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A B S T R A C T

Learning from multiple modalities has recently attracted increasing attention in many tasks. However, deep
learning-based multi-modal learning cannot guarantee good generalization to another target domain, because
of the presence of domain shift. Multi-modal domain adaptation (MMDA) addresses this issue by learning
a transferable model with alignment across domains. However, existing MMDA methods only focus on the
single-source scenario with just one labeled source domain. When labeled data are collected from multiple
sources with different distributions, the naive application of these single-source MMDA methods will result
in sub-optimal performance without considering the domain shift among different sources. In this paper, we
propose to study multi-source multi-modal domain adaptation (MSMMDA). There are two major challenges
in this task: modal gaps between multiple modalities (e.g., mismatched text-image pairs) and domain gaps
between multiple domains (e.g., differences in style). Therefore, we propose a novel framework, termed
Multi-source Multi-modal Contrastive Adversarial Network (M2CAN), to perform alignments across different
modalities and domains. Specifically, M2CAN consists of four main components: cross-modal contrastive feature
alignment (CMCFA) to bridge modal gaps, cross-domain contrastive feature alignment (CDCFA), cross-domain
adversarial feature alignment (CDAFA), and uncertainty-aware classifier refinement (UACR) to bridge domain
gaps. CMCFA, CDCFA, and CDAFA aim to learn domain-invariant multi-modal representations by conducting
feature-level alignments for each modality, within each domain, and on the fused representations, respectively.
UACR performs label space-level alignment by progressively selecting confident pseudo labels for the unlabeled
target samples to conduct self-learning and participate in alignment. After such feature-level and label space-
level alignments, different source and target domains are mapped into a shared multi-modal representation
space, and the task classifiers are adapted to both the source and target domains. Extensive experiments are
conducted on sentiment analysis and aesthetics assessment tasks. The results demonstrate that the proposed
M2CAN outperforms state-of-the-art methods for the MSMMDA task by 2.8% and 2.1% in average accuracy,
respectively. The code is available at https://github.com/jingjiang02/M2CAN.
. Introduction

In recent years, the evolution of web technologies has led to a
ignificant increase in the availability of multi-modal information [1].
ypically, different modalities complement each other, and this phe-
omenon has attracted research interest in integrating multi-modal
eature spaces for a more comprehensive representation of data ob-
ects [2–6]. While multi-modal methods have been explored in various
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fields over many years and have achieved commendable performance,
they still require a large amount of multi-modal labeled data. Since
the annotation of multi-modal data is computationally time-consuming,
training a model on an existing labeled source domain and then trans-
ferring the model to the desired target domain has become a highly
valuable alternative.

Due to the presence of domain shift [10], i.e., the distributions
of observed multi-modal data and labels differ between the source
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Fig. 1. Comparison of different types of domain adaptation methods to deal with the MSMMDA task: (a) unsupervised domain adaptation (UDA), (b) multi-modal domain adaptation
(MMDA), (c) multi-source domain adaptation (MSDA), and (d) multi-source multi-modal domain adaptation (MSMMDA), taking CDAN [7]+ELS [8], DsCML [3], M3SDA [9], and
the proposed M2CAN as examples, respectively.
and target domains, direct transfer cannot guarantee optimal gener-
alization, often leading to a large performance decline [10,11]. To
mitigate domain shift, domain adaptation (DA) [10,12,13] aims to train
a model on the labeled source domain that can effectively generalize
to the target domain through specific domain alignments, such as
discrepancy-based [14,15], adversarial discriminative [16,17], adver-
sarial generative [18,19], and self-supervision-based methods [20,21].

Current multi-modal DA (MMDA) methods focus solely on the
single-source unsupervised setting [2,3,22,23], which assumes that the
labeled multi-modal source data is collected from a single distribution.
However, in practice, it is more common for the labeled source data
to come from different distributions [24]. One straightforward method
is to combine different sources into one source and then directly
apply existing single-source MMDA methods. Because of the neglect of
multiple source domain gaps, such methods may lead to sub-optimal
results (see the comparison between Single-best and Source-combined
results in Fig. 1(b)).

Consequently, effective multi-source domain adaptation (MSDA)
techniques [25–34] are essential for sufficiently leveraging the discrimi-
native information from different sources. Based on different alignment
strategies, MSDA methods can be categorized into three groups: latent
space transformation [9,35,36], intermediate domain generation [37–
39], and task classifier refinement [40–42]. While these methods con-
sider data from multiple domains, they overlook the multi-modal data
scenario. Specifically, when adapted to multi-modal settings, their per-
formance tends to be unsatisfactory, primarily due to their inability to
bridge modal gaps, e.g., the heterogeneous differences among modal-
ities in the feature space [43]. Therefore, ineffective alignment of
feature representations and inadequate mining of cross-modal informa-
tion may result in interference among various modalities, causing the
model to struggle to capture precise and consistent patterns.

In this paper, we extend the single-source MMDA and single-modal
MSDA tasks to the multi-source multi-modal domain adaptation (MSM-
MDA) task. The comparison of these methods for handling multi-source
and multi-modal data is illustrated in Fig. 1. As observed, the UDA
methods either add or concatenate the features of each modality,
followed by the single-source DA process. MMDA methods either merge
the source domains into a single domain to perform source-combined
DA or apply each single-source DA process and select the best one.
2 
MSDA methods first fuse the features of each modality before pro-
ceeding with the multi-source DA process. In contrast, the proposed
MSMMDA leverages multi-source multi-modal data, facilitating knowl-
edge transfer from the source domains with multi-modal samples to the
target domain without compromise.

The MSMMDA task involves two major challenges: modal gaps
between multiple modalities and domain gaps between multiple do-
mains. Specifically, we propose a Multi-source Multi-modal Contrastive
Adversarial Network, termed M2CAN, a novel framework that performs
four alignments to alleviate the modal and domain gaps between
multiple source and target domains with multi-modal data. As illus-
trated in Fig. 2, these alignments are conducted at two levels: feature
level and label space level. (1) Cross-modal contrastive feature align-
ment (CMCFA) works on the representations within multi-modality in
each domain. To mitigate the effects of multi-modal mismatch during
adaptation, CMCFA dynamically adjusts the alignment based on the
predicted differences between the individual headers of each modality.
(2) Cross-domain contrastive feature alignment (CDCFA) works on
the representations within multi-source for each modality. (3) Cross-
domain adversarial feature alignment (CDAFA) aims to align the fused
multi-modal representations. (4) Uncertainty-aware classifier refine-
ment (UACR) conducts label space-level alignment, which adopts the
predicted differences of target samples across multiple task classifiers
and the aggregated output to select pseudo labels with high confidence.
Only the selected samples in the target domain are involved in task
classifier training and alignment to avoid negative optimization.

We conduct extensive experiments on two tasks: sentiment anal-
ysis and aesthetics assessment. For sentiment analysis, we utilize a
combined dataset consisting of three domains, i.e., TumEmo [44],
T4SA [45], and Yelp [46]. Similarly, the performance of cross-domain
aesthetics assessment is evaluated on a combined dataset with three
domains, i.e., AVA [47], PCCD [48], and RPCD [49]. The experimental
results demonstrate that M2CAN outperforms the state-of-the-art DA
methods for MSMMDA. In summary, the contributions of this paper are
threefold:

• We introduce a novel and practical DA setting, namely multi-
source multi-modal domain adaptation (MSMMDA). To the best
of our knowledge, this is the first investigation into multi-modal
domain adaptation with multiple source domains.
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Fig. 2. The framework of the proposed Multi-source Multi-modal Contrastive Adversarial Network (M2CAN). In order to reduce the modal gap and domain gap in MSMMDA, the
source and target domains are aligned on both the feature level and label space level. Feature-level alignment considers the individual features for each modality and the fused
features for multiple modalities. Label space-level alignment is based on the pseudo labels of target samples, of which only the selected highly confident ones participate in the
training procedure of the classifiers.
• We propose a novel framework, M2CAN, to perform MSMMDA
using both feature-level alignments and label space-level align-
ments to reduce the modal and domain gaps in the MSMMDA
task. M2CAN conducts three types of feature-level alignments:
CMCFA within each domain, CDCFA for each modality, and
CDAFA on the fused multi-modal representations. Additionally,
UACR selects highly confident target pseudo labels for conducting
label space-level alignment.

• We conduct extensive experiments on two benchmark datasets:
one for sentiment analysis and the other for aesthetics assess-
ment. Compared to the prior best methods, the proposed M2CAN
achieves an average accuracy improvement of 2.8% and 2.1% for
the two tasks.

The rest of this paper is structured as follows. Section 2 reviews the
work related to MSMMDA. Section 3 introduces the proposed M2CAN
in detail, including problem setup, overview, and different alignment
strategies. Section 4 presents the experimental settings, results, ablation
study, and visualization, followed by a conclusion in Section 5.

2. Related work

2.1. Multi-modal learning

Multi-modal tasks entail the processing and fusion of information
from multiple modalities [50]. Within the realms of machine learning
and artificial intelligence, these modalities typically encompass various
types of data inputs, such as text, images, audio, and video, among oth-
ers. Based on the methodology of feature fusion, two distinct strategies
are identified [4]: model-free fusion and model-based fusion..

Model-free fusion, characterized by its operation independent of
specific learning algorithms, has been extensively utilized for decades.
3 
As for the stage of fusion, multi-modal methods are generally classified
into three categories [51]: early fusion [52,53], late fusion [2,3], and
hybrid fusion [54,55] methods. Model-based fusion integrates fusion
processes directly into the construction of the models. This approach
typically employs straightforward techniques that are not specifically
tailored for multi-modal data, such as attention mechanisms [56–58].

While these multi-modal methods have delivered impressive results,
they are all supervised methods that require vast amounts of annotated
samples. Especially when a new domain (such as a new scene) appears,
it is necessary to annotate the samples of the new domain for the
model to train. Therefore, adapting the model to unlabeled samples in a
new domain, by leveraging labeled samples from other domains, would
greatly reduce the labeling cost.

2.2. Unsupervised domain adaptation

The Unsupervised Domain Adaptation (UDA) task involves transfer-
ring knowledge from the annotated source domain to the unlabeled
target domain. A typical UDA model includes two primary compo-
nents: task-specific loss functions for the labeled source domain, and
alignment loss functions between the source and target domains. UDA
methods vary in their alignment strategies, and they can be categorized
into different types [10]: discrepancy-based, adversarial discriminative,
adversarial generative, and self-supervision-based methods.

Discrepancy-based methods. These methods [14,15,59–61] pri-
marily utilize Maximum Mean Discrepancy (MMD) [62] to measure
the distance between the source and target distribution. In addi-
tion to MMD, Correlation Alignment (CORAL) [63] is also a popular
choice [64–67]. HoMM [68] enables arbitrary-order moment matching.
This approach has shown that the first-order HoMM is equivalent
to MMD and the second-order HoMM corresponds to CORAL. The
Contrastive Domain Discrepancy (CDD) [69] provides a class-aware
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approach to UDA. It focuses on minimizing the intra-class discrepancy
nd maximizing the inter-class margin. Adversarial discriminative
ethods typically utilize discriminators tasked with classifying source

nd target samples [17,70,71]. By fostering domain misclassification
through an adversarial objective function, they aim to decrease the
distance between source and target domain distributions. Adversar-
ial generative methods bridge domain gaps by generating realistic
images while aligning features across domains. SimGAN [72] and

yCADA [18] improve realism and consistency through feature align-
ment and cycle-consistency, while other methods use attention align-
ment [73] and multi-domain discriminators [19] to enhance domain-
invariant representations. Self-supervision-based methods aim to
ecouple domain-specific features and domain-invariant features, typ-
cally using sample reconstruction as a self-supervised loss function,
uch as DRCN [74], DSN [20], and Fido [21].

While these DA methods have made good progress in various tasks
concentrated on single-source and single-modal settings, they have
not taken into account the multi-modal scenarios. Directly applying
these DA methods to a multi-modal setting might result in unsatisfac-
tory performance due to differences in the data distributions between
modalities.

2.3. Multi-modal domain adaptation

Multi-modal Domain Adaptation (MMDA) presents greater complex-
ity than UDA due to the need to account for distinct modality structures
and the varying domain shifts associated with each modality [75].
Most MMDA methods can be divided into three categories based on
the location of feature alignment: alignment before feature fusion,
alignment after feature fusion, and mixed alignment.

Alignment before feature fusion refers to aligning each modality
eparately or aligning between modalities before conducting multi-

modal feature fusion. [2] propose xMUDA where modalities learn
from each other through mutual mimicking, disentangled from the
segmentation objective. DsCML [3] enhances the efficacy of multi-

odal information interactions for domain adaptation. [23] propose
MMADT, which consists of DFB to recalibrate depth information and

AT to compensate for depth differences between the source and
arget domains. Alignment after feature fusion means aligning the
used multi-modal features. In Social Media Event Rumor Detection,
DDA [76] decomposes the multimedia posts into the event content

nformation and the rumor writing style information, and then removes
he event-specific features to obtain event-invariant rumor style fea-
ures. In Audio-Visual Emotion Recognition, [77] combine the gradient
eversal technique with an entropy loss as well as a soft-label loss on the

fused multi-modal features. Mixed alignment refers to both alignment
efore and after feature fusion. MDANN [78] comprehensively learns

domain-invariant features by constraining single-modal features, fused
eatures, and attention scores. For fine-grained action recognition, [79]
se a domain discriminator per modality that penalizes domain-specific

features from each modality’s stream.
These MMDA methods combine the advantages of multi-modal

learning and UDA, enabling effective knowledge transfer from multi-
modal data in the source domain to the target domain. However, there
are generally multiple source domains in practice. Thus, extending
these MMDA methods to multi-source settings could further improve
their effectiveness.

2.4. Multi-source domain adaptation

Multi-source Domain Adaptation (MSDA) is a powerful extension
f UDA, where the labeled data are collected from multiple sources
ith different distributions. Depending on the alignment strategies
mployed, MSDA can be broadly classified into three categories [80]:

latent space transformation, intermediate domain generation, and task
classifier refinement.
 d

4 
Latent space transformation aims to align the latent spaces (such
as features) across different domains. This is typically achieved by
ptimizing either the discrepancy loss or the adversarial loss. Some
ethods use MMD [28,32], 2 distance [26], and moment distance [9].

Some methods use adversarial loss for latent space transformation,
including GAN loss [25], H-divergence [81], and Wasserstein dis-
tance [24]. T-SVDNet [30] incorporates Tensor Singular Value De-
composition (T-SVD) into the network’s training pipeline. MKT [31]
utilizes image-level and instance-level attention to promote positive
ross-domain transfer and suppress negative transfer. Intermediate
omain generation entails the creation of an adapted domain for each

source, crafted to closely resemble the target domain. Following this,
task models are then trained on these specifically adapted domains. For
example, [27] adopt CoGAN [82], and [83] adopt CycleGAN [84] to
construct an intermediate domain. Different from these methods, [37]
use a variational autoencoder to learn a unified latent space that
ointly aligns data from all source and target domains. Task classifier
refinement addresses classification gaps that remain after feature
and pixel alignment due to domain boundaries and class imbalance.
Methods include pseudo-label training [33,40,85] and decision bound-
ry refinement [9,29,41,86–88]. Advanced category-level alignment

techniques utilize class-specific discriminators [38], MMD discrepancy
measures [89,90], and prototypes [42,91,92].

