics vary
across different resolutions, we augment the number of scales for larger inputs, as outlined in Table 10. For the Multihead
Multiscale Integral Architecture, we adhere to the conventional design principles of U-Net (Ronneberger et al., 2015),
incorporating downsampling, upsampling, and the aggregation of multiscale features.

Table 10. Hyperparameter configurations of HelmFluid for different resolutions.

INPUT RESOLUTIONS HYPERPARAMETERS VALUES

NUMBER OF SCALES L 3
64× 64 NUMBER OF HEADS M 4

CHANNELS OF DEEP REPRESENTATIONS {d1MODEL, · · · , dLMODEL} {64, 128, 128}
NUMBER OF NEIGHBOURS TO CALCULATE SPATIOTEMPORAL CORRELATIONS |Nr| 81

NUMBER OF SCALES L 4
128× 128 NUMBER OF HEADS M 4
256× 256 CHANNELS OF DEEP REPRESENTATIONS {d1MODEL, · · · , dLMODEL} {128, 256, 512, 512}

NUMBER OF NEIGHBOURS TO CALCULATE SPATIOTEMPORAL CORRELATIONS |Nr| 81

15



HelmFluid: Learning Helmholtz Dynamics for Interpretable Fluid Prediction

C. Ablation Study
As a supplementary analysis to the main text, we perform detailed ablations in the quantitative aspect to validate the impact
of learning HelmDynamics and accounting for boundary conditions.

C.1. HelmDynamics Block

In this subsection, we will discuss the design of HelmDynamics Block from three perspectives. First, the necessity of
learning velocity from HelmDynamics. Second, the effectiveness of potential and stream functions. Third, the usefulness of
multilevel modeling, which we mentioned above, enhances the consistency of velocity fields at different scales. We compare
the result on the 64× 64 resolution Navier-Stokes dataset and report relative L2, training time, and GPU memory.

Learning HelmDynamics or Directly Learning Velocity We provide the results in Figure 13, and compare between
learning velocity with HelmDynamics and learning velocity directly. We discover that directly learning the superficial
velocity will overwhelm the model from capturing complex fluid interactions. As presented in Table 11, without Helmholtz
dynamics, the performance decreases from 0.1261 to 0.1412, demonstrating the effectiveness of our proposed Helmholtz
dynamics. In addition, the calculation of HelmDynamics only brings marginal extra computation costs.

Velocity Learned 
from HelmDynamics  Velocity Learned Directly Error with 

HelmDynamic Block
Error without 

HelmDynamic BlockGround Truth (T=10)

Figure 13. Velocity field and error comparison between learning by HelmDynamics Block and learning directly.

Table 11. Ablations on dynamics learning in 64× 64 Navier-Stokes Dataset.

MULTIHEAD VERSION SINGLE HEAD VERSION

METRICS VELOCITY HELMDYNAMICS VELOCITY HELMDYNAMICS

RELATIVE L2 0.1412 0.1261 0.1461 0.1344

GPU MEMORY (GB) 14.86 16.30 13.02 14.41
TRAINING TIME (S / EPOCH) 72.18 80.20 48.25 61.22

Are Both Potential and Stream Functions Effective? As presented in Table 12, only learning potential function or
stream function will cause a decrease in the final performance, demonstrating the effectiveness of both components.

Table 12. Ablations on learning HelmDynamics, single potential or stream function in 64 × 64 Navier-Stokes Dataset.

METRICS HELMDYNAMICS ONLY POTENTIAL FUNCTION ONLY STREAM FUNCTION

RELATIVE L2 0.1261 0.1460 0.1305

GPU MEMORY (GB) 16.30 16.29 16.30
TRAINING TIME (S / EPOCH) 80.20 79.57 79.60

Learning HelmDynamics in Multiple Scales As presented in Eq. 8, we ensemble the learned HelmDynamics in multiple
scales. Here we also provide ablations on just employing HelmDynamics in one single scale in Table 13. We can find that
our multiscale design can facilitate the dynamics modeling.

