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Abstract. Recently, the scale of transformers has grown rapidly, which
introduces considerable challenges in terms of training overhead and
inference efficiency in the scope of task adaptation. Existing works,
namely Parameter-Efficient Fine-Tuning (PEFT) and model compres-
sion, have separately investigated the challenges. However, PEFT cannot
guarantee the inference efficiency of the original backbone, especially for
large-scale models. Model compression requires significant training costs
for structure searching and re-training. Consequently, a simple combina-
tion of them cannot guarantee accomplishing both training efficiency and
inference efficiency with minimal costs. In this paper, we propose a novel
Parallel Yielding Re-Activation (PYRA) method for such a challenge of
training-inference efficient task adaptation. PYRA first utilizes parallel
yielding adaptive weights to comprehensively perceive the data distribu-
tion in downstream tasks. A re-activation strategy for token modulation
is then applied for tokens to be merged, leading to calibrated token fea-
tures. Extensive experiments demonstrate that PYRA outperforms all
competing methods under both low compression rate and high compres-
sion rate, demonstrating its effectiveness and superiority in maintaining
both training efficiency and inference efficiency for large-scale foundation
models. Our code is available at https://github.com/THU-MIG/PYRA.
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1 Introduction

Vision transformers [16] have made a profound impact across various domains
of computer vision, such as image classification [6,15,16,50,55,66], object detec-
tion [4,40,47,48,74], image segmentation [11,49,53,70,72], etc. In recent years,
the scale of vision transformers has grown to be billion-parameters [29,61,66].
Consequently, adapting such models with vast scales into downstream tasks
presents increasingly complex challenges, particularly in real-world deployment
scenarios. Two critical concerns have been widely acknowledged as primary
obstacles in implementing large-scale transformers for downstream applica-
tions [17,23,27,46]: (1) the training overhead when fine-tuning on downstream
tasks, and (2) the inference efficiency after model deployment.

Specifically, first, conventional fine-tuning methods, which necessitate adjust-
ing all parameters of the model (i.e., Full Fine-tuning), suffer from unaffordable
consumption of GPU resources and training time given the extensive scales of the
foundation models [16,29,66]. Researchers have delved into Parameter-Efficient
Fine-Tuning (PEFT) [17,19,23,24,26,36] algorithms, which generally freeze the
pre-trained models and only tune extra small parameters, leading to great reduc-
tion of training time and storage overhead. The second issue pertains to inference
efficiency, requiring the deployed model to promptly process the input data. The
computational complexity of the models significantly influences achieving satis-
factory inference throughput. Representative solutions for this matter encompass
model compression methods, including model pruning [7,10,56,64], knowledge
distillation [1,21,52,57,58], model quantization [3,13,37], etc.

In the literature, these two intriguing topics are investigated separately.
PEFT methods either identify a subset of tunable parameters in the backbone
for fine-tuning [65] or introduce learnable parameters to the frozen backbone
during fine-tuning [17,23,24,26,36]. While effectively reducing training costs,
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Fig. 1. (a) Full fine-tuning trains all parameters on downstream tasks and utilizes the
trained model for inference, thereby lacking efficiency in both training and inference
stages. (b) Model compression employs pruning to enhance inference efficiency, but the
pruned model necessitates extensive re-training on large-scale data. (¢) PEFT freezes
the model backbone and only fine-tunes a small amount of parameters, yet retains
the inference complexity. (d) Our training-inference efficient task adaptation incorpo-
rates the advantages of all existing pipelines by training inference-efficient models with
minimal tunable parameters.
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most of these methods inevitably escalate computational complexity, resulting
in inefficient inference. Model compression methods frequently require signifi-
cant computational resources to identify optimal structures for pruning. After
pruning, a comprehensive re-training process using a substantial amount of data
is crucial to prevent significant performance degradation. Therefore, model com-
pression methods are typically inefficient in training efficiency.

These observations nat-
urally lead to the question:
can we achieve both train-
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ing this issue can enable us \3,2 3
to conveniently deploy the 70 L=2ah
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dation models in real-world

downstream applications Fig. 2. Comparisons between simply combining
ToMe [2] and LoRA [24] and our proposed PYRA.
Red boxes represent the performance drop problem
in low compression rates. Green boxes represent the
adverse compression in high compression rates. See
Sect. 4 for more results. (Color figure online)

with minimal costs, which
is appealing and essential
for the widespread imple-
mentation of foundation mod-
els. A straightforward solu-
tion is combining PEFT and model compression. However, for efficient task
adaptation, a heavy re-training stage is unaffordable. Consequently, simply com-
bining PEFT and model compression can easily suffer from substantial per-
formance drops. For instance, we could integrate LoRA [24], a notable PEFT
method that introduces a small low-rank adapter, with ToMe [2], a parameter-
free model compression technique for vision transformers'. As shown in Fig. 2,
under lower compression rates (around 1.7x), performance on both backbones
(ViT-L/16 and ViT-B/16) present slight drops (<1%) compared to directly con-
ducting PEFT on the backbone, indicating that the ToMe+LoRA combination
serves as a basic solution within lower compression rate range, yet performance
improvements are also demanded. Under high compression rates (>3.0x), the
performance quickly drops and is even inferior to directly fine-tuning the small-
scale backbone with corresponding throughput. We term this phenomenon as
Adverse Compression. Both phenomena indicate that directly combining exist-
ing works cannot effectively address the new challenges.