These MSDA methods consider the domain gaps between source
omains and leverage samples from multiple source domains, achieving

superior performance compared to merely combining these source
domains. However, these multi-source methods only consider samples
rom a single modality. In the case of multi-modal samples, perfor-
ance may be impacted by the existence of modal gaps between
odalities.

2.5. Sample selection by pseudo labels

Pseudo labels refer to the use of predicted labels during training
hich are treated as correct labels. The generation of pseudo labels for

the target domain is a simple but effective method for DA to learn the
eature representations of the target domain. In addition, these pseudo
abels can serve as criteria for selecting samples for subsequent training,

a process known as Sample Selection by Pseudo Labels. Typically, these
methods can be divided into two categories: selecting samples in the
source domain(s) and selecting samples in the target domain.

Selecting samples in source domain(s). PCA-SS [93] selects a
ubset of labeled data from the source domain. It ensures that the
nstance distribution of the source domain closely aligns with that
f the target domain. [94] propose a landmark selection algorithm

that reweights samples. CMSS [11] learns a dynamic curriculum for
source samples. Selecting samples in the target domain. [95] jointly
optimize representation, cross-domain transformation, and target label
inference in an end-to-end manner. [96] employ an asymmetric use of
three networks. Specifically, two networks are employed to label the
target samples, while the third network is trained using the pseudo-
labeled samples to yield target-discriminative representations. [97]
iteratively select sets of pseudo-labeled target samples based on the im-
age classifier and the domain classifier. [98] develop a pseudo-labeling
curriculum using a density-based clustering algorithm. [99] propose a
selective pseudo-labeling strategy based on structured prediction.

Our method selects high-quality target domain samples using
pseudo labels. These selected samples are then used in self-learning and
for alignment with the samples in source domains. Thus, our strategy
differs from those methods that focus on selecting samples from the
ource domain. Additionally, these methods for selecting target domain
amples primarily utilize filtered pseudo labels to adjust task loss or
lignment loss. They do not utilize the pseudo labels to select the target
omain samples that need to participate in alignment with the source
omains. Therefore, our method is distinct from these approaches.



S. Zhao et al. Information Fusion 117 (2025) 102862 
3. M2CAN

3.1. Problem setup

We consider the MSMMDA setting under the covariate shift assump-
tion [100]. Assume that we have 𝑁 source domains, denoted as  =
{𝑖}𝑁𝑖=1, each containing labeled training data, and a target domain 
consisting of only unlabeled training data from multiple modalities.
Each source domain 𝑖 contains a set of examples drawn from a joint
distribution 𝑝(𝑖)(𝐱1, 𝐱2,… , 𝐱𝑀 , 𝐲) on the input space 1×2×⋯×𝑀 and
the output space  , where 𝑀 represents the total number of modalities.
Similarly, the target domain  consists of examples derived from a joint
distribution 𝑝( )(𝐱1, 𝐱2,… , 𝐱𝑀 , 𝐲), where both 𝑖 and  share the same
input space and output space. However, the label 𝑦 for each sample in
domain  remains unknown. Notably, there is a difference between the
distributions 𝑝( )(𝐱1, 𝐱2,… , 𝐱𝑀 , 𝐲) and 𝑝(𝑖)(𝐱1, 𝐱2,… , 𝐱𝑀 , 𝐲). Also, there
is a considerable difference between the source domain distributions
𝑝(𝑖)(𝐱1, 𝐱2,… , 𝐱𝑀 , 𝐲) and 𝑝(𝑗 )(𝐱1, 𝐱2,… , 𝐱𝑀 , 𝐲). This is why we need
to introduce the multi-source setting into the multi-modal data. As a
result, our objective is to learn a classifier 𝑓 ∶ 1 × 2 ×⋯ × 𝑀 → 
using labeled source samples from {𝑖}𝑁𝑖=1, which can be transferred to
the target domain  , where only unlabeled data is available.

3.2. Overview

The proposed Multi-source Multi-modal Contrastive Adversarial
Network (M2CAN) bridges the modal gaps and domain gaps of the
MSMMDA task by executing both feature-level and label space-level
alignments between the source and target domains. The framework
is shown in Fig. 2. We use the pre-trained encoders to transform
each modality from different domains into a semantic-preserving latent
continuous feature space, and employ task classifiers for training the
final classification model based on the aligned multi-modal features.
M2CAN contains four main components:

Cross-modal contrastive feature alignment (CMCFA) aims to
bridge the modal gap between multiple modalities in MSMMDA, align-
ing the encoded representations between different modalities by pair
within each domain. However, due to the mismatch issue among mul-
tiple modalities, we further dynamically adjust the CMCFA based on the
prediction differences between the individual headers of each modality.

Cross-domain contrastive feature alignment (CDCFA) aims to
bridge the domain gaps in individual modalities across multiple do-
mains in MSMMDA, aligning the encoded representations across differ-
ent domains for each modality. Considering that the domain gap exists
in each modality, the discrepancy between domains is reduced for every
modality through contrastive learning.

Cross-domain adversarial feature alignment (CDAFA) aims to
bridge the domain gaps between the fused multi-modal representations
of multiple domains in MSMMDA. A fused multi-modal feature space
𝑚𝑚 is constructed by 𝑓𝑚𝑚, which learns both semantic-preserving and
semantic-relevant projection 𝑓𝑚𝑚 ∶ 1×2×⋯×𝑀 → 𝑚𝑚. Adversarial
learning is then employed to align the fused multi-modal features from
different domains.

Uncertainty-aware classifier refinement (UACR) aims to bridge
the domain gaps between the label distributions of multiple domains
in MSMMDA, selecting target samples with highly confident pseudo
labels to refine the task classifiers. The differences in predictions of
target domain samples across multiple task classifiers, along with the
aggregated output of these classifiers, are used to select pseudo labels.
Only the selected target samples are involved in the task loss calculation
to prevent negative optimization. Moreover, the selected target domain
samples then participate in the alignment with the source domain sam-
ples. By employing UACR, M2CAN can discern the label distribution of
samples in the target domain and adapt to the target domain on the
label space level.
5 
Fig. 3. Illustration of Cross-Modal Contrastive Feature Alignment (CMCFA). To avoid
the impact of multi-modal mismatch during model training, the alignment loss is
dynamically adjusted based on the predicted differences between the individual headers
of each modality.

3.3. Cross-modal contrastive feature alignment

Motivation. Simply extracting features for each modality using
separate encoders does not take the potential discrepancies between
features in different modalities into account. In practice, certain modal-
ities might encompass irrelevant or even misleading information. More-
over, features extracted without proper alignment come from disparate
and potentially uncorrelated feature spaces, which could undermine
the classification network’s pattern recognition capability. Therefore,
alignment between features across multiple modalities is necessary.
For this purpose, we propose Cross-modal Contrastive Feature Align-
ment (CMCFA) to perform pairwise multi-modal alignment within each
domain, depicted in Fig. 3. Firstly, we perform contrastive learning
between paired modalities. Secondly, we propose dynamically adjust-
ing contrastive learning based on the degree of matching between
modalities to avoid forced alignment of modalities with mismatched
information, reducing negative optimization.

Method. By applying data augmentation to each modality, we
construct positive and negative sample pairs across different modalities
within each domain. Assume that we have a batch of original features
𝑋𝑢 and 𝑋𝑣 for modality 𝑢 and 𝑣, respectively. After data augmentation,
the corresponding batches of original features are 𝑋′

𝑢 and 𝑋′
𝑣. Note

that the batch contains several samples from various source domains.
Moreover, when pseudo labels in the target domain are generated, the
batch also contains selected target domain samples with pseudo labels.
The cross-modal contrastive loss can be constructed as follows [101]:
𝑢𝑣
𝐶 𝑀 𝐶 𝐹 𝐴 =

− 1
𝑛
⋅ 1𝑇 ⋅ log

[

𝑒I◦T + 𝑒I◦T′ + 𝑒I′◦T + 𝑒I′◦T′

1𝑇 ⋅
(

𝑒I⋅T𝑇 + 𝑒I⋅T′𝑇 + 𝑒I′⋅T𝑇 + 𝑒I′⋅T′𝑇 ) ⋅ 1

]

,
(1)

where I = 𝑋𝑢, I′ = 𝑋′
𝑢,T = 𝑋𝑣,T′ = 𝑋′

𝑣, ◦ represents the Hadamard
product, and ⋅ is the dot product.

Note that there exists a mismatch issue between multiple modalities.
Taking text and image modality as an example, as shown in Fig. 4(a),
both the text and image convey the commentator’s neutral sentiment,
suggesting a match between the two modalities. On the other hand, in
Fig. 4(b), while the text communicates the commentator’s negative sen-
timent, the image portrays a positive sentiment, indicating a mismatch
between these two modalities.

As a result, we introduce a match estimation mechanism for multi-
ple modalities to dynamically adjust the cross-modal contrastive loss.
We add distinct modality-related headers, using the output difference
between them as the match estimation score for the modality pair. In
detail, inspired by [102], we use KL-divergence between the predictions
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Fig. 4. Illustration of the modality mismatch issue in the TumEmo dataset [44]. The match score can be leveraged to measure the consistency between different modalities. A
higher match score indicates a greater alignment in the meaning expressed across modalities, signifying better modality matching. (a) Example of matched text-image pair. This
photo shows a painting by Vincent Van Gogh. Both the image and accompanying text convey the neutral sentiment of the commentator. (b) Example of mismatched text-image
pair. Analyzing the image in isolation might lead one to believe that the uploader expresses a positive sentiment. Contrarily, the accompanying text reveals a negative sentiment.
of two classifiers as our measure of variance. Consider modalities 𝑢 and
𝑣 as an example:

𝑉 𝑎𝑟𝑢𝑣 = KL(𝐹𝑢(𝑋𝑢|𝜃𝑢), 𝐹𝑣(𝑋𝑣|𝜃𝑣)), (2)

where 𝐹𝑢 and 𝐹𝑣 represent classifiers for modalities 𝑢 and 𝑣, respec-
tively. KL represents KL-divergence operator. 𝜃𝑢 and 𝜃𝑣 are parameters
for the classifiers of modalities 𝑢 and 𝑣, respectively. If two classifiers of
modalities 𝑢 and 𝑣 provide different predictions, the computed variance
will yield a higher value, which reflects a lower match between the two
modalities. We believe that during model training, it is advantageous to
assign higher losses to samples exhibiting consistency across modalities
and lower losses to samples showing inconsistency. This is premised on
the notion that directing the model’s focus towards consistent samples
facilitates quicker convergence. Therefore, we define the match score
for modalities 𝑢 and 𝑣 as 𝐸 𝑥𝑝𝑉 𝑎𝑟𝑢𝑣 = exp{−𝑉 𝑎𝑟𝑢𝑣}.

By leveraging the estimated match score, we weight the cross-modal
contrastive loss 𝑢𝑣

𝐶 𝑀 𝐶 𝐹 𝐴 to derive an effective loss for optimization.
However, when directly optimizing 𝑢𝑣

𝐶 𝑀 𝐶 𝐹 𝐴 ⋅ 𝐸 𝑥𝑝𝑉 𝑎𝑟𝑢𝑣, there is a
risk that the model might only focus on minimizing the 𝐸 𝑥𝑝𝑉 𝑎𝑟𝑢𝑣.
By merely driving 𝐸 𝑥𝑝𝑉 𝑎𝑟𝑢𝑣 towards zero, the overall loss could be
minimized, which is not our intended outcome. Therefore, in order to
avoid this issue, we introduce 𝑉 𝑎𝑟𝑢𝑣 to it as a regularization term. This
ensures that the model does not overlook the importance of the base
loss. Formally, our refined loss function is:
𝐶 𝑀 𝐶 𝐹 𝐴 = E[

∑

𝑢,𝑣
(𝑢𝑣

𝐶 𝑀 𝐶 𝐹 𝐴 ⋅ exp{−𝑉 𝑎𝑟𝑢𝑣} + 𝑉 𝑎𝑟𝑢𝑣)]. (3)

By dynamically minimizing the distance between features of multi-
ple modalities with matched modalities and maximizing the distance
between features with mismatched modalities before and after data
augmentation, CMCFA is able to force the encoders to extract closer
features from semantically similar samples and farther apart features
from semantically different samples.

3.4. Cross-domain contrastive feature alignment

Motivation. Training models across multiple domains within the
same modality without accounting for domain gaps can lead to sub-
optimal performance. The distinct characteristics of each domain (e.g.,
6 
Fig. 5. Illustration of Cross-Domain Contrastive Feature Alignment (CDCFA). We
minimize the distance between the feature distributions of different domains of the
same modality to achieve the reduction of multiple domain gaps.

T4SA’s social comments [45] and Yelp’s food comments [46]) may
result in divergent feature distributions, preventing the model from
effectively generalizing across domains. These domain discrepancies
can hinder the model’s ability to recognize patterns consistently, lead-
ing to degraded classification accuracy. Therefore, aligning the feature
distributions across domains within the same modality is critical to
bridging these gaps. To this end, we propose Cross-domain Contrastive
Feature Alignment (CDCFA), depicted in Fig. 5, to reduce the dis-
tribution distance of different domains within the same modality in
the feature space. CDCFA utilizes contrastive learning to minimize the
domain discrepancies, ensuring the model captures more unified and
robust features across domains, thus improving generalization.

Method. To quantify the similarity between two distributions, we
introduce MMD [62], which is defined as:

 (𝑠1, 𝑠2) ≜ sup
𝑓ℎ∼

(

E
[

𝑓ℎ (𝑠1 )
]

− E
[

𝑓ℎ (𝑠2 )
])

 , (4)

where 𝑠 ∈ 𝑋𝑠
𝑢 ∪𝑋𝑠′

𝑢 . Both 𝑋𝑠
𝑢 and 𝑋𝑠′

𝑢 are all original feature batches
of modality 𝑢 in domain 𝑠 without and with data augmentation, respec-
tively. 𝑠1 and 𝑠2 are two domains.  denotes a class of functions and 𝑓ℎ
is one of them. Formally, MMD measures the difference between two
distributions based on their mean representations in the reproducing
kernel Hilbert space (RKHS) [69].
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Fig. 6. Illustration of Cross-Domain Adversarial Feature Alignment (CDAFA). We align
the fused multi-modal features between different domains in an adversarial manner to
reduce the gap between multiple domains.

In practice, the squared value of MMD is estimated with the empir-
ical kernel mean representations:

̂𝑚𝑚𝑑 = 1
𝑛2𝑠1

𝑛𝑠1
∑

𝑖=1

𝑛𝑠1
∑

𝑗=1
𝑘
(

𝑠1
𝑖 ,𝑠1

𝑗

)

+ 1
𝑛2𝑠2

𝑛𝑠2
∑

𝑖=1

𝑛𝑠2
∑

𝑗=1
𝑘
(

𝑠2
𝑖 ,𝑠2

𝑗

)

− 2
𝑛𝑠1𝑛𝑠2

𝑛𝑠1
∑

𝑖=1

𝑛𝑠2
∑

𝑗=1
𝑘
(

𝑠1
𝑖 ,𝑠2

𝑗

)

,

(5)

where 𝑠
𝑖 ∈ 𝑠. 𝑛𝑠1 and 𝑛𝑠2 denote the batch sizes of domain 𝑠1 and 𝑠2,

respectively. 𝑘 denotes a kernel function. The third term is adopted,
while the first two terms are ignored in Eq. (5), as CDCFA mainly
focuses on reducing the gaps between the two domains.

