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A B S T R A C T

Multi-source domain adaptation (MSDA) aims to adapt a model trained on multiple labeled source domains
to an unlabeled target domain. Existing MSDA methods primarily focus on reducing domain gaps by aligning
the source domains with the target domain, either jointly or separately. However, these methods often distort
semantic-related features and overlook the valuable domain-related information present in diverse domains.
In this paper, we propose a novel MSDA method called Domain Knowledge Boosted Adaptation (DKBA) that
leverages domain-related information to enhance model performance. Firstly, we employ prompt learning to
embed domain-related information learned from a pretrained vision-language model into prompt embeddings.
These embeddings serve as conditional priors, allowing the classification model to adaptively embed semantic-
related features and obtain domain-invariant semantic features without excessively aligning domains. Our
proposed DKBA approach achieves state-of-the-art results on four MSDA datasets, highlighting its effectiveness
in leveraging domain knowledge for improved adaptation performance.
1. Introduction

The success of deep learning heavily relies on the assumption that
the training and test data share the same distribution [1]. However,
in practical applications, the testing data often have a different dis-
tribution from the training data, leading to significant performance
degradation. Additionally, the training data are collected from vari-
ous domains, and ignoring the distribution discrepancies within the
training data can also result in performance degradation.

The issue of domain bias has elevated the research significance of
Multi-Source Domain Adaptation (MSDA). MSDA addresses the crucial
requirement of leveraging knowledge obtained from multiple source
domains and applying it to a related yet distinct target domain, where
the data in the target domain are unlabeled. The primary objective of
MSDA is to mitigate the decrease in accuracy caused by domain shifts.
Existing methods have naturally emerged with the idea of enhancing
accuracy by reducing domain shifts across different domains. These
methods either unify all domains jointly or align each source domain
separately with the target domain. Joint domain unifying methods
aim to minimize the disparities between the target domain and the
combined source domains [2,3], while separate domain alignment
methods align the target domain with each source domain pair-wise,
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generating multiple source-specific classification outcomes for a target
sample [4,5]. Both of these domain alignment-based approaches have
demonstrated certain levels of success.

However, the process of reducing discrepancies between domains
can inadvertently result in the loss of both semantic-related and
domain-related information. These pieces of information are crucial
for the performance of the target domain. To address this challenge,
existing methods have incorporated targeted designs. Some methods
focus on preserving class discriminability while reducing domain shifts
to mitigate the loss of semantic information [6–8]. Other methods
introduce artificial priors to maintain domain relationship information
and mitigate the loss of domain-related information [2,9,10]. However,
these supplementary tasks and prior information are often devised
based on researchers’ experience, which inherently imposes certain
limitations.

In this paper, we propose Domain Knowledge Boosted Adaptation
(DKBA) for multi-source domain adaptation, as depicted in Fig. 1.
DKBA focuses on learning and leveraging domain-related information
to enhance category classification in the target domain.
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Fig. 1. We present our method using a causal graph to illustrate the underlying
framework. An image 𝑋 is generated as a result of two independent factors: (1)
emantic content 𝐼 ; and (2) Various visual elements {𝐚𝑖}𝑁𝑖=1, such as geometric shapes

and colors. The domain we aim to comprehend consists of images with specific
visual element patterns. Previous methods typically tackle domain alignment (DA) and
emantic embedding (SE) simultaneously to establish a model 𝑓 , capable of generating
n ideal domain-invariant representation for accurate image category prediction. In
ur proposed method, DKBA, we adopt a two-step approach. Firstly, we conduct a
omain knowledge embedding (DKE) procedure, where we independently learn the
omain knowledge contained in the embedding 𝑍. This procedure involves a vision-
anguage model 𝑔 and specially designed text prompts 𝐶. Subsequently, we proceed
ith a domain knowledge boosting (DKB) procedure, where we combine the learned
mbedding with the original feature extractor 𝑓 to predict the image category.

To capture domain-related information, we utilize a vision-language
VL) model. VL models establish a shared continuous space for im-
ges and text, enabling us to extract desired image information fea-
ures, specifically domain-related information, by providing appropri-
te query text. To obtain these information features, we introduce the
rompt learning method, where query text is represented as learnable
rompt embeddings. The prompt comprises three components: a learn-
ble semantic-related context, a learnable domain-related context, and
n unlearnable manually designed context (‘‘An image of [CLASS], a
DOMAIN] image’’). By employing a contrastive objective, we align
he text features of prompt embeddings with their corresponding image
eatures, effectively incorporating semantic and domain-related infor-
ation into the learnable prompts. By leveraging the domain-related

nformation, we assign pseudo-labels to images from the unlabeled
omain. Subsequently, we utilize the domain-related prompt embed-
ings as conditional priors to parameterize the classification model.
his enables the classifier to adapt to the target samples and enhance
he classification performance by leveraging the domain knowledge.