In this paper, we propose a novel Parallel Yielding Re-Activation method
(PYRA) designed for training-inference efficient task adaptation using vision
transformers. Generally, the proposed PYRA follows the token merging
paradigm [2,8,43] for inference efficiency. For effective task adaptation, we pro-

! In Sect. 4, we show that ToMe+LoRA is a neat and strong solution.
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pose to modulate token features from both feature tokens and feature chan-
nels and parallelly yield weights for tokens to be merged by small modulation
weight generators. These parallel yielding weights can comprehensively perceive
the data distribution in downstream tasks. They are then applied to features
through re-activation, resulting in adaptive token modulation. Thanks to such a
token modulation strategy, PYRA can adaptively calibrate the learned feature
distribution for downstream tasks with low computational complexity, ultimately
leading to effective training and efficient inference.

We conduct extensive experiments to verify the effectiveness of our PYRA.
We show that, under a low compression rate with ~1.7x speedup, PYRA
introduces negligible performance drops. Under a high compression rate with
>3.0x speedup, PYRA eliminates the adverse compression gap. We emphasize
that considering the scenario of high compression rates is practical, given the
substantial size of current transformers. Concurrently, the specific model sizes
required by downstream applications may not match any publicly available mod-
els, thus requiring the acquisition through high compression rates while keeping
the performance comparable. In this regard, our approach represents an effective
method for obtaining small models in the absence of pre-trained parameters for
smaller-scale models.

Overall, we summarize our contribution as follows.

— We propose a novel challenge termed training-inference efficient task adapta-
tion, in which the inference efficiency of large-scale transformers is escalated
during parameter-efficient task adaptation.

— We propose PYRA for training-inference efficient task adaptation, which
enhances the perception of feature distribution via token modulation. We
generate parallel yielding decoupled weights to comprehensively perceive the
feature distributions. We apply a re-activation strategy to modulate tokens
to be merged for calibrated token features.

— Extensive experiments show that our PYRA outperforms all competing meth-
ods under both low compression rate and high compression rate. Further
analysis shows that PYRA is effective across a series of different transformer
backbones and model scales, well demonstrating the effectiveness and supe-
riority of our method.

2 Related Works

Parameter-Efficient Fine-Tuning (PEFT) for Task Adaptation. Trans-
ferring large-scale transformers to downstream tasks has been a popular topic in
computer vision [9,17,26,28,36,60,68,69]. PEFT methods either locate a subset
of parameters inside the model for fine-tuning [65], or inject human designed
modules to the original model structure. Specifically, adapters [23,28,42,45] are
a type of MLP module with a bottleneck in the middle. Prompt-tuning [14,
18,26,32,33,39] insert learnable tokens to model input to generate task-specific
outputs. SSF [36] tunes additional scaling and shifting parameters. LoRA [24],
AdaptFormer [9], and Consolidator [17] add lightweight modules as bypasses.
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These modules can be merged with the original backbone for no extra inference
cost. In the scope of training-inference efficient task adaptation, PEFT methods
retain model inference cost, resulting in extreme difficulty for model deploy-
ment. To solve the problem, we conduct adaptive token merging for PEFT.
While achieving promising adaptation performance under both low and high
compression rates, our method inherits the advantages of PEFT methods.

Model Compression. Model compression is often applied on large-scale mod-
els to acquire smaller-scale models with comparable performance. Mainstream
approaches of model compression include model pruning [2,8,10,54,56,64,71],
knowledge distillation [1,21,52] and model quantization [3,13,37,38]. For trans-
former models, model pruning methods can be roughly grouped into two cat-
egories: channel pruning and token pruning. Channel pruning methods [5,10,
64, 73] reduce the number of parameters, channels, heads, or blocks. Recently,
token pruning has emerged as another mainstream approach. Several works have
attempted to prune tokens for vision transformers (ViTs). Among these meth-
ods, token pooling [43] uses a slow k-means approach that does not work for
an off-the-shelf model. ToMe [2] constructs bipartite graphs and merges token
pairs with the most weighted connections. DiffRate [8] combines token pruning
and token merging with searched optimal token reduction rates for each layer.
Although achieving promising results, most existing model compression meth-
ods fail when combining with PEFT for training-inference efficient task adap-
tation since they usually involve a heavy training stage. Model pruning meth-
ods demand full re-training after pruning to restore performance. Knowledge
distillation necessitates training a small-scale model from scratch, demanding
large amount of data. As for model quantization, although no heavy training is
demanded, post-training quantization [41,63] achieves poor performance com-
pared to quantization-aware training [25,34] that demands full re-training on
the quantized model. As a comparison, our proposed PYRA achieves promising
performance on compressed models under the restrictions of PEFT, surpassing
the baselines of simply combining model compression and PEFT.