Due to the existence of multiple modalities, the domain gap between
the two paired domains is decomposed into 𝑀 parts, where each part
represents the domain gap for a specific modality. The corresponding
MMD for each modality is minimized as follows:

𝑢
𝐶 𝐷 𝐶 𝐹 𝐴 =

∑

𝑠1 ,𝑠2

∑

𝑠1 ,𝑠2

(

− 2
𝑛𝑠1𝑛𝑠2

𝑛𝑠1
∑

𝑖=1

𝑛𝑠2
∑

𝑗=1
𝑘
(

𝑠1
𝑖 ,𝑠2

𝑗

)

)

, (6)

where 𝑠1 ∈ 𝐷 𝑜𝑚, 𝑠2 ∈ 𝐷 𝑜𝑚 ⧵ 𝑠1. If the target domain pseudo la-
bels are not generated, 𝐷 𝑜𝑚 = {1,2,… ,𝑁}, otherwise 𝐷 𝑜𝑚 =
{1,2,… ,𝑁 ,  }. The linear kernel is chosen as 𝑘 for efficiency.
Therefore, the above cross-domain contrastive loss for modality 𝑢 can
be simplified as below:

𝑢
𝐶 𝐷 𝐶 𝐹 𝐴 =

∑

𝑠1 ,𝑠2

∑

𝑠1 ,𝑠2
− 2
𝑛𝑠1𝑛𝑠2

⋅ 1𝑇 ⋅ 𝑠1 ⋅ 𝑠2 𝑇 ⋅ 1. (7)

Finally, the CDCFA of all modalities is calculated as follows:

𝐶 𝐷 𝐶 𝐹 𝐴 =
𝑀
∑

𝑢=1
𝑢
𝐶 𝐷 𝐶 𝐹 𝐴. (8)

3.5. Cross-domain adversarial feature alignment

Motivation. Merely reducing the gap between different modalities
within the same domain or between different domains within the
same modality is insufficient because the final task model relies on
the fused multi-modal representations for prediction. Without aligning
these multi-modal features across domains, the model may still strug-
gle with inconsistencies in fused representations, leading to degraded
performance. The discrepancies between multi-modal representations
from different domains can introduce noise or irrelevant information,
further complicating the model’s ability to generalize. To address this,
we propose Cross-domain Adversarial Feature Alignment (CDAFA), as
illustrated in Fig. 6, which aims to bridge the domain gap between
multi-modal representations across multiple domains. CDAFA employs
an adversarial learning approach to ensure better alignment of fused
representations, ultimately enhancing the model’s ability to perform
robust multi-modal predictions across domains.

Method. To better perform information fusion on the features of all
modalities and produce a multi-modal feature space  that includes
𝑚𝑚

7 
enough task-related information, a multi-modal projection 𝑓𝑚𝑚 ∶ 1 ×
2 ×⋯×𝑀 → 𝑚𝑚 is constructed, where 𝑖 is the feature space of the
modality 𝑖.

To perform adversarial alignment, a set of domain classifiers are
introduced as discriminators, which are used to distinguish features
from each domain pair. Treating the aforementioned 𝑓𝑚𝑚 as a feature
extractor, a conditional domain adversarial loss [7] is constructed
to force the feature extractor to generate multi-modal features that
are indistinguishable across domains. This results in the following
cross-domain adversarial loss:
𝐶 𝐷 𝐴𝐹 𝐴 =

∑

𝑠𝑖

∑

𝑠𝑗

(E𝑥𝑖𝑚∼𝑠𝑖
log[𝐷𝑖𝑗 (𝑇 (𝑓 𝑖

𝑚, 𝑔𝑖𝑚))]

+E𝑥𝑗𝑛∼𝑠𝑗
log[1 −𝐷𝑖𝑗 (𝑇 (𝑓 𝑗

𝑛 , 𝑔𝑗𝑛))]),
(9)

where 𝑠𝑖 ∈ 𝐷 𝑜𝑚, 𝑠𝑗 ∈ 𝐷 𝑜𝑚 ⧵ 𝑠𝑖. If the target domain pseudo la-
bels are not generated, 𝐷 𝑜𝑚 = {1,2,… ,𝑁}, otherwise 𝐷 𝑜𝑚 =
{1,2,… ,𝑁 ,  }. 𝑥𝑖𝑚 and 𝑥𝑗𝑛 denote the 𝑚th sample in domain 𝑠𝑖
and 𝑛th sample in domain 𝑠𝑗 . 𝐷𝑖𝑗 denotes the discriminator between
domain 𝑠𝑖 and 𝑠𝑗 . 𝑇 is a map operation which converts fused features
𝑓 𝑖
𝑚 ∈ 𝑚𝑚 and predicted logits 𝑔𝑖𝑚 to class-conditional features. In this

work, MultiLinearMap [7] is adopted as 𝑇 .
Multiple modalities may not match each other, as explained in Sec-

tion 3.3. Therefore, multi-modal fused features are noisy. To mitigate
this, environment label smoothing [8] is introduced to the training pro-
cedure of the domain discriminators. It encourages the discriminators
to output soft probability, which thus mitigates the over-confidence of
the discriminator and alleviates the impact of the noisy multi-modal
features. Therefore, the 𝐶 𝐷 𝐴𝐹 𝐴 is modified to a soft one:
𝐶 𝐷 𝐴𝐹 𝐴 =

∑

𝑠𝑖

∑

𝑠𝑗

(E𝑥𝑖𝑚∼𝑠𝑖
𝑊 𝑖𝑗

𝑚 log[𝛼 +𝐷𝑖𝑗 (𝑇 (𝑓 𝑖
𝑚, 𝑔𝑖𝑚))]

+ E𝑥𝑗𝑛∼𝑠𝑗
𝑊 𝑖𝑗

𝑛 log[1 − 𝛼 −𝐷𝑖𝑗 (𝑇 (𝑓 𝑗
𝑛 , 𝑔𝑗𝑛))]),

(10)

where 𝛼 is the label smoothing factor. In this work, 𝛼 is set to 0.8. Loss
weights are calculated as follows:

𝑤𝑖𝑗
𝑚 = 1 + 𝑒𝑥𝑝{−𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑔𝑖𝑚)}, (11)

𝑤𝑖𝑗
𝑛 = 1 + 𝑒𝑥𝑝{−𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑔𝑗𝑛)}, (12)

𝑊 𝑖𝑗
𝑚 =

(𝑛𝑠𝑖 + 𝑛𝑠𝑗 )𝑤
𝑖𝑗
𝑚

∑𝑛𝑠𝑖
𝑚=1 𝑤

𝑖𝑗
𝑚 +

∑
𝑛𝑠𝑗
𝑛=1 𝑤

𝑖𝑗
𝑛

, (13)

𝑊 𝑖𝑗
𝑛 =

(𝑛𝑠𝑖 + 𝑛𝑠𝑗 )𝑤
𝑖𝑗
𝑛

∑
𝑛𝑠𝑗
𝑚=1 𝑤

𝑖𝑗
𝑚 +

∑
𝑛𝑠𝑗
𝑛=1 𝑤

𝑖𝑗
𝑛

, (14)

where the entropy function is defined as 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑥) = −𝑥 ⋅ log(𝑥). 𝑛𝑠𝑖 and
𝑛𝑠𝑗 represent the batch sizes of domain 𝑠𝑖 and 𝑠𝑗 , respectively.

3.6. Uncertainty-aware classifier refinement

Motivation. A huge domain gap exists in multi-modal datasets.
For instance, in the sentiment analysis task, the T4SA [45] dataset is
derived from Twitter comments, which includes diverse tweets with
informal language and varied image content. In contrast, the Yelp [46]
dataset primarily focuses on structured food reviews, featuring vastly
different image and comment styles, as demonstrated in Figs. 8(b) and
8(c). Confronted with such a substantial domain gap, directly aligning
the source and target domains using traditional methods may lead to
ineffective model training due to the stark differences in both content
and style. To address this challenge, we propose Uncertainty-aware
Classifier Refinement (UACR), as depicted in Fig. 7, which gradually
generates high-quality pseudo-labels in the target domain for alignment
with the source domain, achieving label space-level alignment. UACR
not only accounts for content domain shifts but also ensures semantic
consistency across label spaces by incorporating self-learning of target
pseudo-labels, ultimately improving cross-domain adaptation.

Method. In the beginning, due to the lack of a well-trained model,
only the source domains are aligned to obtain a preliminary model.
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Fig. 7. Uncertainty-aware classifier refinement (UACR) on the label space level. The
high-quality samples from the target domain are selected based on the classification
score 𝑠𝑡𝑐 𝑙 𝑠 and uncertainty score 𝑠𝑢𝑛𝑐 𝑒𝑟. These chosen samples will participate in task loss
calculation and subsequent alignments with the source domain samples.

Afterward, the preliminary model is adopted to generate pseudo labels
for the target domain to perform self-learning. During the generation
of pseudo labels, especially in the early stage of model training, it is
necessary to select pseudo labels due to the presence of low-quality
labels. The uncertainty and confidence of multiple classification heads
in predicting target domain samples are utilized to select pseudo labels.
This is because the evaluation of uncertainty can identify unreliable
predictions, while the evaluation of confidence ensures the accuracy
of the predicted categories. This strategy can effectively improve the
quality of the pseudo labels, thereby enhancing the performance of the
model in the target domain.

Firstly, the uncertainty score is calculated by assessing the differ-
ences between the classification outputs for each sample in the target
domain:

𝑠𝑢𝑛𝑐 𝑒𝑟 = 𝑒𝑥𝑝{−𝑉 𝑎𝑟𝑝𝑠}, (15)

𝑉 𝑎𝑟𝑝𝑠 =
𝑁
∑

𝑖=1

𝑁
∑

𝑗=𝑖+1
(E[KL(𝐹 𝑖

𝑐 𝑙 𝑠(𝑓 𝑡
|𝜃𝑖), 𝐹 𝑗

𝑐 𝑙 𝑠(𝑓 𝑡
|𝜃𝑗 ))]

+E[KL(𝐹 𝑗
𝑐 𝑙 𝑠(𝑓 𝑡

|𝜃𝑗 ), 𝐹 𝑖
𝑐 𝑙 𝑠(𝑓 𝑡

|𝜃𝑖))]). (16)

Here, 𝐹 𝑖
𝑐 𝑙 𝑠 denotes the 𝑖th classification head, and 𝜃𝑖 represents its

parameters. A classification header is assigned for each source domain,
resulting in a total of 𝑁 classification headers. 𝑓 𝑡 stands for the
fused multi-modal features of the input samples in the target domain.
Secondly, the outputs of the 𝑁 classification headers are aggregated as:

𝑠𝑡𝑐 𝑙 𝑠 =
∑𝑁

𝑖=1 𝐹
𝑖
𝑐 𝑙 𝑠(𝑓 𝑡

|𝜃𝑖)
𝑁

. (17)

Finally, the uncertainty score and the aggregated classification score
𝑠𝑡𝑐 𝑙 𝑠 are utilized as follows:

𝑠𝑐 𝑜𝑟𝑒 = 𝑠𝑢𝑛𝑐 𝑒𝑟 ⋅ 𝑠𝑡𝑐 𝑙 𝑠. (18)

𝑠𝑐 𝑜𝑟𝑒 is considered as the pseudo label confidence score for the
sample. The samples are then sorted according to 𝑠𝑐 𝑜𝑟𝑒 and those
samples with the highest scores from each class are selected. This
can ensure that the selected samples are reliable and roughly balanced
in categories to avoid some categories being overlooked. The samples
with pseudo labels have two purposes: (1) calculating task loss for self-
learning, and (2) participating in alignment with the source domain
samples. Through these two purposes, the model’s perception of the
distribution of target domain labels can be enhanced, enabling the
model to better adapt to the target domain. At the same time, it can
8 
Fig. 8. Examples of three domains in the sentiment analysis task. Each sub-graph shows
negative, neutral, and positive sentiments from left to right.

Algorithm 1 Learning procedure of M2CAN
Input: model 𝑀𝑚𝑚, domain discriminators 𝐷, model optimizer opt𝑀 ,

discriminators optimizer opt𝐷, total epochs 𝐸, mini batch 𝐵, pseudo
label update rate 𝑟, and the 𝑏-th batch of samples data𝑏 from 𝐷 𝑜𝑚 =
{1,2, ...,𝑁}.

1: Initialize 𝑀𝑚𝑚 with pre-trained parameters, and initialize 𝐷
randomly;

2: for 𝑒=1 to 𝐸 do
3: for 𝑏=1 to 𝐵 do
4: send (𝑥, 𝑦) ∈ data𝑏 to model 𝑀𝑚𝑚;
5: calculate 𝐶 𝑀 𝐶 𝐹 𝐴 using Eq. (3);
6: calculate 𝐶 𝐷 𝐶 𝐹 𝐴 using Eq. (8);
7: calculate 𝐶 𝐷 𝐴𝐹 𝐴 using Eq. (10);
8: calculate 𝑡𝑎𝑠𝑘 using Eq. (19);
9: if target domain samples ∈ data𝑏 then

10: calculate 𝑚𝑐 𝑐 using Eq. (20);
11: end if
12: backward;
13: opt𝑀 step;
14: opt𝐷 step;
15: end for
16: generate pseudo labels for the samples in the target domain with

a ratio of 𝑚𝑎𝑥{ 𝑟⋅𝑒
𝐸 , 1} using Eq. (18);

17: 𝐷 𝑜𝑚 = 𝐷 𝑜𝑚 ∪  ;
18: end for
19: return the adapted model 𝑀𝑚𝑚.

also alleviate the negative impact of low-quality target domain samples
on the model alignment process.
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3.7. M2CAN learning

We focus on MSMMDA for classification tasks. The task loss 𝑡𝑎𝑠𝑘
adopts the standard cross entropy loss CE. The total task loss is formu-
lated as:

𝑡𝑎𝑠𝑘 =
𝑁
∑

𝑖=1
CE(𝐹 𝑖

𝑐 𝑙 𝑠(𝑓𝑚𝑚(𝑋|𝜃𝑖)), 𝑦) +
𝑀
∑

𝑗=1
CE(𝐹𝑗 (𝑋𝑗 |𝜃𝑗 ), 𝑦), (19)

where 𝑋 = {𝑋1,… , 𝑋𝑀}, 𝑋𝑗 is the features of the 𝑗th modality for the
sample 𝑥 ∈ (⋃𝑁

𝑖=1 𝑖)
⋃

 , and 𝑦 is the corresponding label of 𝑥. For the
target domain sample, 𝑦 is the pseudo label obtained in Section 3.6.