Number of neighbors in correlation calculation A larger regional area will provide more information for spatiotemporal
correlation calculation. In this paper, we choose |Nr| as 9× 9. Here in Table 14, we also compared with 7× 7, 5× 5, and
3× 3. The model parameters are quite close for several neighbor sizes, but the best performance is obtained for 9× 9.

16



HelmFluid: Learning Helmholtz Dynamics for Interpretable Fluid Prediction

Table 13. Ablations on learning HelmDynamics in multiple or single scales.

METRICS MULTIPLE SCALES SINGLE SCALE (BOTTOM) SINGLE SCALE (TOP)

RELATIVE L2 0.1261 0.1441 0.1798

GPU MEMORY (GB) 16.30 8.80 11.68
TRAINING TIME (S / EPOCH) 80.20 30.69 45.32

Table 14. Ablations on the number of neighbors in correlation calculation.

NUMBER OF NEIGHBOURS IN CORRELATION |Nr| 3×3 5×5 7×7 9×9

PARAMETER NUMBER 9,825,421 9,848,461 9,883,021 9,929,101

RELATIVE L2 0.1337 0.1273 0.1272 0.1261

C.2. Boundary Conditions

In this subsection, we discuss the design for boundary condition in correlation calculation, compare the result on the
Bounded N-S dataset, and report relative L2, training time and GPU memory. As shown in Figure 14, while omitting
boundary conditions, the learned velocities are perpendicular to the boundary, leading to discontinuous predictions. We
present the quantitative results in Table 15, without input boundary condition, the performance drops seriously, indicating
the necessity of our design in HelmDyanmics. It is also notable that as a flexible module, it is quite convenient to incorporate
boundary conditions into the HelmDyanmics block, which is also a unique advantage of our model against others.

With Boundary Without Boundary Error with Boundary
Test L2: 0.0652

Error without Boundary
Test L2: 0.0846

Ground Truth (T=10) Ground Truth 

Figure 14. Velocity field and error comparison between learning by HelmDynamics Block and learning directly.

Table 15. Ablations on boundary conditions in the Bounded N-S dataset.

METRICS OMITTING BOUNDARY CONDITIONS USING BOUNDARY CONDITIONS

RELATIVE L2 0.0846 0.0652

GPU MEMORY (GB) 26.98 29.48
TRAINING TIME (S / EPOCH) 226.20 267.63

C.3. Multiscale Multihead Integral Architecture

We include a summary of ablations for multiscale multihead integral architecture in Table 16, including order of runge-kutta
for temporal integral, number of heads and number of scales in multiscale multihead integral architecture. We compare the
results on the Navier-Stokes dataset of 64 × 64 resolution and report relative L2, training time, and GPU memory.

Order of Runge-Kutta for temporal integral Runge-Kutta methods are widely employed for iteratively solving PDEs.
The accuracy of the results increases with a higher number of orders but at the cost of additional computation time. In
HelmFluid, the accuracy of prediction results is contingent on the precision of the velocity obtained through HelmDynamics
blocks. According to our experiments, the second-order Runge-Kutta method is already sufficient for temporal integral, while
less order leads to inaccuracies, and more order leads to about 10% more training time. Thus, we choose the second-order
Runge-Kutta for integral to trade off performance and efficiency.

Number of heads in multihead modeling Adding heads is a convention to augment model capacity (Vaswani et al.,
2017), and in fluid prediction, different heads can capture different dynamic patterns. In this paper, adding heads also means
more operations in conducting integral. We set M as 4 for a good balance of running time and performance.
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Table 16. Model performances on Navier-Stokes Dataset of 64×64 resolution with different selections for orders of Runge-Kutta, number
of neighbors in correlations, number of heads and number of scales in multiscale multihead integral architecture.