Our contributions are summarized as follows:

• We propose Domain Knowledge Boosted Adaptation (DKBA) for
multi-source domain adaptation, which effectively disentangles
the learning of domain-related information and utilizes this in-
formation to boost semantic feature learning. By doing so, DKBA
mitigates the negative impact of domain alignment on semantic
learning and significantly improves the upper limit of classifica-
tion accuracy.

• To the best of our knowledge, we are the first to leverage prompt
learning-based knowledge to enhance the classification model in
the context of multi-source domain adaptation.

• We extensively evaluate our method on four benchmark datasets.
The state-of-the-art performance further validates the effective-
ness of DKBA in multi-source domain adaptation.
2 
2. Related works

2.1. Multi-source domain adaptation

In the field of multi-source domain adaptation (MSDA), the tech-
iques for unifying domain distributions have primarily been derived

from single-source domain adaptation (SSDA) methods. SSDA methods
aim to enhance task performance by reducing domain distribution
discrepancies. This is achieved through various techniques, such as

inimizing metrics that evaluate distribution discrepancies [11,12] or
mploying adversarial learning to make the features indistinguishable
cross domains [13,14].

MSDA has given rise to two types of methods: joint domain unifying
methods [2,9,15–17] and separate domain alignment methods [4,5,18–
20]. Joint domain unifying methods explore domain unification at
various levels, including the extractor, feature, and classifier levels.
On the other hand, separate domain alignment methods address MSDA
challenges by considering the interactions between the target domain
and each source domain pairwise. For example, the Dynamic Genera-
or With Attention (DGWA) method [20] utilizes dynamic parameters

to adapt across different source and target domains. Recent studies
have investigated the complementarity between different alignment
strategies to enhance task performance [21]. However, the domain
lignment adaptation procedure can lead to a degradation of semantic-
elated information and domain-related information. To mitigate this
ssue, several information-preserving methods have been proposed [6–

8,22,23]. For instance, the Guided Discrimination and Correlation Sub-
space Learning (GDCSL) method enhances class discriminability by
optimizing class scatter metrics, aligning with our goals of robust
lass boundaries [22]. Similarly, the Domain and Class Mutual Learn-
ng (DMAL) framework categorizes features into domain-specific and

class-specific types, providing a detailed framework for feature man-
gement in adaptation scenarios [23]. Additionally, for preserving

domain-related information, approaches like [2,9,10] incorporate pre-
defined domain relationships into the learning process using graph
convolution. In contrast, our method leverages prompt learning to
obtain domain-related information and does not require predefined
prior knowledge, thereby improving the flexibility of the approach.

2.2. Prompt learning with vision language model

Prompt learning, introduced by Petroni [24], has been extensively
tudied in NLP [25] It involves prepending instructions to the input

and pre-training the language model to improve downstream task per-
formance. While manually defined prompts have been used by Petroni
t al. [24], they may not be optimal or appropriate, leading to inaccu-

rate instructions. To obtain more accurate knowledge estimation from
language models, methods have been proposed to automatically ex-
plore optimal prompts [25,26]. Recently, prompts have been integrated
into vision-language models for learning generic visual representa-
tions [27–29]. For instance, CLIP [28] achieves state-of-the-art visual
representations by pre-training a vision-language model on 400 million
mage–text pairs. Additionally, Zhou et al. [29] introduce CoOp, which

uses continuous representations to automatically learn task-relevant
rompts. In the context of domain adaptation, Ge et al. [30] designed

domain-agnostic and domain-specific prompts to address distribution
shift in unsupervised domain adaptation (UDA). Chen et al. [31] adopt
a similar prompt designing strategy for multi-source domain adapta-
tion (MSDA). However, these works directly adopt the vision-language

odel as the final classifier, which limits the ability to design the
model specifically for the target domain and may restrict performance
improvement in the target domain. In contrast, our approach utilizes
the domain knowledge provided by vision-language models to enhance

our own classifiers, allowing us to achieve better results.
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Fig. 2. An overview of our proposed DKBA. Our MSDA approach consists of two main steps: Domain Knowledge Embedding (DKE) and Domain Knowledge Boosting (DKB).
In the DKE step, we leverage prompt learning on a pretrained vision language model to embed domain-related information into prompts. This learning procedure enables the
vision language models to classify images from different domains by comparing features. In the DKB step, we concatenate the domain knowledge-containing prompts with the
features extracted by the feature extractor (FE). This allows the subsequent embedding layer (EL) to adaptively embed the concatenated features, resulting in domain-invariant
semantic features. Furthermore, we utilize the text features of the prompts to regularize the embedded features from EL. This regularization ensures semantic feature consistency
and maximizes the utility of domain knowledge in the classification process.
3. Methods

In unsupervised multi-source domain adaptation, we consider a
scenario where there are 𝑁 labeled source domains and one unlabeled
target domain, each exhibiting distinct data distributions.