Further, in order to reduce the prediction confusion between correct
and fuzzy categories on target domain samples, MCC [103] is intro-
duced for additional label space level alignment. The aggregated output
of the total 𝑁 classification heads 𝐹 𝑖

𝑐 𝑙 𝑠 on the multi-modal features 𝑓 𝑡

of the target domain sample is obtained using Eq. (17). Then, 𝑠𝑡𝑐 𝑙 𝑠 is
used as the input to the MCC, the following loss is obtained:

𝑚𝑐 𝑐 = MCC(𝑠𝑡𝑐 𝑙 𝑠). (20)

As a result, The overall objective function of M2CAN is formulated as:
𝑀2𝐶 𝐴𝑁 = 𝛼 ⋅ 𝐶 𝑀 𝐶 𝐹 𝐴 + 𝛽 ⋅ 𝐶 𝐷 𝐶 𝐹 𝐴+

𝛾 ⋅ (𝐶 𝑀 𝐴𝐹 𝐴 + 𝑚𝑐 𝑐 ) + 𝑡𝑎𝑠𝑘.
(21)

The details of the M2CAN learning procedure are outlined in Algo-
rithm 1.

In the inference stage, we perform information fusion and use the
integrated average prediction 𝑠𝑡𝑐 𝑙 𝑠 as the final prediction result.

4. Experiments

4.1. Experimental settings

4.1.1. Datasets
Due to the lack of a benchmark specifically designed for MSMMDA,

we evaluate our approach using two combined datasets. The first task
is sentiment analysis which consists of three public datasets on visual-
textual modalities: TumEmo [44], T4SA [45], and Yelp [46]. Examples
from these domains for the sentiment analysis task can be viewed in
Fig. 8. The second task is aesthetics assessment which consists of three
public visual-textual datasets: AVA [47], PCCD [48], and RPCD [49].
Examples of three domains in the aesthetics assessment task are shown
in Fig. 9. We treat the three datasets as different domains because
they follow distinct distributions. For our experiments, we establish an
MSMMDA setting by taking each domain as the target and the rest as
sources, totally including six scenes: →TumEmo (→TE), →T4SA (→T),
→Yelp (→Y), →AVA (→A), →PCCD (→P), →RPCD (→R).

TumEmo [44] is a large-scale text-image emotion dataset, labeled
by various emotions, with 195,265 instances from Tumblr. In TumEmo,
there are seven emotions: Angry, Bored, Fear, Sad, Love, Calm, and
Happy. In this paper, we treat Angry, Bored, Fear, and Sad as negative
sentiments; Calm as a neutral sentiment; Love and Happy as positive
sentiments. T4SA [45] consists of 470,586 user-generated tweets with
images collected from the Twitter platform. Each tweet includes one
textual review and several accompanying images, which is labeled with
one of three sentiment types: negative, neutral, or positive. Yelp [46]
contains customer-generated reviews of food services, such as restau-
rants, cafeterias, and dessert shops. In total, it has 44,305 reviews,
including 244,569 images. Each review has a textual comment, a
minimum of three images, and a sentiment polarity score ranging from
1 to 5. We consider scores of 1 and 2 as negative sentiment, a score of
3 as neutral sentiment, and scores of 4 and 5 as positive sentiment.

To balance the amount of samples in different domains, we ran-
domly select 15,000 samples for training and 1500 samples for testing
from each domain’s training and testing set, respectively. The label
distribution of the selected samples is shown in Fig. 10(a). Although
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Fig. 9. Examples of three domains in the aesthetics assessment task. Each sub-graph
shows low and high qualities from left to right.

the sample sizes of the three datasets remain the same across the three
major classes, their respective sub-class distributions are different. This
may potentially lead to domain gaps in the label space. The selection
details and selected samples can be found in the source code we
provide.

AVA [47] contains more than 255,000 user-rated images. Each im-
age is accompanied by an average of 200 ratings, ranging from 1 to 10,
and also has user comments. The dataset is split into 235,000 training
images and 20,000 testing images, ensuring no overlap. PCCD [48]
is based on a professional photo critique website that provides expe-
rienced photographer reviews. A total of 4235 photos are showcased
along with expert comments on seven key aspects: general impression,
composition and perspective, color and lighting, subject of photo, depth
of field, focus, use of camera, exposure, and speed. We consider the
combination of these seven aspects as the comment for each image.
RPCD [49] is a collection of 73,965 high-resolution images paired with
photo critiques from Reddit communities. Following [49], we retain
the samples with the same prediction of the two models [104,105] and
discard those with different predictions.

The aesthetics assessment is formulated as a binary classification
problem. In the AVA domain, images with a mean rating above 5.5 are
treated as high-quality images, while the remaining images are clas-
sified as low-quality to ensure a balanced dataset. The PCCD domain
uses a rating threshold of 8.0 to determine high quality. For the RPCD
domain, the binary labels are provided by the two aforementioned
models, and do not require a rating threshold. Then, we randomly
select 3388 samples for training and 847 samples for testing from each
domain’s training and testing set, respectively. The label distribution
of the selected samples is shown in Fig. 10(b). The label distributions
of these three datasets are different, with AVA having more samples
with low-quality, while PCCD and RPCD have more samples with high-
quality. This shows the differences in label distribution between these
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Fig. 10. The distribution of each of the datasets in the sentiment analysis and aesthetics assessment tasks.
three domains. The selection details and selected samples can be found
in the source code we provide.

4.1.2. Baselines
We compare M2CAN with the following baselines: (1) Source-only,

directly training on the source domains and testing on the target do-
main, which includes two settings: single-best, the best test accuracy on
the target among all source domains individually; source-combined, the
target accuracy of the model trained on the combined source domain.

(2) Single-source DA methods, including UDA methods CDAN [7],
MCC [103], SDAT [106], and ELS [8], and MMDA methods xMUDA [2]
and DsCML [3], all trained with both single-best and source-combined
settings. CDAN [7] enhances discriminability and transferability
through multilinear conditioning between feature and classifier pre-
dictions, and entropy conditioning to control prediction uncertainty.
MCC [103] addresses class confusion, a common issue in domain
adaptation, by reducing misclassifications between correct and ambigu-
ous classes, resulting in improved transfer performance. SDAT [106]
improves domain adversarial methods by enhancing smoothness in task
loss minimization and stabilizing training, while smooth minima in
adversarial loss are shown to hinder generalization. ELS [8] addresses
the training instability of Domain Adversarial Training (DAT), reducing
overconfidence in the domain discriminator and mitigating noisy en-
vironment labels, thereby improving stability, local convergence, and
robustness. xMUDA [2] is proposed for cross-modal domain adaptive
3D semantic segmentation, where 2D images and 3D point clouds
mutually learn through mimicking to handle domain shift, preventing
the stronger modality from inheriting false predictions from the weaker
one. DsCML [3] further enhances cross-modal domain adaptive 3D
semantic segmentation by improving multi-modal interaction without
losing 2D features. Additionally, Cross Modal Adversarial Learning
(CMAL) is introduced to boost inter-domain complementarity between
2D and 3D data.

(3) MSDA methods, including MDAN [81], M3SDA [9], and T-
SVDNet [30]. MDAN [81] optimizes task-adaptive generalization
bounds to learn feature representations that are invariant to multiple
domain shifts while remaining discriminative for the learning task.
M3SDA [9] transfers knowledge from multiple labeled source domains
to an unlabeled target domain by dynamically aligning their feature
distribution moments. T-SVDNet [30] incorporates Tensor Singular
Value Decomposition (T-SVD) and an uncertainty-aware weighting
strategy to capture domain correlations and reduce negative transfer
from noisy data.

(4) Oracle. Additionally, we report the results from an oracle
setting, where the model is both trained and tested on the target
domain. This can be considered an upper bound for domain adaptation
performance.
10 
4.1.3. Evaluation metrics
We employ average classification accuracy (Avg.) of all domains

and classification accuracy (Acc), along with precision (P), recall (R),
and F1-score (F1) of each domain, to evaluate the performance of
both sentiment analysis and aesthetics assessment tasks. We use macro-
averaging for these metrics, which better reflects the overall perfor-
mance across all classes, especially in scenarios with class imbalance.
This allows us to capture the performance of both sentiment analysis
and aesthetics assessment more comprehensively. A higher classifica-
tion accuracy, precision, recall, and F1-score directly correspond to
better performance.

4.1.4. Implementation details
For the feature extractor of each modality, since only the visual

and textual modalities are involved in our conducted experiments,
we adopt two different settings for the image and text encoders. One
uses ResNet50 [107] pre-trained on ImageNet as the image encoder
and a 12-layer ‘‘bert-base-uncased’’ version BERT [108] for the text
encoder. The other uses the image and text encoder of powerful Long-
CLIP [109]. Due to the long length of the text in sentiment analysis and
aesthetics assessment tasks, using the text encoder of CLIP [110] can
result in truncating many texts, as it limits the text tokens to 77. There-
fore, we adopt the text and image encoder of Long-CLIP with longer
text token limits, up to 248. We utilize MLB [111] as the information
fusion module 𝑓𝑚𝑚. We use a fully connected layer to implement the
discriminators, the modal headers, and the task classifiers.

In order to ensure that the loss terms have the same order of
magnitude, the loss weight hyper-parameters 𝛼, 𝛽, and 𝛾 are set to 0.5,
0.2, and 0.05 by default, respectively. The pseudo label update rate 𝑟 is
set to 3 for all experiments. We conduct ablation studies on the values
of these loss weights and find that they have negligible impact on the
performance of the M2CAN.

At the initial training stage (also called the warm-up stage), we
only align the source domain samples, without the target domain
samples participating in the alignment. After generating pseudo labels
for the target domain, the filtered target domain samples participate
in alignment with the source domain samples. For all experiments, we
perform 1 epoch for the former stage, and perform 9 epochs for the
latter stage.

We use Adam [112] as the optimizer with a batch size of 8. The
learning rate is 2e-5 for feature extractors, and 5e-4 for the rest by
default. All experiments are implemented in PyTorch and conducted
on a machine with a single NVIDIA RTX 3090 with 24 GB memory.

4.2. Comparison with the state-of-the-art

The performance comparisons based on the feature extractor of
ResNet50+BERT between the proposed M2CAN and the other meth-
ods for visual-textual sentiment analysis and aesthetics assessment,
including Source-only, UDA, MMDA, MSDA, and Oracle are presented
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Table 1
Comparison with the state-of-the-art DA methods based on ResNet50+BERT for sentiment analysis, measured by average accuracy (Avg.) (%), accuracy (Acc) (%), macro precision
(P) (%), macro recall (R) (%), and macro F1 (%). The best result is emphasized in bold and the second best method is emphasized in underline.

Standard Method Detail Avg. →TumEmo (→TE) →T4SA (→T) →Yelp (→Y)

Acc P R F1 Acc P R F1 Acc P R F1

Source-only Single-best – 58.0 57.3 59.4 57.3 57.0 61.1 61.6 61.1 56.7 55.5 37.3 55.5 44.6
Combined 56.6 56.4 58.1 56.4 56.3 58.3 59.8 58.3 58.3 55.0 52.6 55.0 48.3

Single-best DA

CDAN(NeurIPS2018)
MCC(ECCV2020)
SDAT(ICML2022)
ELS(ICLR2023)

CDAN+ELS 62.7 60.9 60.4 60.9 60.5 68.5 74.9 68.5 68.9 58.7 57.5 58.7 56.8
CDAN+MCC+ELS 61.9 61.6 60.4 61.6 60.1 67.2 67.7 67.2 67.4 56.9 56.8 56.9 56.7
CDAN+SDAT+ELS 62.7 59.6 60.5 59.6 60.0 68.5 68.6 68.5 67.9 59.9 59.9 59.9 59.8
CDAN+MCC+SDAT+ELS 62.3 57.5 60.0 57.5 57.4 74.1 74.7 74.1 73.9 55.3 55.1 55.3 54.6

xMUDA (CVPR2020)
Text-only 58.3 57.8 58.1 57.8 57.3 60.2 58.9 60.2 54.4 56.9 54.3 56.9 48.5
Image-only 34.9 33.8 41.9 33.8 20.3 35.8 35.7 35.8 35.6 35.0 36.0 35.0 26.0
Fusion 58.8 57.9 58.2 57.9 57.8 61.9 61.2 61.9 58.4 56.5 55.0 56.5 49.1

DsCML (ICCV2021)
Text-only 61.6 59.5 59.8 59.5 58.8 69.1 74.4 69.1 69.3 56.1 38.9 56.1 45.3
Image-only 36.4 37.3 37.2 37.3 34.6 33.9 33.9 33.9 33.8 37.9 38.0 37.9 36.9
Fusion 62.0 60.2 60.5 60.2 59.5 69.6 75.8 69.6 70.0 56.1 39.0 56.1 45.3

Source-combined DA

CDAN(NeurIPS2018)
MCC(ECCV2020)
SDAT(ICML2022)
ELS(ICLR2023)

CDAN+ELS 58.9 57.9 57.4 57.9 57.6 63.0 68.7 63.0 62.0 55.8 55.1 55.8 55.1
CDAN+MCC+ELS 62.7 57.3 56.7 57.3 55.6 75.1 78.1 75.1 75.3 55.7 55.3 55.7 55.5
CDAN+SDAT+ELS 62.2 57.9 57.0 57.9 56.9 69.8 70.6 69.8 69.9 58.9 60.0 58.9 59.2
CDAN+MCC+SDAT+ELS 67.9 62.3 62.8 62.3 62.3 83.4 83.6 83.4 83.5 57.9 57.7 57.9 57.2

xMUDA (CVPR2020)
Text-only 59.6 59.1 59.5 59.1 58.9 64.1 64.3 64.1 59.1 55.7 51.6 55.7 45.0
Image-only 36.8 34.0 37.5 34.0 26.5 39.7 39.6 39.7 39.3 36.8 39.8 36.8 28.6
Fusion 59.5 57.4 58.4 57.4 57.6 64.3 64.5 64.3 59.5 56.7 53.3 56.7 48.1

DsCML (ICCV2021)
Text-only 58.8 58.3 58.1 58.3 57.6 62.7 64.0 62.7 61.1 55.5 49.1 55.5 45.9
Image-only 37.9 40.7 41.0 40.7 40.2 36.9 36.8 36.9 36.6 36.1 36.3 36.1 35.9
Fusion 58.9 58.7 58.8 58.7 58.1 63.0 64.6 63.0 62.5 55.1 48.3 55.1 43.6

MSDA
MDAN (NeurIPS2018)

–
58.8 59.1 60.1 59.1 59.2 61.9 67.8 61.9 62.2 55.5 53.1 55.5 52.8

M3SDA (ICCV2019) 60.4 58.0 56.7 58.0 56.9 67.1 69.9 67.1 67.1 56.1 54.7 56.1 53.6
T-SVDNet (ICCV2021) 59.1 58.2 59.1 58.2 58.0 61.5 63.7 61.5 53.9 57.7 54.8 57.7 53.9

MSMMDA M2CAN (Ours) – 70.7 63.8 63.2 63.8 63.4 84.7 84.8 84.7 84.7 63.7 63.7 63.7 63.7

Oracle Oracle – 85.1 85.4 86.0 85.4 85.5 95.1 95.1 95.1 95.1 74.7 74.6 74.7 74.7
t
b
a
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in Table 1 and Table 2, respectively. From the results, we have the
following observations:

(1) Without alleviating the domain shift between the source and
arget domains, both source-only settings, i.e., single-best and source-
ombined, obtain low classification accuracy. Specifically, their average
ccuracy is almost 30% and 15% lower than the oracle setting in both
asks, respectively. Note that under the source-only setting, having
ore source domain training data does not necessarily guarantee bet-

er performance in the target domain, e.g., 58.0% vs. 56.6% average
ccuracy in the sentiment analysis task in Table 1. As a result, the gap
etween source domains is also worth considering.