The red marked hyperparameter represents the final configuration of HelmFluid.
ORDER OF RUNGE-KUTTA 1 2 3 4

RELATIVE L2 0.1298 0.1261 0.1268 0.1278

TRAINING TIME (S / EPOCH) 80.04 81.20 88.30 90.49

NUMBER OF HEADS M 1 4 8 16

PARAMETER NUMBER 11,063,245 9,929,101 9,812,653 9,762,205

RELATIVE L2 0.1344 0.1261 0.1279 0.1249

TRAINING TIME (S / EPOCH) 59.69 81.20 120.86 171.97

NUMBER OF SCALES L 2 3 4 5

PARAMETER NUMBER 9,283,977 9,929,101 15,906,193 29,820,309

RELATIVE L2 0.1514 0.1261 0.1361 0.1330

TRAINING TIME (S / EPOCH) 64.43 81.20 99.83 120.06

Number of scales in multiscale modeling This hyperparameter is highly related to the nature of fluid. Considering both
model efficiency and fluid dynamics, we choose L as 3 for 64× 64 inputs and 4 for larger inputs.

C.4. Sensitivity to the Number of Parameters

We also add the sensitivity analysis to the number of parameters on the 64× 64 Navier-Stokes dataset in Table 17. We report
the results of changing the channels of deep representations to a half and twice the original channels. These results show
that the original configuration can achieve a favorable balance between performance of efficiency.

Table 17. Ablations on the number of parameters.

CHANNELS COMPARED TO THE OFFICIAL CONFIGURATION 1/2 1 2

RELATIVE L2 0.1380 0.1261 0.1242

GPU MEMORY (GB) 9.64 16.30 29.99
RUNNING TIME (S / EPOCH) 75.10 80.20 112.13
#PARAMETER 2,516,173 9,929,101 39,446,029

D. Additional Results
D.1. Efficiency comparision

Efficiency for different models In the main text, we presented an efficiency comparison through plots. Here, we provide
detailed quantitative results in Table 18 as a supplementary reference.

Table 18. Efficiency comparison between six deep models on Naiver-Stokes 64× 64 dataset, where we fixed the batch size to 10.

MODELS HELMFLUID U-NET FNO MWT U-NO LSM

#PARAMETER 9,929,101 17,312,650 1,188,641 7,989,593 61,157,793 19,188,033

TRAINING TIME (S / EPOCH) 80.20 46.29 18.91 90.02 103.82 44.49

RELATIVE L2 0.1261 0.1982 0.1556 0.1586 0.1435 0.1535

Align model size It’s important to note that all baseline models are reproduced using their official configurations from
their respective papers, which might lead to an unbalanced model size issue. To ensure a fair comparison, we also scale up
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the parameters of FNO and compare it with HelmFluid. Refer to Table 19 for the results. Notably, even with an increased
parameter size comparable to HelmFluid, FNO still exhibits inferior performance.

Table 19. Align model size in 64 × 64 Navier-Stokes.

RELATIVE L2 FNO FNO (ENLARGED) HELMFLUID

64× 64 NAVIER-STOKES 0.1556 0.1524 0.1261
128× 128 NAVIER-STOKES 0.1028 0.1025 0.0807
256× 256 NAVIER-STOKES 0.1645 0.1474 0.1310

BOUNDED N-S 0.1176 0.1116 0.0652

SEA TEMPERATURE 0.1935 0.1958 0.1704

VIDEO 1 0.1709 0.1872 0.1399
VIDEO 2 0.4864 0.5250 0.3565
VIDEO 3 0.1756 0.1676 0.1584

MODEL PARAMETER 1,188,641 10,633,265 9,929,101

D.2. Full Results for Spreading Ink

We reported the averaged metrics on Spreading Ink dataset. Here, we detail the metrics on three sub-datasets respectively
in Table 20. Except Relative L2 and MSE are worse than U-Net on Video3, HelmFluid consistently outperforms other
models on the other metrics. However, images generated by U-Net appear fragmented, worse than HelmFluid from a visual
perspective. Additionally, we present the showcases of three sub-datasets in Figure 25, 26 and 27.