Given a source domain set , the labeled images from the source
domains are represented as {(𝑋𝑠𝑖 , 𝑌 𝑠𝑗 )}||𝑗=1, where 𝑋𝑠𝑗 = {𝑥

𝑠𝑗
𝑖 }|𝑋

𝑠𝑗
|

𝑖=1

denotes the images and 𝑌 𝑠𝑗 =
{

𝑦
𝑠𝑗
𝑖

}

|𝑌 𝑠𝑗
|

𝑖=1
denotes the category labels.

Similarly, the unlabeled target images are denoted as 𝑋𝑡 = {𝑥𝑡𝑖}
|𝑋𝑡

|

𝑖=1 .
Noted that all domains share the same category set, and 𝐾 represents
the total number of classes. The objective of unsupervised multi-source
domain adaptation (MSDA) is to develop a classifier that effectively
operates on the target domain by leveraging the labeled source data
and unlabeled target data.

To mitigate the adverse effects of domain alignment and leverage
domain-related information to enhance task performance, we propose
a method called Domain Knowledge Boosted Adaptation (DKBA). The
overall framework, depicted in Fig. 2, consists of two steps: domain
knowledge embeddings and domain knowledge boosting. In this sec-
tion, we will explain the principles and technical details of these
steps.

3.1. Domain knowledge embedding

We employ CLIP [28] as our vision-language model to capture
domain-related information. CLIP [28] is trained using image–text pairs
in a contrastive manner, where each input text describes the main
content of its corresponding image. As a result, the text can effectively
serve as a prompt to represent the image information. The prompt can
be in the form of a sequence of discrete or continuous tokens, with the
continuous tokens being optimized to capture the desired information
type more effectively. This enables us to leverage the power of CLIP’s
pre-trained model to extract domain-related information and enhance
our multi-source domain adaptation framework. To capture domain-
related information, the prompt of class 𝑘 from domain 𝑑 consists of
three components: a learnable semantic-related context, a learnable
3 
domain-related context, and an unlearnable manually designed context.
The prompt can be represented as follows:

𝐜𝑑𝑘 = [𝐯]𝑘1[𝐯]2𝑘 … [𝐯]𝑘𝑀1
[𝐝]𝑑1 [𝐝]

𝑑
2 … [𝐝]𝑑𝑀2

[MD]𝑑𝑘 . (1)

Here, 𝑀1 and 𝑀2 represent the numbers of semantic-related and
domain-related context tokens, respectively. The semantic-related con-
text captures invariant category semantic information that is shared
across all domains. On the other hand, the domain-related context is
designed to capture variant image styles and is specific to each domain.
Additionally, the unlearnable manually designed context MD provides
a basic description of the corresponding image, such as ‘‘An image
of [class name of 𝑘], a [domain name of 𝑑] image.’’ This manually
designed context helps achieve a good matching result between image
and text features during the early stages of prompt optimization.

For a specific domain 𝑑, the probability that a sample belongs to
the 𝑘th category can be obtained based on its prompt {𝐜𝑑𝑘}

𝐾
𝑘=1. This

probability is calculated using the following equation:

𝑃 𝑑 (�̂�𝑖 = 𝑘 ∣ 𝐱𝑖
)

=
exp

(⟨

𝑔𝑡𝑒
(

𝐜𝑑𝑘
)

, 𝑔𝑖𝑒 (𝐱𝑖
)⟩

∕𝑇
)

∑𝐾
𝑗=1 exp

(⟨

𝑔𝑡𝑒
(

𝐜𝑑𝑗
)

, 𝑔𝑖𝑒 (𝐱𝑖
)

⟩

∕𝑇
) . (2)

Here, 𝑔𝑡𝑒 and 𝑔𝑖𝑒 correspond to the text encoder and image encoder,
respectively. The ⟨⋅, ⋅⟩ represents the cosine similarity. The temperature
parameter 𝑇 is used to control the sharpness of the probability distri-
bution. Each domain’s prompts correspond to a classification branch.
Therefore, based on the prediction probabilities, the prompts can be
optimized using a classification loss, such as cross-entropy loss. For the
prompts of a source domain 𝑠𝑗 , they can be directly optimized with
ground truth labels using the following loss function:

𝑠𝑗
𝑝𝑟𝑜 = −E𝐱∈𝑋𝑠𝑗 log𝑃 𝑠𝑗

(

�̂�
𝑠𝑗
𝑖 = 𝑦

𝑠𝑗
𝑖

)

. (3)

For the prompts of the target domain 𝑡, pseudo labels are generated
by weighting and summing the prediction results from the source
branches and the target branch. This process is represented by the
following equation:

𝑦𝑡𝑖 = ar g max
𝑘

𝑑∈𝑆∪{𝑡}
∑

𝑑
𝑤𝑑

𝑖 𝑃
𝑑 (�̂�𝑡𝑖 = 𝑘 ∣ 𝐱𝑡𝑖

)

