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ABSTRACT
Deep learning has achieved unprecedented success in various arti-
ficial intelligence areas and tasks. One precondition is that large-
scale labeled training data is provided to train a neural network.
Although recent self-supervised pre-training can utilize unlabeled
data to learn discriminative representations, label information is
still required for specific downstream tasks. In real-world appli-
cations, such as fine-grained recognition and pixel-level segmen-
tation, human annotation might be prohibitively expensive and
time-consuming. One intuitive solution is to utilize other labeled
datasets with similar desired tasks to perform cross-domain transfer.
Domain adaptation and domain generalization aim to address this
issue by enhancing the transferability of the models trained on the
labeled source domains so that they can well adapt and generalize
to the target domain. In this paper, we summarize recent methods
in our group on open-world domain adaptation and generalization.
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1 OVERVIEW
Domain adaptation (DA) is typically investigated under unsuper-
vised, homogeneous, single-source, single-target, closed-set, and
centralized settings [20], i.e., there are one labeled source domain
and one unlabeled target domain, the source and target data is ob-
served in the same data space and can be accessed simultaneously
during training, and the label sets of the source and target domains
are the same. However, in the open world, the DA settings are more
complex [10, 12]. For example, there are multiple source domains,
the label sets of the source and target domains are different, and
only pre-trained source models are given. When target data is un-
available during training, the task becomes domain generalization
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Figure 1: Overview of recent methods in our group on open-
world domain adaptation and generalization.

(DG). As shown in Figure 1, this paper will briefly introduce our
recent efforts on single-source DA, multi-source DA, and DG.

2 SINGLE-SOURCE DOMAIN ADAPTATION
We proposed to study single-source DA for both image emotion
recognition [11, 15] and point cloud segmentation [5, 17]. Besides
feature-level alignment, we investigated how to generate inter-
mediate domains based on the tasks’ characteristics to perform
pixel-level alignment. For image emotion recognition, we employed
CycleGAN-based methods to generate adapted images with target
styles and source emotional semantics [11, 15]. For point cloud seg-
mentation, we rendered the dropout noise for synthetic data based
on a rendering network trained on unlabeled real data in a self-
supervised manner [17]. The adapted images have similar styles
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to the target images and the semantics are preserved as the source
images. Therefore, the feature-level alignment between the adapted
and target domains usually performs better than the alignment
between the source and target domains.

For video action recognition, apart from cross-domain alignment,
we considered the alignment across modalities by spatio-temporal
contrastive learning [4]. For image classification, we addressed the
special settings of few-shot and universal DA by confidence-based
dispersal learning [6] and consensual contrastive learning [1].

3 MULTI-SOURCE DOMAIN ADAPTATION
On the one hand, we investigated, for the first time, the DA for se-
mantic segmentation, object detection, and visual sentiment classifi-
cation with multiple sources [3, 8, 13, 14, 19]. For semantic segmen-
tation, we designed adversarial aggregation to aggregate different
intermediate domains and aligned the aggregated domain and the
target domain on the pixel, feature, and category levels [13, 14]. We
demonstrated the models’ interpretability through feature trans-
ferability, style translation, and attention visualization. For object
detection, we designed a hierarchical feature alignment and approx-
imated the target pseudo subset using the weighted combination
of source parameters [8]. To preserve the privacy of source data,
we also studied multi-source-free domain adaptive object detection.
We designed a novel divide-and-aggregate contrastive adaptation
framework to efficiently leverage the advantages of multiple source-
pretrained models and aggregate their contributions to adaptation
in a self-supervised manner [19]. For visual sentiment classification,
we learned a unified sentiment latent space where the source and
target data share a similar distribution [3]. Image reconstruction
and cycle-reconstruction constraints aim to preserve the original
information, while the image translation with emotional semantic
consistency tries to align different domains.

On the other hand, we designed effective multi-source strate-
gies to improve the performance of traditional domain adaptive
image classification and textual sentiment classification [16, 18].
We proposed multi-source distilling DA to consider the importance
of different source domains and source samplesn [16]. The source
samples that are closer to the target samples are distilled to fine-
tune the source classifiers. The source domains that respectively
look more similar to the target domain are assigned higher weights
when aggregating different target predictions. To deal with the
situation without source domain labels, we further designed cur-
riculum cycle-consistent generative adversarial network to perform
instance-level adaptation [18]. Different from images, we generated
an intermediate domain for the encoded textual representations of
the mixed source. The source samples are assigned weights using
novel weighting mechanisms to explore their importance.

4 DOMAIN GENERALIZATION
For semantic segmentation, we proposed to randomize the syn-
thetic images with the visual styles of real images by utilizing
public auxiliary datasets and enforcing pyramid consistency to
learn domain-invariant and scale-invariant features [9]. This is
based on the conjecture that if the network is exposed to sufficient
domains in training, it should interpolate well to new real-world

target domains. For object detection, we disentangled the represen-
tations on both image and instance levels and designed a cross-level
reconstruction to preserve informative object representations [2].
For monocular 3D object detection, we designed geometry-guided
domain generalization with two main components [7]. Geometry-
based image projection mitigates the impact of camera discrepancy
by unifying intrinsic parameters, randomizing camera orientations,
and unifying the field of view range. Geometry-dependent feature
disentanglement overcomes the negative transfer problems by in-
corporating domain-shared and domain-specific features.
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