(2) When directly applying single-source DA methods to the MSM-
DA task, most of them, including UDA and MMDA in single-best and

ource-combined settings, outperform the source-only setting. Since
ulti-modal data vary a lot across domains, the extracted features

elated to tasks differ as well. Therefore, these single-source methods
an help bridge the domain gap to improve the results. When fusing
ext and image modalities, the performance of MMDA methods might
ot be better than that of using a single modality. For instance, both
MUDA and DsCML are late-fusion methods. If the alignment of a single
odality fails to achieve good consistency, the predictions from the two
odalities will diverge largely when they are combined, leading to a
ecline in performance. For example, after fusing multi-modal features,
he performance of xMUDA is reduced by 0.4% compared to non-fusion
n the single-best DA setting of →RPCD on aesthetics assessment in

Table 2.
(3) When comparing the performances of the source-combined and

ingle-best settings of single-source DA methods, it becomes apparent
that naively applying single-source domain adaptation approaches, in-
cluding UDA and MMDA methods, to a combined dataset from different
sources can lead to sub-optimal results, e.g., the average accuracy of
62.0% vs. 58.9% on DsCML in Table 1. This observation underscores
he motivation for our research on MSMMDA.
11 
(4) Due to the consideration of domain gaps in the fused fea-
ures between multiple source domain samples, MSDA methods achieve
etter results than Source-only settings on both sentiment analysis
nd aesthetics assessment in Tables 1 and 2. However, their perfor-

mance is sub-optimal as they ignore the modal gaps across multiple
modalities.

(5) The proposed M2CAN outperforms other methods in all adap-
ation settings, achieving an average accuracy of 70.7% in sentiment
nalysis (Table 1) and 74.7% in aesthetics assessment (Table 2). When

compared to the best results from the Source-only, Single-best DA,
Source-combined DA, and MSDA settings, M2CAN exhibits average
accuracy gains of 12.7%, 8.0%, 2.8%, and 10.3% for sentiment anal-
ysis, and 8.0%, 2.1%, 2.8%, and 4.0% for aesthetics assessment, re-
spectively. These results demonstrate that the proposed M2CAN can
achieve better performance than the state-of-the-art DA methods in-
cluding UDA, MMDA, and MSDA methods. The superior performance
of M2CAN benefits from the joint feature-level and label space-level
alignment to reduce the modal gaps and domain gaps in MSMMDA.
Notably, the proposed M2CAN method achieves similar values across
accuracy, precision, recall, and F1, highlighting its balanced and stable
performance. This advantage ensures that the model not only performs
well in terms of overall classification accuracy but also maintains
consistent performance in precision and recall, indicating reliable and
comprehensive results across all metrics.

The experimental results of Long-CLIP as a feature extractor on
sentiment analysis and aesthetics assessment are shown in Table 3
and Table 4, respectively. The observation is consistent with that
or ResNet50+BERT. Our M2CAN is 12.2%, 3.5%, 4.8%, and 6.1%

for sentiment analysis, and 6.7%, 2.1%, 4.0%, and 5.3% for aesthet-
ics assessment higher than other methods on average accuracy in
Source-only, Single-best DA, Source-combined DA, and MSDA settings,
respectively.
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Table 2
Comparison with the state-of-the-art DA methods based on ResNet50+BERT for aesthetics assessment, measured by average accuracy (Avg.) (%), accuracy (Acc) (%), macro precision
(P) (%), macro recall (R) (%), and macro F1 (%). The best result is emphasized in bold and the second best method is emphasized in underline.

Standard Method Detail Avg. →AVA (→A) →PCCD (→P) →RPCD (→R)

Acc P R F1 Acc P R F1 Acc P R F1

Source-only Single-best – 66.3 68.0 69.1 66.6 66.3 64.7 65.3 64.4 64.1 66.2 68.9 68.6 66.2
Combined 66.7 70.5 74.3 71.9 70.1 66.1 67.4 66.0 65.4 63.5 72.3 68.0 62.7

Single-best DA

CDAN(NeurIPS2018)
MCC(ECCV2020)
SDAT(ICML2022)
ELS(ICLR2023)

CDAN+ELS 71.1 73.3 76.9 74.7 73.0 68.4 69.7 68.3 67.7 71.6 70.7 70.8 70.7
CDAN+MCC+ELS 72.6 76.0 76.6 76.6 76.0 69.2 70.7 69.1 68.6 72.7 72.7 73.4 72.5
CDAN+SDAT+ELS 70.9 77.9 77.9 78.1 77.9 68.2 69.0 68.2 67.9 66.5 67.4 66.8 66.2
CDAN+MCC+SDAT+ELS 70.8 77.1 77.6 77.6 77.1 68.7 68.9 68.7 68.6 66.6 70.2 69.4 66.5

xMUDA (CVPR2020)
Text-only 72.6 75.3 76.5 76.1 75.3 69.3 71.5 69.4 68.6 73.1 73.7 74.4 73.1
Image-only 54.4 54.2 60.4 50.2 35.6 50.5 63.5 50.8 35.6 58.6 29.3 50.0 36.9
Fusion 72.1 74.0 77.1 72.5 72.3 69.5 71.8 69.7 69.1 72.7 73.0 73.6 72.6

DsCML (ICCV2021)
Text-only 71.8 76.5 76.8 76.9 76.5 66.9 70.3 67.1 65.6 72.1 71.6 70.1 70.4
Image-only 54.5 53.7 51.3 50.5 42.7 51.2 52.1 50.3 36.5 58.6 29.3 50.0 36.9
Fusion 71.1 77.0 77.2 77.3 77.0 66.5 69.8 66.7 65.3 69.7 69.5 66.9 67.1

Source-combined DA

CDAN(NeurIPS2018)
MCC(ECCV2020)
SDAT(ICML2022)
ELS(ICLR2023)

CDAN+ELS 69.3 75.7 76.3 76.2 75.7 67.5 68.1 67.5 67.2 64.8 66.0 66.3 64.8
CDAN+MCC+ELS 71.9 77.3 77.7 76.7 76.9 67.8 68.9 67.7 67.2 70.7 73.1 73.0 70.7
CDAN+SDAT+ELS 69.4 76.0 77.5 76.9 76.0 68.5 68.8 68.4 68.3 63.6 65.9 65.8 63.6
CDAN+MCC+SDAT+ELS 70.7 70.4 73.5 71.7 70.0 68.8 69.3 68.9 68.7 73.0 75.3 75.3 73.0

xMUDA (CVPR2020)
Text-only 67.2 71.2 76.5 76.5 70.6 67.5 69.2 67.4 66.8 62.8 61.8 62.0 61.9
Image-only 53.9 54.0 47.0 49.9 35.5 50.3 25.2 50.0 33.5 57.3 54.2 53.4 52.4
Fusion 67.7 72.9 76.1 74.2 72.6 67.4 69.1 67.3 66.6 62.8 61.9 62.1 62.0

DsCML (ICCV2021)
Text-only 66.7 71.9 76.2 73.4 71.5 67.3 68.3 67.2 66.8 60.8 70.8 65.7 59.6
Image-only 52.3 54.6 54.2 51.2 42.4 50.5 58.4 50.8 36.3 51.8 53.7 53.3 50.9
Fusion 66.5 72.4 76.5 73.9 72.0 67.7 68.5 67.4 67.0 59.4 70.7 64.6 57.8

MSDA
MDAN (NeurIPS2018)

–
69.8 72.9 75.8 74.1 72.6 68.5 68.5 68.5 68.4 68.1 72.9 71.4 68.0

M3SDA (ICCV2019) 69.8 74.9 77.3 76.0 74.7 68.0 69.5 67.9 67.3 66.5 65.3 64.6 64.8
T-SVDNet (ICCV2021) 70.7 75.3 76.9 76.2 75.3 68.2 68.4 68.2 68.2 68.7 73.7 72.0 68.6

MSMMDA M2CAN (Ours) – 74.7 79.9 79.8 80.0 79.9 69.8 69.8 69.8 69.8 74.5 74.7 75.4 74.4

Oracle Oracle – 79.9 81.0 80.3 79.7 79.9 77.6 77.7 77.6 77.6 81.1 80.7 80.1 80.4
Table 3
Comparison with the state-of-the-art DA methods based on Long-CLIP for sentiment analysis, measured by average accuracy (Avg.) (%), accuracy (Acc) (%), macro precision (P)
%), macro recall (R) (%), and macro F1 (%). The best result is emphasized in bold and the second best method is emphasized in underline.

Standard Method Detail Avg. →TumEmo (→TE) →T4SA (→T) →Yelp (→Y)

Acc P R F1 Acc P R F1 Acc P R F1

Source-only Single-best – 55.3 55.3 56.1 55.3 55.1 58.2 59.1 58.2 55.8 52.5 51.7 52.5 51.6
Combined 54.3 54.6 56.0 54.6 54.4 60.2 61.1 60.2 53.3 48.1 47.7 48.1 47.7

Single-best DA

CDAN(NeurIPS2018)
MCC(ECCV2020)
SDAT(ICML2022)
ELS(ICLR2023)

CDAN+ELS 60.4 55.4 54.9 55.4 54.9 71.4 72.2 71.4 71.6 54.4 53.1 54.4 53.5
CDAN+MCC+ELS 62.0 56.5 55.5 56.5 55.8 74.7 75.4 74.7 74.8 54.9 53.5 54.9 53.5
CDAN+SDAT+ELS 63.1 55.8 55.2 55.8 55.4 77.9 78.3 77.9 77.8 55.5 54.3 55.5 54.6
CDAN+MCC+SDAT+ELS 64.0 57.0 56.3 57.0 56.4 79.7 79.6 79.7 79.4 55.3 54.1 55.3 54.4

xMUDA (CVPR2020)
Text-only 57.2 57.4 57.5 57.4 56.6 60.7 60.7 60.7 54.4 53.5 53.9 53.5 53.7
Image-only 44.6 51.9 52.3 51.9 51.3 42.9 43.3 42.9 40.7 38.9 39.3 38.9 38.1
Fusion 57.1 57.5 57.7 57.5 56.7 60.5 60.6 60.5 57.5 53.2 53.3 53.2 53.0

DsCML (ICCV2021)
Text-only 59.4 55.5 55.3 55.5 54.9 70.1 69.6 70.1 69.6 52.5 54.1 52.5 53.0
Image-only 40.4 41.1 41.1 41.1 41.0 40.7 43.2 40.7 37.4 39.4 39.8 39.4 38.4
Fusion 59.3 55.8 55.6 55.8 55.2 69.4 68.7 69.4 68.6 52.8 54.6 52.8 53.4

Source-combined DA

CDAN(NeurIPS2018)
MCC(ECCV2020)
SDAT(ICML2022)
ELS(ICLR2023)

CDAN+ELS 57.7 54.1 52.4 54.1 52.6 62.9 61.9 62.9 60.9 56.1 55.3 56.1 55.6
CDAN+MCC+ELS 62.7 57.6 57.0 57.6 57.1 75.8 75.8 75.8 75.7 54.7 54.1 54.7 54.4
CDAN+SDAT+ELS 60.7 57.4 56.1 57.4 56.3 70.7 70.4 70.7 70.3 54.1 53.8 54.1 53.9
CDAN+MCC+SDAT+ELS 61.7 59.5 58.8 59.5 58.8 71.1 70.7 71.1 70.4 54.6 55.2 54.6 54.9

xMUDA (CVPR2020)
Text-only 57.8 57.3 57.2 57.3 57.1 60.8 60.3 60.8 57.3 55.2 51.9 55.2 46.0
Image-only 44.2 51.5 51.5 51.5 51.2 43.1 43.5 43.1 41.4 38.1 42.9 38.1 32.5
Fusion 57.8 58.4 58.1 58.4 58.1 60.0 59.3 60.0 56.2 55.1 51.3 55.1 45.7

DsCML (ICCV2021)
Text-only 56.4 56.1 54.8 56.1 54.0 59.5 58.5 59.5 58.6 53.6 55.6 53.6 47.7
Image-only 39.4 40.9 42.1 40.9 40.4 40.9 41.0 40.9 40.8 36.5 35.7 36.5 30.6
Fusion 56.4 55.9 54.3 55.9 53.7 60.1 59.5 60.1 59.6 53.3 54.8 53.3 47.2

MSDA
MDAN (NeurIPS2018)

–
56.5 54.5 55.1 54.5 54.5 62.2 61.7 62.2 60.1 52.9 48.9 52.9 45.6

M3SDA (ICCV2019) 61.4 57.3 57.9 57.3 57.3 73.1 73.1 73.1 73.1 53.8 54.3 53.8 54.0
T-SVDNet (ICCV2021) 56.6 55.5 55.7 55.5 55.5 61.1 61.4 61.1 55.1 53.1 54.2 53.1 53.5

MSMMDA M2CAN (Ours) – 67.5 61.8 61.7 61.8 61.7 80.7 80.7 80.7 80.7 60.1 59.8 60.1 60.0

Oracle Oracle – 85.7 90.3 90.4 90.3 90.3 94.3 94.3 94.3 94.3 72.5 72.5 72.5 72.5
12 
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Table 4
Comparison with the state-of-the-art DA methods based on Long-CLIP for aesthetics assessment, measured by average accuracy (Avg.) (%), accuracy (Acc) (%), macro precision
(P) (%), macro recall (R) (%), and macro F1 (%). The best result is emphasized in bold and the second best method is emphasized in underline.