, (4)
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Here, ∑

𝑑∈𝑆∪{𝑡} 𝑤
𝑑
𝑖 = 1. The weight of each branch is considered

at both the sample level and domain level. At the sample level, the
weight of each sample 𝑤𝑑

𝑖,𝑠𝑎𝑚 is determined by the prediction cer-
tainty, calculated as 𝑤𝑑

𝑖,𝑠𝑎𝑚 = 𝑒−𝐻(𝑃 𝑑 (𝐱𝑡𝑖 )), where 𝐻(⋅) represents the
entropy of a probability distribution. At the domain level, the weight
of each domain branch 𝑤𝑑

𝑑 𝑜𝑚 is determined by the domain similarity
with the target domain. The similarity is evaluated by calculating
the cosine similarity between the averaged domain-related prompts:
⟨

1
𝑀2

∑𝑀2
𝑖=1 𝐝

𝑑
𝑖 ,

1
𝑀2

∑𝑀2
𝑖=1 𝐝

𝑡
𝑖⟩. Based on these two levels, the weight 𝑤𝑑

𝑖 is
calculated as follows:

𝑤𝑑
𝑖 =

𝑤𝑑
𝑖,𝑠𝑎𝑚𝑤

𝑑
𝑑 𝑜𝑚

∑𝑑∈∪{𝑡}
𝑑 exp(𝑤𝑑

𝑖,𝑠𝑎𝑚𝑤
𝑑
𝑑 𝑜𝑚)

. (5)

Only samples whose maximum prediction probability is larger than a
ixed threshold 𝜏 are used to optimize the prompts of the target domain.
his optimization is done using the following loss function:

𝑡
𝑝𝑟𝑜 = −E𝐱∈𝑋𝑡 I

{

𝑑∈𝑆∪{𝑡}
∑

𝑑
𝑤𝑑

𝑖 𝑃
𝑑 (�̂�𝑡𝑖 = 𝑦𝑡𝑖 ∣ 𝐱

𝑡
𝑖
)

≥ 𝜏
}

⋅ log𝑃 𝑡 (�̂�𝑢𝑖 = 𝑦𝑡𝑖 ∣ 𝐱
𝑡
𝑖
)

.

(6)

Here, I⋅ is an indicator function. With the prompt optimization proce-
ure described above, domain knowledge is encoded in the domain-
elated prompt embeddings.

3.2. Domain knowledge boosting

After optimizing the prompts, we obtain three important compo-
ents that we utilize in tuning our classification model. These com-

ponents are: (1) Pseudo-labels of the target domain: 𝑌 𝑡 =
{

𝑦𝑡𝑖
}

|𝑌 𝑡
|

𝑖=1 ;
(2) Domain-related prompt embeddings: {𝐝𝑑}𝑑∈𝑆∪{𝑡}, where 𝐝𝑑 =
1

𝑀2

∑𝑀2
𝑖=1 𝐝

𝑑
𝑖 . Text features: {𝐳𝑑𝑘}

𝐾
𝑘=1, extracted from the prompt embed-

dings of each domain, where 𝐳𝑑𝑘 = 𝑔𝑡𝑒(𝐜𝑘𝑑 ). To leverage the domain
knowledge contained in the prompt embeddings, we adopt a data pro-
essing procedure inspired by the text encoder in CLIP. This procedure
nvolves disentangling semantic information and domain information
t the encoder input and then jointly modeling the two types of
nformation.

Firstly, we use a feature extractor with a multi-branch structure [21]
o extract semantic-related features. The feature extractor 𝑓 consists of
 shared backbone and |𝑆| + 1 feature extractor layers. Each layer is
esponsible for processing a specific set of domains, denoted as 𝑂𝑗 . The
omain set 𝑂𝑗 (where 𝑗 ≠ |𝑆|+ 1) includes the 𝑗th source domain 𝑠𝑗 and
he target domain 𝑡, represented as 𝑂𝑗 = 𝑠𝑗 , 𝑡. The domain set 𝑂|𝑆|+1 of
he (|𝑆|+ 1)t h layer contains all the domains, given by 𝑂|𝑆|+1 = 𝑆 ∪ {𝑡}.

Given an image 𝐱𝑑𝑖 from the domain 𝑑, the feature extracted from
he 𝑗th branch of the feature extractor is denoted as 𝐡𝑑 ,𝑗𝑖 = 𝑓 𝑗 (𝐱𝑑𝑖 ).

e then concatenate 𝐡𝑑 ,𝑗𝑖 with its corresponding domain prompt em-
bedding 𝐝𝑑 and pass the concatenated feature through an embedding
layer ℎ𝑗 . The embedding layer adaptively embeds the concatenated
features based on the domain knowledge contained in 𝐝𝑑 , effectively
disentangling domain-related information from the semantic-related
nformation in 𝐡𝑑 ,𝑗𝑖 .