Table 20. Model comparison on Spreading Ink for each video. Perceptual loss, Relative L2 and MSE are reported.

MODEL VIDEO1 VIDEO2 VIDEO3

U-NET (RONNEBERGER ET AL., 2015) 1.500 / 0.1544 / 0.0080 3.982 / 0.4780 / 0.0330 5.307 / 0.1535 / 0.0119
FNO (LI ET AL., 2021) 2.023 / 0.1709 / 0.0097 4.732 / 0.4864 / 0.0342 5.531 / 0.1756 / 0.0156
U-NO (RAHMAN ET AL., 2023) 4.210 / 0.1792 / 0.0106 6.204 / 0.5312 / 0.0408 6.397 / 0.1810 / 0.0166
VORTEX (DENG ET AL., 2023) 1.704 / 0.1580 / 0.0083 4.171 / 0.4150 / 0.0249 5.973 / 0.1718 / 0.0150
LSM (WU ET AL., 2023) 1.666 / 0.1592 / 0.0084 4.167 / 0.4890 / 0.0346 5.448 / 0.1611 / 0.0132

HELMFLUID (OURS) 1.464 / 0.1399 / 0.0065 3.296 / 0.3565 / 0.0184 5.208 / 0.1584 / 0.0127

D.3. Align baselines in all benchmarks

As we stated in Section 4, some of the baselines are not suitable for part of the benchmarks, specifically Vortex (Deng et al.,
2023), DARTS (Ruzanski et al., 2011), PWC-Net with fluid Refinement (Sun et al., 2018) and MWT (Gupta et al., 2021),
which means their performance will degenerate seriously or the running time is extremely slow if we stiffly apply them to all
benchmarks. Specifically, due to the special design for temporal information in Vortex, we only compare it in the Spreading
Ink dataset in the main text. As for the DARTS, since it is designed for the mass field and not applicable for videos with
RGB channels, we do not include it in the Spreading Ink dataset. Besides, PWC-Net with fluid Refinement (Zhang et al.,
2022) is proposed to learn the optical flow for fluid, which suffers from the accumulative error, making it far inferior to other
methods. Thus, we only compare PWC-Net in the learning velocity field in the main text.

However, we still provide the missing experiments in Table 21 to ensure transparency.

• Vortex (Deng et al., 2023) models multiple vortex trajectories as a function of time. Since different video sequences
have inherently different vortex trajectories, we need to re-train Vortex to fit every video sequence. However, the other
three benchmarks except Spreading Ink, have more than 1000 different video sequences. It means that we need to train
1000+ Vortex models for these benchmarks, which is unacceptable. But we still implement this experiment, where we
train one vortex model on one single video sequence and generalize it to others.

• Due to the slow movement of the spreading ink dataset, DARTS (Ruzanski et al., 2011) showed outstanding quantitative
results. However, it fails to predict the correct future in the other three datasets. Moreover, DARTS method solves the
least squares problem in the frequency domain for every case, which will bring huge computation costs. In particular,
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Table 21. Align baselines in all benchmarks, including DARTS (Ruzanski et al., 2011), adapted version of PWC-Net (Sun et al., 2018),
MWT (Gupta et al., 2021), Vortex (Deng et al., 2023). We report Relative L2 for the Navier-Stokes dataset and Bounded N-S dataset,
MSE and relative L2 for the Sea Temperature dataset, and Perceptual loss, Relative L2 and MSE for Spreading Ink.