Standard Method Detail Avg. →AVA (→A) →PCCD (→P) →RPCD (→R)

Acc P R F1 Acc P R F1 Acc P R F1

Source-only Single-best – 66.5 70.7 70.9 71.0 70.7 67.5 67.5 67.5 67.5 61.2 60.8 61.1 60.7
Combined 66.1 73.8 74.8 74.5 73.8 67.1 67.2 67.1 66.8 57.5 62.0 60.8 57.1

Single-best DA

CDAN(NeurIPS2018)
MCC(ECCV2020)
SDAT(ICML2022)
ELS(ICLR2023)

CDAN+ELS 70.1 74.0 75.4 74.9 74.0 69.0 69.8 69.0 68.7 67.2 66.3 66.5 66.4
CDAN+MCC+ELS 70.2 77.5 77.3 77.4 77.3 67.9 67.9 67.9 67.9 65.2 65.3 65.8 65.0
CDAN+SDAT+ELS 67.5 69.3 71.9 70.5 69.1 67.8 69.0 67.8 67.3 65.3 64.3 64.4 64.3
CDAN+MCC+SDAT+ELS 65.9 69.0 75.3 70.8 68.0 67.1 68.2 67.1 66.6 61.6 66.3 64.9 61.4

xMUDA (CVPR2020)
Text-only 70.5 73.9 74.7 74.5 73.9 69.0 69.8 69.0 68.6 68.7 69.0 69.6 68.6
Image-only 63.2 69.2 69.0 69.1 69.0 62.8 63.0 62.8 62.7 57.6 54.6 53.7 52.7
Fusion 69.5 75.1 75.9 75.6 75.0 67.9 70.9 68.0 66.8 65.5 65.3 61.1 60.3

DsCML (ICCV2021)
Text-only 71.1 75.4 75.3 75.5 75.4 67.8 68.0 67.8 67.7 70.1 69.2 69.1 69.1
Image-only 55.0 51.8 53.6 53.2 50.8 54.7 55.1 54.7 53.9 58.6 54.5 51.0 42.3
Fusion 70.4 75.2 75.0 75.2 75.0 67.1 67.3 67.1 67.0 69.0 67.9 67.3 67.5

Source-combined DA

CDAN(NeurIPS2018)
MCC(ECCV2020)
SDAT(ICML2022)
ELS(ICLR2023)

CDAN+ELS 67.7 72.9 76.2 74.2 72.6 68.9 68.9 68.9 68.9 61.2 69.0 65.5 60.4
CDAN+MCC+ELS 69.2 77.1 78.0 77.8 77.1 68.7 69.0 68.8 68.6 61.8 66.4 65.1 61.5
CDAN+SDAT+ELS 65.9 69.2 71.2 70.5 69.0 69.5 69.7 69.5 69.5 59.0 68.2 63.8 57.8
CDAN+MCC+SDAT+ELS 65.6 68.5 69.4 68.9 68.5 68.6 68.6 68.6 68.6 59.6 58.0 57.7 57.8

xMUDA (CVPR2020)
Text-only 64.7 72.7 75.1 73.9 72.6 66.5 66.8 66.5 66.3 55.0 67.7 60.8 52.4
Image-only 63.5 70.4 70.4 70.6 70.4 62.1 63.7 62.2 61.1 57.9 55.7 55.3 55.2
Fusion 66.9 73.9 76.4 75.1 73.7 67.5 68.1 67.6 67.3 59.4 57.9 57.8 57.9

DsCML (ICCV2021)
Text-only 68.4 76.3 77.4 77.0 76.3 69.1 69.2 69.2 69.2 59.9 70.9 65.0 58.4
Image-only 53.7 53.3 54.0 53.9 53.2 54.7 55.2 54.8 53.7 53.0 50.5 50.5 50.3
Fusion 68.0 74.4 76.3 75.3 74.2 69.0 68.6 68.6 68.6 60.6 71.3 65.6 59.2

MSDA
MDAN (NeurIPS2018)

–
66.9 73.6 75.9 74.7 73.4 69.1 69.2 69.0 69.0 58.1 65.9 62.6 57.0

M3SDA (ICCV2019) 67.5 73.1 77.2 74.6 72.7 67.2 68.7 67.3 66.6 62.1 64.6 64.4 62.1
T-SVDNet (ICCV2021) 67.9 74.7 75.5 75.3 74.7 66.8 66.9 66.8 66.8 62.3 65.3 64.8 62.3

MSMMDA M2CAN (Ours) – 73.2 77.7 78.1 78.2 77.9 69.5 70.0 69.6 69.4 72.3 73.6 74.0 72.2

Oracle Oracle – 79.9 83.7 83.6 83.7 83.6 75.7 75.8 75.7 75.7 80.4 79.8 80.0 79.9
Table 5
Ablation study on main components in M2CAN, measured by accuracy (%). We conduct experiments on both sentiment analysis and aesthetics
assessment tasks. The best result is emphasized in bold.
Module →TE →T →Y Avg. →A →P →R Avg.

w/o 𝐶 𝑀 𝐶 𝐹 𝐴 63.0 80.5 58.3 67.3 78.3 67.8 71.0 72.4
w/ 𝐶 𝑀 𝐶 𝐹 𝐴, w/o Dynamic 62.8 82.1 58.8 67.9 76.7 69.0 73.6 73.1
w/o 𝐶 𝐷 𝐶 𝐹 𝐴 62.3 82.0 59.9 68.1 78.4 69.2 73.4 73.7
w/o 𝐶 𝐷 𝐴𝐹 𝐴 62.3 84.5 63.0 69.9 78.3 67.8 74.4 73.5
w/o 𝑀 𝐶 𝐶 63.4 83.9 59.9 69.1 78.5 68.1 71.2 72.6
w/o UACR 52.8 66.9 47.9 55.9 66.7 65.3 61.4 64.5

M2CAN 63.8 84.7 63.7 70.7 79.9 69.8 74.5 74.7
Table 6
Ablation study on alternative components in M2CAN, measured by accuracy (%). We conduct experiments on both sentiment analysis and
aesthetics assessment tasks. The best result is emphasized in bold.
Type Detail →TE →T →Y Avg. →A →P →R Avg.

Feature Fusion concat instead 62.3 83.1 63.6 69.7 79.0 69.0 69.7 72.6
add instead 63.2 83.4 58.4 68.3 79.1 69.4 67.7 72.1

Pseudo Label Selection classification score 62.4 84.7 59.4 68.8 78.5 67.5 71.7 72.6
uncertainty score 62.4 78.7 59.7 66.9 77.7 67.5 69.2 71.5

Warm-up Method source-combined 63.2 79.3 59.8 67.4 78.3 67.9 71.0 72.4

Full M2CAN 63.8 84.7 63.7 70.7 79.9 69.8 74.5 74.7
C
t
t
e
g
a
a
t
c
r

4.3. Ablation study

We conduct a series of ablation experiments based on
esNet50+BERT on both the sentiment analysis and aesthetics assess-
ent tasks to demonstrate the effectiveness of the different components

within M2CAN. Our ablation study is organized as follows: (1) analysis
of the effectiveness of individual components; (2) sensitivity analysis
of hyperparameters.

Analysis of the effectiveness of individual components. The
esults of our ablation study on the components of the proposed M2CAN
re presented in Tables 5 and 6.
 r
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(1) The proposed three feature-level alignments, i.e., CMCFA, CD-
FA, and CDAFA are all effective. When we omit any one of these
hree alignment terms, there is a drop in accuracy. CMCFA aims
o perform contrastive alignment between different modalities within
ach domain to reduce the multi-modal gap. After removing it, the
ap between multi-modalities is not well alleviated, resulting in an
verage accuracy decrease of 3.4% and 2.3% in sentiment analysis and
esthetics assessment, respectively. Especially in sentiment analysis,
here are many cases of modal mismatch. CDCFA aims to perform
ontrastive alignment between different domains of each modality to
educe the multi-domain gap. When it is removed, the average accu-

acy decreases by 2.6% and 1.0% on two tasks, respectively. This is
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Fig. 11. Ablation study on the hyperparameters in M2CAN on the aesthetics assessment task, measured by average accuracy (%), including loss weights 𝛼, 𝛽, and 𝛾.
due to the gap between different domains within the same modality,
such as the different comment styles in sentiment analysis, which is
not well considered. CDAFA aims to perform adversarial alignment
on fused multi-modal representations between multiple domains to
alleviate the domain gap in multi-modal features. When it is excluded,
the average accuracy decreases by 0.8% and 1.2%, respectively. This
is because the final task classification is performed on multi-modal
features, and ignoring domain gaps on these features can result in
sub-optimal performance.

(2) We observe that the dynamic 𝐶 𝑀 𝐶 𝐹 𝐴 is highly effective. If
dynamic 𝐶 𝑀 𝐶 𝐹 𝐴 is removed and only ordinary 𝐶 𝑀 𝐶 𝐹 𝐴 is used,
the average accuracy will decrease by 2.8% in sentiment analysis
and 1.6% in aesthetics assessment. Because, in multi-modal settings,
modality mismatch is a pervasive challenge, and in multi-source set-
tings, this issue arises not just within a single domain but also across
domains. Therefore, the proposed dynamic 𝐶 𝑀 𝐶 𝐹 𝐴 adaptively adjusts
the cross-modal contrastive feature alignment loss based on the differ-
ences predicted by individual headers of each modality, alleviating the
interference of modality mismatch.

(3) After removing MCC [103], the average accuracy decreases by
1.6% and 2.1%, respectively. This is because MCC can alleviate class
confusion and help the model better identify ambiguous samples.

(4) The ablation study demonstrates that UACR is effective, which
utilizes both classification score and uncertainty score to select tar-
get samples to perform self-learning and join the alignments with
source samples. If all target domain samples are directly aligned with
the source domain samples in the early stage of model training, the
samples with huge differences between the target domain and the
source domains will affect the domain adaptation process of the model.
Therefore, the performance decreases substantially.

(5) When we replace the multi-modal fusion module MLB [111]
with concatenation or addition, the performance decreases, indicating
that better multi-modal fusion modules are beneficial for the MSM-
MDA task. However, the performance degradation is not noticeable,
which also indicates that our M2CAN exhibits robustness to different
fusion modules. Using classification score or uncertainty score alone
to select pseudo labels leads to a decrease in performance, which
indicates that the strategy of integrating the two in Eq. (18) is effec-
tive. When we change the warm-up method before generating pseudo
labels for the target domain from aligned between source domains in
M2CAN to source combined without alignment, the model performance
also decreases. This is because there are domain gaps between source
domains.

Sensitivity analysis of hyperparameters. We conduct an ablation
study on the aesthetics assessment task, focusing on the loss weights 𝛼,
𝛽, and 𝛾. The experimental results are depicted in Fig. 11. As observed,
M2CAN remains relatively robust to changes in hyperparameters and
most of the time does not particularly affect the results, with an
accuracy difference limited to 1%.
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4.4. Visualization

We conduct case studies on six datasets based on ResNet50 +
BERT, including source-only method, UDA method CDAN [7]+ELS [8],
MMDA method DsCML [3], MSDA method MDAN [81], and the pro-
posed M2CAN, as shown in Fig. 12. From the case study, these phenom-
ena can be observed: (1) The huge gap between multiple multi-modal
domains can lead to a lack of good generalization of the model. For
example, in sentiment analysis tasks, neutrality is easily misjudged. In
TumEmo [44], neutrality is often explicitly expressed, in T4SA [45],
neutrality is expressed in a plain manner, while in Yelp [46], neutrality
is usually caused by mixed reviews. Our method, benefiting from
the joint effect of four feature-level and label space-level alignments,
reduces the multi-modal gap and multi-domain gap in the MSMMDA
task, achieves better generalization, and can more accurately identify
difficult-to-distinguish examples. (2) Modal mismatch is common in
the MSMMDA task. For example, in the first sample of → T4SA, the
image expresses positive sentiment, while the text expresses negative
sentiment. In the second sample from → PCCD, the image is of high
quality, but the evaluation tends to be negative. The proposed dynam-
ically adjusted CMCFA effectively alleviates this issue by allowing the
model to first learn samples with consistent modalities to achieve initial
convergence, and then learn samples with inconsistent modalities.

We further visualize the features of source and target samples
before and after adaptation using different DA methods based on
ResNet50+BERT. Using t-SNE [113] to reduce the dimension of the
samples’ multi-modal fused features, we plot the learned features on a
2-dimensional plane, as depicted in Fig. 13. From the visualizations, it
is evident that, before adaptation (Source-only), the features of source
and target domains can be discriminated because of the existence of
domain gap (the distribution areas of red, blue, and green points are
easily distinguished in Fig. 13(a)). After domain adaptation by UDA
in Fig. 13(b), MMDA in Fig. 13(c) and MSDA in Fig. 13(d), the gaps
between multiple source domains and target domains are alleviated.
However, these methods still cannot achieve satisfactory results due to
the lack of comprehensive consideration of the multiple modal gaps and
domain gaps in the MSMMDA tasks. M2CAN in Fig. 13(e) effectively
aligns the multi-modal fusion feature space between multiple source
and target domains, reducing the modal and domain gaps between
them. Meanwhile, it also maintains the separability between classes,
demonstrating the superiority of M2CAN over the MSMMDA task.

4.5. Limitation discussion

Because of the absence of datasets collected for the MSMMDA
task, we only verify the effectiveness of the proposed M2CAN on
two combined datasets with three different domains for visual-textual
classification tasks. But in reality, M2CAN can be easily applied to other
tasks. Meanwhile, M2CAN can be viewed as a strong baseline for future
research on MSMMDA. Some parts of our proposed framework can be
replaced with more powerful modules, such as task-related backbones
and losses. It is easy to extend MSMMDA to other tasks such as object
detection and semantic segmentation, if there are relevant datasets
available.
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Fig. 12. Sample analysis. Next to each sample, from top to bottom, are the predicted results of Source-only, CDAN [7]+ELS [8] (UDA), DsCML [3] (MMDA), MDAN [81] (MSDA),
and M2CAN (Ours)/Ground Truth using ResNet50+BERT as the feature extractor. Part of the text in the sample is omitted.
5. Conclusion

In this paper, we study a novel and practical domain adaptation
setting: multi-source multi-modal domain adaptation (MSMMDA). To
address the modal gaps and domain gaps in the MSMMDA task, we
propose a Multi-source Multi-modal Contrastive Adversarial Network
15 
(M2CAN) to align the multiple source and target domains on both fea-
ture level and label space level. M2CAN learns domain-invariant multi-
modal representations by three different feature-level alignment strate-
gies: cross-modal contrastive feature alignment (CMCFA) within each
domain, cross-domain contrastive feature alignment (CDCFA) for each
modality, and cross-domain adversarial feature alignment (CDAFA)
on the fused multi-modal representations. Further, M2CAN conducts



S. Zhao et al. Information Fusion 117 (2025) 102862 
Fig. 13. t-SNE visualization of DA methods on →T4SA settings in the sentiment analysis task. Red and blue respectively represent two source domain features and green represents
target domain features. Dots, crosses, and squares represent positive, neutral, and negative categories, respectively. For example, 𝑠+1 represents the positive samples in source domain
1.
a label space-level alignment, uncertainty-aware classifier refinement
(UACR), which generates and selects pseudo labels in the target domain
to perform self-learning and participate in the alignments with source
domains. After such alignment, both the source and target domains
are mapped into a shared multi-modal representation space and the
trained task classifiers can be better adapted to the target domain. Ex-
tensive experiments on two tasks, i.e., sentiment analysis and aesthetics
assessment, demonstrate the superiority of M2CAN over the previous
state-of-the-art DA methods.

CRediT authorship contribution statement

Sicheng Zhao: Writing – original draft, Visualization, Validation,
Software, Resources, Project administration, Methodology, Investiga-
tion, Funding acquisition, Formal analysis, Data curation, Conceptu-
alization. Jing Jiang: Writing – original draft, Validation, Software,
Methodology, Formal analysis, Data curation. Wenbo Tang: Writing
– review & editing, Software, Funding acquisition, Formal analysis,
Data curation. Jiankun Zhu: Writing – review & editing, Validation,
Software, Data curation. Hui Chen: Writing – review & editing, Val-
idation, Resources, Conceptualization. Pengfei Xu: Writing – review
& editing, Supervision, Project administration, Funding acquisition,
Conceptualization. Björn W. Schuller: Writing – review & editing,
Supervision, Project administration, Funding acquisition, Formal anal-
ysis, Conceptualization. Jianhua Tao: Writing – review & editing,
Supervision, Resources, Project administration, Funding acquisition,
Conceptualization. Hongxun Yao: Writing – review & editing, Super-
vision, Resources, Project administration, Funding acquisition, Concep-
tualization. Guiguang Ding: Writing – review & editing, Supervision,
Resources, Project administration, Funding acquisition, Conceptualiza-
tion.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work is supported by CCF-DiDi GAIA Collaborative Research
Funds, China and the National Natural Science Foundation of China
(Nos. U21B2010, 62441202).