Based on the resulting embedding feature 𝐞𝑑 ,𝑗𝑖 = ℎ𝑑 (𝐡𝑑 ,𝑗𝑖 ,𝐝𝑑 ), we ap-
ply a classification layer and utilize cross-entropy loss 𝑗

𝑐 𝑙 𝑠 as our clas-
ification loss to optimize the model. Additionally, since the domain-

related prompt 𝐝𝑑 is encoded into text features {𝐳𝑑𝑘}
𝐾
𝑘=1, we intro-

duce regularizations to ensure semantic consistency between the text
eatures and the embedding features.

To achieve this, we employ a regularization approach inspired by
LIP, where we classify 𝐞𝑑 ,𝑗𝑖 through feature comparison. This regular-

ization encourages the embedding features to align with the semantic
4 
information captured by the text features, enhancing the overall se-
mantic classification performance. Specifically, with another feature
mapping layer 𝑚𝑗 , the regularization function is defined as follows:

𝑗
𝑟𝑒𝑔 = − 1

|𝑂𝑗
|

𝑑∈𝑂𝑗
∑

𝑑
E𝐱∈𝑋𝑑 log𝑃 𝑗 (�̂�𝑑𝑖 = 𝑦𝑑𝑖

)

,

𝑗 (�̂�𝑖 = 𝑘 ∣ 𝐱𝑑𝑖
)

=
exp

(⟨

𝐳𝑑𝑘 , 𝑚𝑗
(

𝐞𝑑 ,𝑗𝑖

)⟩

∕𝑇
)

∑𝐾
𝑟=1 exp

(⟨

𝐳𝑑𝑟 , 𝑚𝑗
(

𝐞𝑑 ,𝑗𝑖

)⟩

∕𝑇
) .

(7)

To further ensure semantic consistency between domains, We min-
mize the domain distribution discrepancies by confusing a domain
iscriminator 𝐷𝑗 . The loss function to optimize the discriminator is
efined as:

𝑗
𝑑 𝑖𝑠 =

∑

𝑑∈𝑂𝑗∖𝑡
E𝐱∈𝑋𝑑

[

𝐷𝑗 (𝐡) − 0]2 + E𝐱∈𝑋𝑡
[

𝐷𝑗 (𝐡) − 1]2 . (8)

The confusing loss for the feature extractor is defined as:

𝑗
𝑐 𝑜𝑛 =

∑

𝑑∈𝑂𝑗∖𝑡
E𝐱∈𝑋𝑑

[

𝐷𝑗 (𝐡) − 1
2

]2
+ E𝐱∈𝑋𝑡

[

𝐷𝑗 (𝐡) − 1
2

]2
. (9)

Ultimately, we use the following loss function  to optimize our
classification model:

 =
|𝑆|+1
∑

𝑗=1
(𝑗

𝑐 𝑙 𝑠 + 𝑗
𝑐 𝑜𝑛 + 𝑗

𝑑 𝑖𝑠 + 𝛼𝑗
𝑟𝑒𝑔), (10)

where 𝛼 is used to control the strength of 𝑗
𝑟𝑒𝑔 .

During testing, the final prediction for a target domain sample is
calculated as the weighted average of the prediction results from each
classification branch. The calculation of the weights is similar to that
in Eq. (5), taking into account both the prediction certainty and the
domain similarity.

4. Experiment and analysis

4.1. Datasets and experimental settings

We evaluate our approach using four experimental benchmarks:
ffice-Caltech10 [32], Office-31 [33], Office-Home [34], and Domain-
et [4]. Office-Caltech10 consists of 10 categories and 4 domains

DSLR (D), Webcam (W), Amazon (A), and Caltech (C)), totaling 2533
images. Office-31 contains 31 categories and 4652 images across 3
domains (DSLR (D), Webcam (W), and Amazon (A)). Office-Home
comprises 65 categories and 4 domains (Art (A), Clipart (C), Product
(P), and Real world (R)), with 15,500 images featuring common cate-
gories such as fork and table. DomainNet includes 569,010 images of
345 categories in 6 domains (Clipart (C), Infograph (I), Painting (P),
Quickdraw (Q), Real (R), and Sketch (S)).

For these datasets, we follow the experimental settings of [2,35].
For the prompt learning, we utilize CLIP whose encoder architec-
ture is ResNet-101 [1]. Stochastic gradient descent (SGD) is utilized
for optimization of prompts, with a learning rate of 3e-3. Regarding
the classification model, we utilize a pre-trained ResNet-101 on Ima-
geNet [36] as the backbone. The feature extractor layer, embedding
layer, and mapping layer are all one-layer fully connected layers. For
model optimization, we employ SGD with a learning rate of 1e-4.
Both the number of prompt tokens, 𝑀1 and 𝑀2, are set to 16. The
temperature parameter 𝑇 in Eq. (2) and Eq. (7) is set to 1. Additionally,
the pseudo-label threshold 𝜏 in Eq. (6) is set to 0.5.