NAVIER-STOKES BOUNDED N-S SEA TEMPERATURE SPREADING INK (VIDEO 3)

DARTS 0.8046 0.1820 0.3308 / 0.1094 4.940 / 0.1601 / 0.0130
PWC-UNET 0.1765 0.0729 0.1805 / 0.0406 5.341 / 0.1591 / 0.0128
MWT 0.1586 0.1407 0.2075 / 0.0510 1.521 / 0.1775 / 0.0160
VORTEX 8.1379 1.6259 4.9302 / 0.1796 5.973 / 0.1718 / 0.0150

HELMFLUID 0.1261 0.0652 0.1704 / 0.0368 5.208 / 0.1584 / 0.0127

the other deep methods predict the whole sequence in less than 0.1 seconds, while DARTS takes more than 10 seconds.
Also, the changes in estimated velocity are very slight with the change of time, which leads to incorrect location
estimation. And the extrapolation causes blurring in long-term prediction.

• PWC-Net (Sun et al., 2018) specifically focuses on estimating velocity between adjacent observations. Initially, we
attempted to extrapolate predictions using the estimated velocity field, but this approach resulted in severe distortion. To
harness the estimated velocity more effectively, we input both the velocity and observations into a U-Net (Ronneberger
et al., 2015), yielding improved results denoted as PWC-UNet in Table 21. Despite the enhancement provided by the
estimated velocity from PWC-Net, U-Net still falls short compared to HelmFluid.

• MWT (Gupta et al., 2021) predict the future frames based on wavelet analysis. It fails in long-term prediction. The
prediction on video 3 of Spreading Ink (Figure 15) shows that as the prediction time gets longer, the prediction image
stays at the same position and appears weird texture.

T=5 T=10 T=15 T=20 T=25

Ground 
Truth

HelmFluid

T=30 T=35 T=40 T=45

DARTS

MWT

Figure 15. Showcases of HelmFluid, DARTS, and MWT on the Spread Ink dataset .

D.4. Performance on turbulence dataset

To effectively show the model performance in handling turbulent fluid, we assess HelmFluid and other baseline models
using a turbulence dataset with dimensions of 64 × 64 (Wang et al., 2019). This dataset comprises 6000 sequences for
training, 1700 for validation, and 2100 for testing. The objective is to predict subsequent velocity fields based on preceding
observations. For optimal performance on the dataset, all models are trained with an input sequence of 25 timesteps and
evaluated over 20 timesteps. The results are presented in Table 22.
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Table 22. Performance on turbulence dataset.

TURBULENCE DATASET MSE

U-NET (RONNEBERGER ET AL., 2015) 1062.13
TF-NET (WANG ET AL., 2019) 1061.78
FNO (LI ET AL., 2021) 1187.44
U-NO (RAHMAN ET AL., 2023) 3276.09
LSM (WU ET AL., 2023) 1069.26

HELMFLUID 1042.38

E. More Showcases
As a supplement to the main text, we provide more showcases here for comparison (Figure 16-27). Videos are provided in
Supplementary Materials.

Ground Truth (T=10)

Prediction
Error

LSM U-NOHelmFluid (Ours) FNOU-Net MWT

Figure 16. Showcases of the Navier-Stokes dataset with resolution of 64× 64.

Ground Truth (T=10)

Prediction
Error

LSM U-NO FNOU-Net MWTHelmFluid (Ours)

Figure 17. Showcases of the Navier-Stokes dataset with resolution of 128× 128.
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Figure 18. Showcases of the Navier-Stokes dataset with resolution of 256× 256.
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Figure 19. Showcases of HelmFluid on Navier-Stokes dataset with resolution 64× 64 and 128× 128.
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Figure 20. Showcases of the Bounded N-S dataset.
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Figure 21. Showcases of HelmFluid on the Bounded N-S dataset.
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Figure 22. Showcases of the ERA5 Z500 dataset.
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Figure 23. Showcases of the Sea Temperature dataset.
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Figure 24. Showcases of HelmFluid on the Sea Temperature dataset.
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Figure 25. Showcases of the Spreading Ink dataset (Video 1).
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Figure 26. Showcases of the Spreading Ink dataset (Video 2).
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Figure 27. Showcases of the Spreading Ink dataset (Video 3).