Data availability

Data will be made available on request.

References

[1] Y. Wang, Survey on deep multi-modal data analytics: Collaboration, rivalry, and
fusion, ACM Trans. Multimed. Comput. Commun. Appl. 17 (1s) (2021) 1–25.
16 
[2] M. Jaritz, T.-H. Vu, R.d. Charette, E. Wirbel, P. Pérez, Xmuda: Cross-
modal unsupervised domain adaptation for 3d semantic segmentation, in:
IEEE Conference on Computer Vision and Pattern Recognition, 2020, pp.
12605–12614.

[3] D. Peng, Y. Lei, W. Li, P. Zhang, Y. Guo, Sparse-to-dense feature matching: Intra
and inter domain cross-modal learning in domain adaptation for 3d semantic
segmentation, in: IEEE International Conference on Computer Vision, 2021, pp.
7108–7117.

[4] S. Zhao, G. Jia, J. Yang, G. Ding, K. Keutzer, Emotion recognition from multiple
modalities: Fundamentals and methodologies, IEEE Signal Process. Mag. 38 (6)
(2021) 59–73.

[5] S. Swetha, M.N. Rizve, N. Shvetsova, H. Kuehne, M. Shah, Preserving modality
structure improves multi-modal learning, in: IEEE International Conference on
Computer Vision, 2023, pp. 21993–22003.

[6] R. Shao, T. Wu, Z. Liu, Detecting and grounding multi-modal media manipula-
tion, in: IEEE Conference on Computer Vision and Pattern Recognition, 2023,
pp. 6904–6913.

[7] M. Long, Z. Cao, J. Wang, M.I. Jordan, Conditional adversarial domain
adaptation, in: Advances in Neural Information Processing Systems, 2018, pp.
1640–1650.

[8] Y. Zhang, J. Liang, Z. Zhang, L. Wang, R. Jin, T. Tan, et al., Free lunch for
domain adversarial training: Environment label smoothing, in: International
Conference on Learning Representations, 2023.

[9] X. Peng, Q. Bai, X. Xia, Z. Huang, K. Saenko, B. Wang, Moment matching for
multi-source domain adaptation, in: IEEE International Conference on Computer
Vision, 2019, pp. 1406–1415.

[10] S. Zhao, X. Yue, S. Zhang, B. Li, H. Zhao, B. Wu, R. Krishna, J.E. Gonzalez,
A.L. Sangiovanni-Vincentelli, S.A. Seshia, et al., A review of single-source deep
unsupervised visual domain adaptation, IEEE Trans. Neural Netw. Learn. Syst.
33 (2) (2022) 473–493.

[11] L. Yang, Y. Balaji, S.-N. Lim, A. Shrivastava, Curriculum manager for source
selection in multi-source domain adaptation, in: European Conference on
Computer Vision, 2020, pp. 608–624.

[12] T. Xu, W. Chen, W. Pichao, F. Wang, H. Li, R. Jin, CDTrans: Cross-domain
transformer for unsupervised domain adaptation, in: International Conference
on Learning Representations, 2021.

[13] J. Zhu, H. Bai, L. Wang, Patch-mix transformer for unsupervised domain
adaptation: A game perspective, in: IEEE Conference on Computer Vision and
Pattern Recognition, 2023, pp. 3561–3571.

[14] M. Long, H. Zhu, J. Wang, M.I. Jordan, Deep transfer learning with joint
adaptation networks, in: International Conference on Machine Learning, 2017,
pp. 2208–2217.

[15] Y.-W. Luo, C.-X. Ren, Conditional bures metric for domain adaptation, in:
IEEE Conference on Computer Vision and Pattern Recognition, 2021, pp.
13989–13998.

[16] Z. Pei, Z. Cao, M. Long, J. Wang, Multi-adversarial domain adaptation, in: AAAI
Conference on Artificial Intelligence, 2018, pp. 3934–3941.

[17] Y. Du, Z. Tan, Q. Chen, X. Zhang, Y. Yao, C. Wang, Dual adversarial domain
adaptation, 2020, arXiv:2001.00153.

[18] J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. Efros, T. Dar-
rell, Cycada: Cycle-consistent adversarial domain adaptation, in: International
Conference on Machine Learning, Pmlr, 2018, pp. 1989–1998.

[19] T. Kim, M. Jeong, S. Kim, S. Choi, C. Kim, Diversify and match: A domain adap-
tive representation learning paradigm for object detection, in: IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 12456–12465.

[20] K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, D. Erhan, Domain
separation networks, in: Advances in Neural Information Processing Systems,
2016, pp. 343–351.

[21] X. Chen, H. Li, C. Zhou, X. Liu, D. Wu, G. Dudek, Fido: Ubiquitous fine-grained
wifi-based localization for unlabelled users via domain adaptation, in: The Web
Conference, 2020, pp. 23–33.

[22] Y. Wang, S. Qiu, D. Li, C. Du, B.-L. Lu, H. He, Multi-modal domain adaptation
variational autoencoder for eeg-based emotion recognition, IEEE J. Automat.
Sin. 9 (9) (2022) 1612–1626.

http://refhub.elsevier.com/S1566-2535(24)00640-7/sb1
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb1
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb1
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb2
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb2
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb2
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb2
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb2
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb2
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb2
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb3
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb3
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb3
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb3
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb3
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb3
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb3
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb4
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb4
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb4
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb4
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb4
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb5
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb5
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb5
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb5
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb5
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb6
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb6
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb6
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb6
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb6
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb7
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb7
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb7
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb7
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb7
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb8
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb8
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb8
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb8
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb8
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb9
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb9
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb9
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb9
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb9
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb10
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb10
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb10
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb10
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb10
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb10
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb10
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb11
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb11
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb11
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb11
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb11
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb12
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb12
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb12
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb12
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb12
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb13
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb13
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb13
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb13
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb13
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb14
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb14
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb14
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb14
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb14
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb15
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb15
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb15
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb15
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb15
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb16
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb16
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb16
http://arxiv.org/abs/2001.00153
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb18
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb18
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb18
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb18
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb18
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb19
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb19
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb19
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb19
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb19
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb20
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb20
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb20
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb20
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb20
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb21
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb21
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb21
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb21
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb21
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb22
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb22
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb22
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb22
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb22


S. Zhao et al. Information Fusion 117 (2025) 102862 
[23] S. Hu, F. Bonardi, S. Bouchafa, D. Sidibé, Multi-modal unsupervised domain
adaptation for semantic image segmentation, Pattern Recognit. 137 (2023)
109299.

[24] S. Zhao, G. Wang, S. Zhang, Y. Gu, Y. Li, Z. Song, P. Xu, R. Hu, H. Chai,
K. Keutzer, Multi-source distilling domain adaptation, in: AAAI Conference on
Artificial Intelligence, 2020, pp. 12975–12983.

[25] R. Xu, Z. Chen, W. Zuo, J. Yan, L. Lin, Deep cocktail network: Multi-source
unsupervised domain adaptation with category shift, in: IEEE Conference on
Computer Vision and Pattern Recognition, 2018.

[26] S. Rakshit, B. Banerjee, G. Roig, S. Chaudhuri, Unsupervised multi-source
domain adaptation driven by deep adversarial ensemble learning, Pattern
Recogn. (2019) 485–498.

[27] P. Russo, T. Tommasi, B. Caputo, Towards multi-source adaptive semantic
segmentation, in: International Conference on Image Analysis and Processing,
2019, pp. 292–301.

[28] D.J. Shah, Multi-Source Domain Adaptation with Mixture of Experts (Ph.D.
thesis), Massachusetts Institute of Technology, 2019.

[29] X. Yao, S. Zhao, P. Xu, J. Yang, Multi-source domain adaptation for object
detection, in: IEEE/CVF International Conference on Computer Vision, 2021,
pp. 3273–3282.

[30] R. Li, X. Jia, J. He, S. Chen, Q. Hu, T-svdnet: Exploring high-order proto-
typical correlations for multi-source domain adaptation, in: IEEE International
Conference on Computer Vision, 2021, pp. 9991–10000.

[31] D. Zhang, M. Ye, Y. Liu, L. Xiong, L. Zhou, Multi-source unsupervised domain
adaptation for object detection, Inf. Fusion 78 (2022) 138–148.

[32] T. Gao, J. Yang, Q. Tang, A multi-source domain information fusion network
for rotating machinery fault diagnosis under variable operating conditions, Inf.
Fusion 106 (2024) 102278.

[33] J. Jiang, S. Zhao, J. Zhu, W. Tang, Z. Xu, J. Yang, P. Xu, H. Yao, Multi-
source domain adaptation for panoramic semantic segmentation, 2024, arXiv:
2408.16469.

[34] S. Zhao, H. Yao, C. Lin, Y. Gao, G. Ding, Multi-source-free domain adaptive
object detection, Int. J. Comput. Vis. (2024).

[35] H. Guo, R. Pasunuru, M. Bansal, Multi-source domain adaptation for text classi-
fication via distancenet-bandits, in: AAAI Conference on Artificial Intelligence,
2020, pp. 7830–7838.

[36] Z. Chen, P. Wei, J. Zhuang, G. Li, L. Lin, Deep CockTail networks: A universal
framework for visual multi-source domain adaptation, Int. J. Comput. Vis. 129
(8) (2021) 2328–2351.

[37] C. Lin, S. Zhao, L. Meng, T.-S. Chua, Multi-source domain adaptation for visual
sentiment classification, in: AAAI Conference on Artificial Intelligence, 2020,
pp. 2661–2668.

[38] S. Zhao, B. Li, P. Xu, X. Yue, G. Ding, K. Keutzer, MADAN: Multi-source
adversarial domain aggregation network for domain adaptation, Int. J. Comput.
Vis. 129 (8) (2021) 2399–2424.

[39] S. Zhao, Y. Xiao, J. Guo, X. Yue, J. Yang, R. Krishna, P. Xu, K. Keutzer,
Curriculum cyclegan for textual sentiment domain adaptation with multiple
sources, in: The Web Conference, 2021, pp. 541–552.

[40] N. Venkat, J.N. Kundu, D. Singh, A. Revanur, et al., Your classifier can secretly
suffice multi-source domain adaptation, in: Advances in Neural Information
Processing Systems, Vol. 33, 2020, pp. 4647–4659.

[41] K. Li, J. Lu, H. Zuo, G. Zhang, Dynamic classifier alignment for unsupervised
multi-source domain adaptation, IEEE Trans. Knowl. Data Eng. 35 (5) (2022)
4727–4740.

[42] A. Belal, A. Meethal, F.P. Romero, M. Pedersoli, E. Granger, Multi-source
domain adaptation for object detection with prototype-based mean teacher,
in: IEEE Winter Conference on Applications of Computer Vision, 2024, pp.
1277–1286.

[43] X. Ma, T. Zhang, C. Xu, Deep multi-modality adversarial networks for
unsupervised domain adaptation, IEEE Trans. Multimed. 21 (9) (2019)
2419–2431.

[44] X. Yang, S. Feng, D. Wang, Y. Zhang, Image-text multimodal emotion classi-
fication via multi-view attentional network, IEEE Trans. Multimed. 23 (2020)
4014–4026.

[45] L. Vadicamo, F. Carrara, A. Cimino, S. Cresci, F. Dell’Orletta, F. Falchi, M.
Tesconi, Cross-media learning for image sentiment analysis in the wild, in: IEEE
International Conference on Computer Vision Workshops, 2017, pp. 308–317.

[46] Q.-T. Truong, H.W. Lauw, Vistanet: Visual aspect attention network for multi-
modal sentiment analysis, in: AAAI Conference on Artificial Intelligence, 2019,
pp. 305–312.

[47] Y. Zhou, X. Lu, J. Zhang, J.Z. Wang, Joint image and text representation for
aesthetics analysis, in: ACM International Conference on Multimedia, 2016, pp.
262–266.

[48] K.-Y. Chang, K.-H. Lu, C.-S. Chen, Aesthetic critiques generation for photos, in:
IEEE International Conference on Computer Vision, 2017, pp. 3514–3523.

[49] D. Vera Nieto, L. Celona, C. Fernandez Labrador, Understanding aesthetics with
language: A photo critique dataset for aesthetic assessment, in: Advances in
Neural Information Processing Systems, 2022, pp. 34148–34161.

[50] T. Baltrušaitis, C. Ahuja, L.-P. Morency, Multimodal machine learning: A survey
and taxonomy, IEEE Trans. Pattern Anal. Mach. Intell. 41 (2) (2019) 423–443.
17 
[51] S.K. D’mello, J. Kory, A review and meta-analysis of multimodal affect detection
systems, ACM Comput. Surv. 47 (3) (2015) 1–36.

[52] C. Hazirbas, L. Ma, C. Domokos, D. Cremers, Fusenet: Incorporating depth into
semantic segmentation via fusion-based cnn architecture, in: Asian Conference
on Computer Vision, 2017, pp. 213–228.

[53] Y. Sun, W. Zuo, M. Liu, RTFNet: RGB-thermal fusion network for seman-
tic segmentation of urban scenes, IEEE Robot. Autom. Lett. 4 (3) (2019)
2576–2583.

[54] H. Sun, J. Liu, Y.-W. Chen, L. Lin, Modality-invariant temporal representation
learning for multimodal sentiment classification, Inf. Fusion 91 (2023) 504–514.

[55] Y. Oh, S. Kim, Multi-modal lifelog data fusion for improved human activity
recognition: A hybrid approach, Inf. Fusion 110 (2024) 102464.

[56] S. Xiong, G. Zhang, V. Batra, L. Xi, L. Shi, L. Liu, TRIMOON: Two-round
inconsistency-based multi-modal fusion network for fake news detection, Inf.
Fusion 93 (2023) 150–158.

[57] Y. Lin, D. Guo, Y. Wu, L. Li, E.Q. Wu, W. Ge, Fuel consumption prediction for
pre-departure flights using attention-based multi-modal fusion, Inf. Fusion 101
(2024) 101983.

[58] C. Lu, J. Yin, H. Yang, S. Sun, Enhancing multi-modal fusion in visual dialog
via sample debiasing and feature interaction, Inf. Fusion 107 (2024) 102302.

[59] M. Long, Y. Cao, J. Wang, M. Jordan, Learning transferable features with deep
adaptation networks, in: International Conference on Machine Learning, 2015,
pp. 97–105.

[60] D. Mekhazni, A. Bhuiyan, G. Ekladious, E. Granger, Unsupervised domain
adaptation in the dissimilarity space for person re-identification, in: European
Conference on Computer Vision, 2020, pp. 159–174.

[61] H. Huang, Q. Liu, Domain structure-based transfer learning for cross-domain
word representation, Inf. Fusion 76 (2021) 145–156.

[62] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, A. Smola, A kernel method
for the two-sample-problem, in: Advances in Neural Information Processing
Systems, 2006, pp. 513–520.