4.2. Comparisons with the state-of-the-art

In general, the compared methods can be categorized into three
groups:
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Table 1
Comparison with state-of-the-art models on Office Caltech10 dataset.

Standards Methods →D →W →A →C Avg

SC Source-only 98.3 99.0 86.1 87.8 92.8
DAN [11] 98.2 99.3 94.8 89.7 95.5

MS

DAN [11] 99.1 99.5 91.6 89.2 94.8
JAN [12] 99.4 99.4 91.8 91.2 95.5
DCTN [18] 99.0 99.4 92.7 90.2 95.3
MCD [6] 99.1 99.5 92.1 91.5 95.6
M3SDA [4] 99.2 99.5 94.5 92.2 96.4
CMSS [3] 99.3 99.6 96.6 93.7 97.2
STEM [35] 100 100 98.4 94.2 98.2
SSG [9] 100 100 99.0 94.2 98.3
MLAN [21] 100 100 99.1 94.7 98.5
DKBA(ours) 100 100 99.2 95.1 98.6

Table 2
Comparison with state-of-the-art models on Office-31 dataset.

Standards Methods →D →W →A Avg

SB

Source-only 99.0 95.3 50.2 81.5
DAN [11] 99.0 96.0 54.0 83.0
RTN [37] 99.6 96.8 51.0 82.5
ADDA [38] 99.4 95.3 54.6 83.1

SC

DAN [11] 98.8 96.2 54.9 83.3
RTN [37] 99.2 95.8 53.4 82.8
JAN [12] 99.4 95.9 54.6 83.3
ADDA [38] 99.2 96.0 55.9 83.7
MCD [6] 99.5 96.2 54.4 83.4

MS

MDAN [15] 99.2 95.4 55.2 83.3
DCTN [18] 99.6 96.9 54.9 83.8
MDDA [5] 99.2 97.1 56.2 84.2
LtC-MSDA [2] 99.6 97.2 56.9 84.6
MOST [39] 100 98.7 60.6 86.4
SSG [9] 100 99.5 71.3 90.3
MLAN [21] 99.7 99.0 76.1 91.6
DKBA(ours) 99.8 99.1 78.5 92.5

Table 3
Comparison with state-of-the-art models on Office-Home dataset.

Standards Methods →A →C →P →R Avg

SB
Source-only 65.3 49.6 79.7 75.4 67.5
DAN [11] 68.2 56.5 80.3 75.9 70.2
CORAL [40] 67.0 53.6 80.3 76.3 69.3

SC DAN [11] 68.5 59.4 79.0 82.5 72.4
CORAL [40] 68.1 58.6 79.5 82.7 72.2

MS

MFSAN [41] 72.1 62.0 80.3 81.8 74.1
SImpAl [8] 70.8 56.3 80.2 81.5 72.2
DARN [42] 70.0 68.4 82.8 83.9 76.3
SSG [9] 75.6 68.0 84.2 84.3 78.0
MLAN [21] 75.3 64.0 84.6 84.8 77.2
MPA [31] 74.8 54.9 86.2 85.7 75.4
DKBA(ours) 76.1 68.9 90.2 87.1 80.6

• Single Best (SB): The methods determine the optimal source
domain for achieving the highest performance in adapting to the
target domain.

• Source Combine (SC): The methods consider multiple source do-
mains as a single domain for adaptation.

• Multi-Source (MS): The methods utilize multiple source domains
for domain adaptation, taking into account the discrepancies
among the different source domains (see Tables 1–4).

On the Office-Caltech10 and Office-31 datasets, DKBA demonstrates
mprovement and achieves state-of-the-art performance, with average
ccuracies of 98.6% and 92.5% respectively. For Office-31 datasets,

Although our method slightly trails the SSG model in the →D and
→W tasks, with accuracies of 99.8% and 99.1% respectively, this can
be attributed to the smaller domain discrepancies in these tasks. In
such settings, the architectural nuances, such as the graph correlation
layers used by SSG, may play a more significant role in enhancing
 M
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Table 4
Comparison with state-of-the-art models on DomainNet dataset.

Standards Methods →C →I →P →Q →R →S Avg

SB

Source Only 39.6 8.2 33.9 11.8 41.6 23.1 26.4
DAN [11] 39.1 11.4 33.3 16.2 42.1 29.7 28.6
RTN [37] 35.3 10.7 31.7 13.1 40.6 26.5 26.3
JAN [12] 35.3 9.1 32.5 14.3 43.1 25.7 26.7
ADDA [38] 39.5 14.5 29.1 14.9 41.9 30.7 28,4

SC

Source Only 47.6 13.0 38.1 13.3 51.9 33.7 32.9
DAN [11] 45.4 12.8 36.2 15.3 48.6 34.0 32.1
RTN [37] 44.2 12.6 35.3 14.6 48.4 31.7 31.1
JAN [12] 40.9 11.1 35.4 12.1 45.8 32.3 29.6
ADDA [38] 47.5 11.4 36.7 14.7 49.1 33.5 32.2
MCD [6] 54.3 22.1 45.7 7.6 58.4 43.5 38.5

MS

MDAN [15] 52.4 21.3 46.9 8.6 54.9 46.5 38.4
M3SDA [4] 58.6 26.0 52.3 6.3 62.7 49.5 42.6
MDDA [5] 59.4 23.8 53.2 12.5 61.8 48.6 43.2
CMSS [3] 64.2 28.0 53.6 16.0 63.4 53.8 46.5
LtC-MSDA [2] 63.1 28.7 56.1 16.3 66.1 53.8 47.4
DAEL [43] 70.8 26.5 57.4 12.2 65.0 60.6 48.7
SSG [9] 68.7 24.8 55.7 18.4 68.8 56.3 48.8
DCTN [18] 69.6 27.5 57.3 17.8 72.5 55.3 49.8
DRT [16] 71.0 31.6 61.0 12.3 71.4 60.7 51.3
MLAN [21] 71.4 29.3 59.5 28.4 73.9 58.7 53.5
MPA [31] 65.2 47.3 62.0 10.2 82.0 57.9 54.1
DKBA(ours) 72.3 42.1 63.1 12.9 80.8 63.3 55.8

model performance. In contrast, for the →A task, which involves a
larger domain discrepancy, our method significantly outperforms SSG
by achieving an accuracy of 78.5%. This improvement highlights the
effectiveness of our approach in managing larger domain shifts, which
is critical for practical applications.

The Office-Home dataset poses a significant challenge due to its
substantial domain discrepancy, making it particularly difficult for
methods to achieve high accuracy. However, even in this challenging
cenario, KBDA maintains a clear advantage, achieving an impressive
ccuracy of 80.7%. DKBA achieves an average accuracy of 53.8% on

six transfer tasks of DomainNet, showcasing the improved performance
of STD over existing MSA methods. When compared to MPA, there is
a slight decrease in performance for the ‘→I’ and ‘→R’ tasks. These
tasks involve images that closely resemble natural scenes, which are
precisely the types of images that CLIP excels at recognizing. Conse-
quently, when the target domain primarily consists of such images,
fine-tuning the CLIP model instead of using another feature extractor
may yield superior results. In addition, for the ‘→Q’ tasks, we observed
a noticeable decrease in performance compared to MLAN. This decline
can primarily be attributed to the substantial domain gap between the
Quickdraw target domain and the other source domains. The unique
characteristics of the Quickdraw data, which consists of sketch-based
images, differ significantly from the photographic images in the source
domains. Consequently, the domain information from the source do-
mains provides limited assistance in enhancing performance on the
task. In such scenarios, alternative strategies that improve the quality
of pseudo-labels can be more effective in boosting performance. For
instance, MLAN employs a source-guided K-means clustering approach
to enhance the quality of pseudo-labels in the target domain.

In summary, our observations and conclusions are as follows: Firstly,
Source-Combine methods consistently outperform Single-Best methods,
ndicating that incorporating data from different domains can signif-
cantly enhance task performance. Secondly, Multi-Source methods
xhibit the highest performance, underscoring the importance of ad-
ressing the discrepancies among source domains. Additionally, our
xperiments included methods like Maximum Classifier Discrepancy
MCD) and SImpAl, which focus on reducing domain shifts while
reserving class discriminability. These methods underscore the im-
ortance of leveraging discriminative information from multiple do-
ains. Thirdly, methods that align domains separately, such as DCTN,
3
SDA, and MDDA, generally outperform methods that align domains
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Fig. 3. The t-SNE visualization for the embedding features from FT, FT + AL and FL + AL + DKB on the Office-Home dataset.
jointly, such as MDAN, LtC-MSDA, and DRT. Interestingly, MLAN,
which combines both alignment strategies, outperforms both indi-
vidual approaches. This could be attributed to the fact that having
more tunable parameters enhances the model’s representation ability
for specific tasks. For instance, the state-of-the-art jointly aligning
based method DRT achieves improvement primarily through additional
source-specific parameters in the backbone. Consequently, since MPA
only optimizes a limited number of parameters, its classification per-
formance is inherently limited. Finally, the state-of-the-art performance
of KBDA highlights the advantage of its domain arrangement strategy,
further emphasizing the importance of effective domain knowledge in
achieving superior results.

4.3. Domain knowledge importance evaluation

To showcase the significance of domain knowledge, we assess the
impact of different domain-related prompts on the classification per-
formance of CLIP. Our experiments are conducted on the Office-Home
dataset, and the results are presented in Table 5. For instance, consid-
ering the entry (→A, Clipart), it indicates that in the MSDA task →A,
the text features used for classifying the target domain Art are encoded
from domain related prompts from the domain Clipart. Analyzing the
results, we observe that even without ground truth labels to optimize
prompts, employing prompts corresponding to the target domain yields
significantly superior classification performance compared to using
6 
prompts from other domains. This finding underscores the importance
of domain knowledge for accurate target domain classification and
validates the rationale behind our research motivation.