[63] B. Sun, J. Feng, K. Saenko, Return of frustratingly easy domain adaptation, in:
AAAI Conference on Artificial Intelligence, 2016, pp. 2058–2065.

[64] B. Sun, K. Saenko, Deep coral: Correlation alignment for deep domain
adaptation, in: European Conference on Computer Vision, 2016, pp. 443–450.

[65] Y. Wang, W. Li, D. Dai, L. Van Gool, Deep domain adaptation by geodesic
distance minimization, in: IEEE International Conference on Computer Vision
Workshops, 2017, pp. 2651–2657.

[66] P. Morerio, V. Murino, Correlation alignment by riemannian metric for domain
adaptation, 2017, arXiv:1705.08180.

[67] Y. Zhang, N. Wang, S. Cai, L. Song, Unsupervised domain adaptation by mapped
correlation alignment, IEEE Access 6 (2018) 44698–44706.

[68] C. Chen, Z. Fu, Z. Chen, S. Jin, Z. Cheng, X. Jin, X.-S. Hua, Homm: Higher-order
moment matching for unsupervised domain adaptation, in: AAAI Conference on
Artificial Intelligence, 2020, pp. 3422–3429.

[69] G. Kang, L. Jiang, Y. Yang, A.G. Hauptmann, Contrastive adaptation network
for unsupervised domain adaptation, in: IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 4893–4902.

[70] C. Li, N. Bian, Z. Zhao, H. Wang, B.W. Schuller, Multi-view domain-adaptive
representation learning for EEG-based emotion recognition, Inf. Fusion 104
(2024) 102156.

[71] A. Qayyum, I. Razzak, M. Mazher, X. Lu, S.A. Niederer, Unsupervised unpaired
multiple fusion adaptation aided with self-attention generative adversarial
network for scar tissues segmentation framework, Inf. Fusion 106 (2024)
102226.

[72] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, R. Webb, Learning
from simulated and unsupervised images through adversarial training, in: IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp. 2107–2116.

[73] G. Kang, L. Zheng, Y. Yan, Y. Yang, Deep adversarial attention alignment for un-
supervised domain adaptation: the benefit of target expectation maximization,
in: European Conference on Computer Vision, 2018, pp. 401–416.

[74] M. Ghifary, W.B. Kleijn, M. Zhang, D. Balduzzi, W. Li, Deep reconstruction-
classification networks for unsupervised domain adaptation, in: European
Conference on Computer Vision, 2016, pp. 597–613.

[75] P. Singhal, R. Walambe, S. Ramanna, K. Kotecha, Domain adaptation:
Challenges, methods, datasets, and applications, IEEE Access 11 (2023)
6973–7020.

[76] H. Zhang, S. Qian, Q. Fang, C. Xu, Multimodal disentangled domain adaption
for social media event rumor detection, IEEE Trans. Multimed. 23 (2020)
4441–4454.

[77] H. Li, Y. Kim, C.-H. Kuo, S. Narayanan, Acted vs. improvised: Domain
adaptation for elicitation approaches in audio-visual emotion recognition, in:
International Conference on Spoken Language Processing, 2021.

[78] F. Qi, X. Yang, C. Xu, A unified framework for multimodal domain adaptation,
in: ACM International Conference on Multimedia, 2018, pp. 429–437.

[79] J. Munro, D. Damen, Multi-modal domain adaptation for fine-grained action
recognition, in: IEEE Conference on Computer Vision and Pattern Recognition,
2020, pp. 122–132.

[80] S. Zhao, H. Chen, H. Hu, P. Xu, G. Ding, More is better: Deep domain
adaptation with multiple sources, in: International Joint Conference on Artificial
Intelligence, 2024, pp. 8354–8362.

http://refhub.elsevier.com/S1566-2535(24)00640-7/sb23
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb23
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb23
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb23
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb23
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb24
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb24
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb24
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb24
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb24
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb25
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb25
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb25
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb25
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb25
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb26
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb26
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb26
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb26
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb26
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb27
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb27
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb27
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb27
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb27
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb28
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb28
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb28
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb29
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb29
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb29
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb29
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb29
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb30
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb30
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb30
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb30
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb30
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb31
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb31
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb31
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb32
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb32
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb32
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb32
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb32
http://arxiv.org/abs/2408.16469
http://arxiv.org/abs/2408.16469
http://arxiv.org/abs/2408.16469
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb34
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb34
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb34
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb35
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb35
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb35
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb35
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb35
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb36
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb36
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb36
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb36
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb36
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb37
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb37
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb37
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb37
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb37
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb38
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb38
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb38
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb38
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb38
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb39
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb39
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb39
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb39
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb39
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb40
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb40
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb40
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb40
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb40
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb41
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb41
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb41
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb41
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb41
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb42
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb42
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb42
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb42
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb42
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb42
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb42
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb43
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb43
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb43
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb43
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb43
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb44
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb44
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb44
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb44
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb44
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb45
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb45
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb45
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb45
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb45
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb46
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb46
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb46
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb46
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb46
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb47
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb47
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb47
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb47
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb47
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb48
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb48
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb48
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb49
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb49
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb49
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb49
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb49
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb50
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb50
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb50
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb51
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb51
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb51
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb52
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb52
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb52
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb52
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb52
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb53
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb53
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb53
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb53
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb53
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb54
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb54
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb54
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb55
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb55
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb55
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb56
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb56
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb56
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb56
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb56
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb57
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb57
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb57
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb57
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb57
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb58
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb58
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb58
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb59
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb59
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb59
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb59
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb59
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb60
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb60
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb60
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb60
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb60
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb61
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb61
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb61
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb62
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb62
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb62
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb62
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb62
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb63
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb63
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb63
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb64
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb64
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb64
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb65
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb65
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb65
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb65
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb65
http://arxiv.org/abs/1705.08180
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb67
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb67
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb67
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb68
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb68
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb68
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb68
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb68
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb69
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb69
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb69
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb69
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb69
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb70
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb70
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb70
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb70
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb70
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb71
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb71
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb71
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb71
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb71
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb71
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb71
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb72
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb72
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb72
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb72
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb72
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb73
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb73
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb73
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb73
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb73
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb74
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb74
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb74
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb74
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb74
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb75
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb75
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb75
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb75
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb75
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb76
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb76
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb76
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb76
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb76
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb77
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb77
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb77
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb77
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb77
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb78
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb78
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb78
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb79
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb79
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb79
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb79
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb79
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb80
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb80
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb80
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb80
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb80


S. Zhao et al. Information Fusion 117 (2025) 102862 
[81] H. Zhao, S. Zhang, G. Wu, J.M. Moura, J.P. Costeira, G.J. Gordon, Adver-
sarial multiple source domain adaptation, in: Advances in Neural Information
Processing Systems, 2018, pp. 8568–8579.

[82] M.-Y. Liu, O. Tuzel, Coupled generative adversarial networks, in: Advances in
Neural Information Processing Systems, 2016, pp. 469–477.

[83] S. Zhao, B. Li, X. Yue, Y. Gu, P. Xu, R. Hu, H. Chai, K. Keutzer, Multi-
source domain adaptation for semantic segmentation, in: Advances in Neural
Information Processing Systems, 2019, pp. 7285–7298.

[84] J.-Y. Zhu, T. Park, P. Isola, A.A. Efros, Unpaired image-to-image translation
using cycle-consistent adversarial networks, in: IEEE International Conference
on Computer Vision, 2017, pp. 2223–2232.

[85] J. He, X. Jia, S. Chen, J. Liu, Multi-source domain adaptation with collaborative
learning for semantic segmentation, in: IEEE Conference on Computer Vision
and Pattern Recognition, 2021, pp. 11008–11017.

[86] Y. Zhu, F. Zhuang, D. Wang, Aligning domain-specific distribution and classifier
for cross-domain classification from multiple sources, in: AAAI Conference on
Artificial Intelligence, 2019, pp. 5989–5996.

[87] V.-A. Nguyen, T. Nguyen, T. Le, Q.H. Tran, D. Phung, Stem: An approach
to multi-source domain adaptation with guarantees, in: IEEE International
Conference on Computer Vision, 2021, pp. 9352–9363.

[88] P. Karisani, Multiple-source domain adaptation via coordinated domain en-
coders and paired classifiers, in: AAAI Conference on Artificial Intelligence,
2022, pp. 7087–7095.

[89] K. Li, J. Lu, H. Zuo, G. Zhang, Multi-source contribution learning for domain
adaptation, IEEE Trans. Neural Netw. Learn. Syst. 33 (10) (2021) 5293–5307.

[90] Z. Wang, C. Zhou, B. Du, F. He, Self-paced supervision for multi-source domain
adaptation., in: International Joint Conference on Artificial Intelligence, 2022,
pp. 3551–3557.

[91] L. Zhou, M. Ye, D. Zhang, C. Zhu, L. Ji, Prototype-based multisource domain
adaptation, IEEE Trans. Neural Netw. Learn. Syst. 33 (10) (2021) 5308–5320.

[92] Y.-H. Liu, C.-X. Ren, A two-way alignment approach for unsupervised
multi-source domain adaptation, Pattern Recognit. 124 (2022) 108430.

[93] R. Xia, C. Zong, X. Hu, E. Cambria, Feature ensemble plus sample selection:
domain adaptation for sentiment classification, IEEE Intell. Syst. 28 (3) (2013)
10–18.

[94] J. Li, K. Lu, Z. Huang, L. Zhu, H.T. Shen, Transfer independently together:
A generalized framework for domain adaptation, IEEE Trans. Cybern. 49 (6)
(2018) 2144–2155.

[95] O. Sener, H.O. Song, A. Saxena, S. Savarese, Learning transferrable representa-
tions for unsupervised domain adaptation, in: Advances in Neural Information
Processing Systems, 2016, pp. 2110–2118.

[96] K. Saito, Y. Ushiku, T. Harada, Asymmetric tri-training for unsupervised
domain adaptation, in: International Conference on Machine Learning, 2017,
pp. 2988–2997.
18 
[97] W. Zhang, W. Ouyang, W. Li, D. Xu, Collaborative and adversarial network for
unsupervised domain adaptation, in: IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 3801–3809.

[98] J. Choi, M. Jeong, T. Kim, C. Kim, Pseudo-labeling curriculum for unsupervised
domain adaptation, in: British Machine Vision Conference, 2019, p. 67.

[99] Q. Wang, T. Breckon, Unsupervised domain adaptation via structured prediction
based selective pseudo-labeling, in: AAAI Conference on Artificial Intelligence,
2020, pp. 6243–6250.

[100] V.M. Patel, R. Gopalan, R. Li, R. Chellappa, Visual domain adaptation: A survey
of recent advances, IEEE Signal Process. Mag. 32 (3) (2015) 53–69.

[101] A.v.d. Oord, Y. Li, O. Vinyals, Representation learning with contrastive
predictive coding, 2018, arXiv:1807.03748.

[102] Z. Zheng, Y. Yang, Rectifying pseudo label learning via uncertainty estimation
for domain adaptive semantic segmentation, Int. J. Comput. Vis. 129 (4) (2021)
1106–1120.

[103] Y. Jin, X. Wang, M. Long, J. Wang, Minimum class confusion for versatile
domain adaptation, in: European Conference on Computer Vision, 2020, pp.
464–480.

[104] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, V. Stoyanov, Roberta: A robustly optimized bert pretraining
approach, 2019, arXiv:1907.11692.

[105] D. Loureiro, F. Barbieri, L. Neves, L.E. Anke, J. Camacho-Collados, Timelms:
Diachronic language models from twitter, in: Annual Meeting of the Association
for Computational Linguistics, 2022, pp. 251–260.

[106] H. Rangwani, S.K. Aithal, M. Mishra, A. Jain, V.B. Radhakrishnan, A closer look
at smoothness in domain adversarial training, in: International Conference on
Machine Learning, 2022, pp. 18378–18399.

[107] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
in: IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp.
770–778.

[108] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep
bidirectional transformers for language understanding, in: Annual Conference of
the North American Chapter of the Association for Computational Linguistics,
2019, pp. 4171–4186.

[109] B. Zhang, P. Zhang, X. Dong, Y. Zang, J. Wang, Long-clip: Unlocking the
long-text capability of clip, 2024, arXiv:2403.15378.

[110] A. Radford, J.W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, et al., Learning transferable visual models from
natural language supervision, in: International Conference on Machine Learning,
PMLR, 2021, pp. 8748–8763.

[111] J.-H. Kim, K.-W. On, W. Lim, J. Kim, J.-W. Ha, B.-T. Zhang, Hadamard
product for low-rank bilinear pooling, in: International Conference on Learning
Representations, 2016.

[112] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in:
International Conference on Learning Representations, 2015.

[113] L.v.d. Maaten, G. Hinton, Visualizing data using t-SNE, J. Mach. Learn. Res. 9
(11) (2008) 2579–2605.

http://refhub.elsevier.com/S1566-2535(24)00640-7/sb81
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb81
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb81
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb81
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb81
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb82
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb82
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb82
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb83
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb83
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb83
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb83
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb83
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb84
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb84
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb84
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb84
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb84
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb85
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb85
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb85
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb85
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb85
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb86
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb86
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb86
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb86
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb86
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb87
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb87
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb87
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb87
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb87
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb88
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb88
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb88
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb88
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb88
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb89
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb89
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb89
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb90
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb90
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb90
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb90
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb90
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb91
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb91
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb91
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb92
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb92
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb92
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb93
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb93
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb93
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb93
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb93
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb94
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb94
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb94
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb94
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb94
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb95
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb95
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb95
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb95
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb95
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb96
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb96
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb96
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb96
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb96
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb97
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb97
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb97
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb97
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb97
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb98
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb98
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb98
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb99
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb99
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb99
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb99
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb99
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb100
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb100
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb100
http://arxiv.org/abs/1807.03748
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb102
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb102
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb102
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb102
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb102
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb103
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb103
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb103
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb103
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb103
http://arxiv.org/abs/1907.11692
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb105
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb105
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb105
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb105
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb105
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb106
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb106
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb106
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb106
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb106
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb107
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb107
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb107
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb107
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb107
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb108
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb108
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb108
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb108
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb108
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb108
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb108
http://arxiv.org/abs/2403.15378
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb110
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb110
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb110
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb110
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb110
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb110
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb110
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb111
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb111
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb111
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb111
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb111
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb112
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb112
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb112
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb113
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb113
http://refhub.elsevier.com/S1566-2535(24)00640-7/sb113

	Multi-source multi-modal domain adaptation
	Introduction
	Related Work
	Multi-modal Learning
	Unsupervised Domain Adaptation
	Multi-modal Domain Adaptation
	Multi-source Domain Adaptation
	Sample Selection by Pseudo Labels

	M2CAN
	Problem Setup
	Overview
	Cross-modal Contrastive Feature Alignment
	Cross-domain Contrastive Feature Alignment
	Cross-domain Adversarial Feature Alignment
	Uncertainty-aware Classifier Refinement
	M2CAN Learning

	Experiments
	Experimental Settings
	Datasets
	Baselines
	Evaluation Metrics
	Implementation Details

	Comparison with the State-of-the-art
	Ablation Study
	Visualization
	Limitation Discussion

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