4.4. Ablation study

Table 6 provides an analysis of each component of our method on
the Office-Home dataset. Firstly, ULSP refers to directly applying CLIP
with UnLearnable Semantic related Prompts (‘‘an image of [CLASS]’’)
for classification. Adding Unlearnable Domain related Prompts (ULDP,
‘‘an [DOMAIN] class’’) into ULSP does not lead to performance im-
provement. However, the performance does improve when utilizing
‘‘Learnable Semantic related and Domain related Prompts,’’ which en-
ables CLIP to generate pseudo labels of higher quality. Further perfor-
mance improvement is achieved by leveraging the pseudo labels from
the target domain and the ground truth labels from the source domains
to finetune the classification model.

Comparing the performance of finetuning with just Adversarial
Learning (AL) to our Domain Knowledge Boosting (DKB) strategy,
we observe an average improvement of 0.7%. This demonstrates the
effectiveness of DKB. To visually demonstrate the impact of DKB, we
employ t-SNE [44] to visualize the features from the (|𝑆|+ 1)th feature
extractor layer of FT, (FT + AL) and (FT + AL + DKB). Fig. 3 presents
the visualization results for the Office-Home dataset. With our knowl-
edge boosting strategy, the features of the same class exhibit a more
pronounced clustering effect, indicating improved discriminability.
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Fig. 4. Sensitivity analysis experiments of 𝜏 and 𝛼.
Table 5
Domain knowledge importance evaluation on Office-Home dataset.

→A →C →P →R

Art 75.4 68.2 65.2 71.8
Clipart 54.0 60.6 51.9 57.5
Product 76.6 77.8 88.5 85.6
Real 78.7 78.9 80.1 86.5

Table 6
Ablation study on Office-Home dataset.

Method →A →C →P →R Avg

ULSP 71.2 55.5 85.8 85.5 74.5
ULSP + ULDP 69.6 53.2 85.5 78.0 71.6
LSP + LDP 75.4 60.6 88.5 86.5 77.8
FT 75.3 67.2 89.0 86.7 79.6
FT + AL 75.6 67.9 89.6 86.9 80.0
FT + AL + DKB 76.1 68.9 90.2 87.1 80.7

4.5. Sensitivity analysis

In this section, we explore the sensitivity of two hyperparameters:
the threshold 𝜏 for selecting pseudo labels and the parameter 𝛼 that
controls the strength of text feature regularization. Fig. 4(a) and 4(b)
illustrate the sensitivity analysis conducted on the Office-Home dataset.
Fig. 4(a) shows that an optimal balance between label quality and data
volume yields the best results for the tasks, emphasizing the need for
careful selection of the threshold 𝜏 to ensure high-quality pseudo labels
and maximize data utilization. Fig. 4(b) demonstrates that using text
features for appropriate constraints improves the model’s performance.
However, excessive constraint strength can have a negative impact
on task performance, possibly due to differences in feature encoding
between CLIP’s image encoder and our feature extractor.

5. Conclusion

In this study, we introduced Domain Knowledge Boosted Adaptation
(DKBA), a novel approach to multi-source domain adaptation that effec-
tively leverages embedded domain knowledge to enhance classification
performance. By innovatively integrating a vision-language model with
prompt learning, DKBA capitalizes on the rich semantic and domain-
specific information available in diverse data sources. This method
marks a significant departure from traditional MSDA techniques, which
often fail to fully utilize domain-specific information and may lead to
semantic distortion.

The strengths of our approach are evidenced by its superior per-
formance across multiple benchmark datasets, where it consistently
outperforms existing state-of-the-art methods. By leveraging domain-
specific prompts, DKBA not only preserves but enhances semantic
7 
integrity, leading to more robust and domain-invariant feature rep-
resentations. This is particularly advantageous in complex adaptation
scenarios involving significant domain discrepancies.

The implications of our work for the field are substantial. DKBA
provides a framework that can be adapted to other domain adaptation
challenges, particularly those involving unstructured or loosely labeled
data. Our findings underscore the importance of incorporating domain
knowledge into the adaptation process, a strategy that could be bene-
ficial across various applications of machine learning. For future work,
we plan to refine our approach by incorporating category-level and
instance-level domain information. This could potentially lead to even
more tailored and precise adaptations, further improving performance.
Additionally, exploring alternative architectures and learning strategies
that could complement or enhance the prompt-learning mechanism
may yield interesting avenues for research. Finally, expanding the
applicability of our approach to other forms of data beyond images,
such as text or video, could broaden its utility and impact in the field
of domain adaptation.
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