3 Methodology

3.1 Preliminaries

ViT Model. In this paper, we mainly focus on the training-inference effi-
cient task adaptation of ViT models [16,20,51]. A ViT model consists of L
identical encoder blocks, each of which consists of a multi-head self-attention
(MHSA) module and a feed-forward network (FFN). Formally, an input image

x is reshaped and linear projected to N tokens x = [t1,t2, -+ ,tny] in D dimen-
sions. For simplicity, we omit the classification token (JCLS]) and the distillation
token [51]. For encoder block I, we denote the input as x' = [t}, ¢}, -+ ,th, ] €

RN'"'XD and the output as %' = [i}, 4, - ) € RN'XD_ For MHSA, the
input tokens are first processed by three FC layers to generate Q,K, and V
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matrices, and the output is calculated by Softmax( 75 )V before being pro-
jected by another FC layer. For FFN, the tokens are projected by two FC layers.
Our method mainly focuses on the input tokens x' before feeding them to the
MHSA module.

LoRA. LoRA [24] is a widely employed PEFT method for task adaptation.
Vision transformers consist of large dense parameter matrices. When adapting
to a specific task, the updates to the matrices are in small subspaces and can
be modeled with low-rank decompositions. LoRA trains only the decomposed
matrices during fine-tuning. Specifically, for dense matrix W, € R®** and input
z, the modified forward pass of updated Wy is:

z = Woz + BAzx, (1)

where B € R¥" and A € R"**. During inference, BA can be merged with W
for no extra computation overhead.

Token Merging. Token merging [2,8] is a parameter-free compression tech-
nique for vision transformers. It is orthogonal to the transformer structure and
capable of flexibly changing the compression rate. Specifically, the input tokens
x! of the I-th ViT block are randomly separated before the MHSA:

Gh=T[t ¢ -tk ], Gh=Tth ¢t

117 7127 J17 7927 Js

], 2s=N'""1 (2)

Then, for each tﬁ. token, the most similar té-. token is matched to it via cosine
similarity. From GY, r tokens with the most similar Connections to tokens in

G4 are selected to form token pairs (t%, ,t, ), where t!, € G, € GL, and
k=1,2,---,r. Note that {m;} is a re-indexed subset of {z.} Forrnally,
Lot th, -t}
{t, } =arg Topr(rnax 7 ) th, = arg max(il) (3)
I || 1451 5, 1 - 112511

Previous works [2,8,43], generally merge tokens via average pooling, cutting
down the computational cost by decreasing the token number by r in layer [.

We employ the above techniques as our baseline method, in which we attach
token merging while fine-tuning LoRA for task adaptation. These methods are
selected due to their advantages being highly compatible with training-inference
efficient task adaptation. First, token merging is parameter-free and training-
free, and does not change model structures, which retains the storage-efficient
advantage of PEFT. Besides, we choose LoRA for its popularity, simplicity,
and mergeability (not introducing extra FLOPs during inference). Experimental
results show that ToMe+LoRA is a strong baseline (see Sect. 4).

3.2 PYRA: Parallel Yielding Re-activation

Conventional fine-tuning methods excel at guiding the model to dynamically
align with the target data distribution in downstream tasks by extensively
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Fig. 3. The pipeline of our PYRA. PYRA conducts token modulation before the MHSA
module in each transformer block. Inside PYRA, a pair of learnable modulation weight
generators are leveraged to generate adaptive modulation weights parallelly. After that,
generated weights modulate tokens through re-activation. The generators in PYRA can
be trained along with the LoRA module 6, in an end-to-end manner.

adjusting parameters. However, in the context of training-inference efficient
task adaptation, only a fraction of parameters can be fine-tuned, posing signifi-
cant challenges in accurately capturing the nuances of data distribution. While
reducing model complexity through token merging shows promise in enhanc-
ing inference efficiency, it introduces the risk of information loss during layer-
wise processing in vision transformers. This loss is difficult to rectify due to
the constrained understanding of data distribution in the efficient task adapta-
tion scenario. Therefore, a straightforward combination of token merging with
PEFT algorithms for achieving training-inference efficient task adaptation may
not yield optimal results, as depicted in Fig. 2.

Here, we propose Parallel Yielding Re-Activation (PYRA) to adaptively
modulate token features to enhance the perception of data distribution during
token merging. Specifically, inside PYRA, the weights for adaptive merging are
first yielded in a parallel manner through a pair of lightweight learnable vectors in
each ViT block. These generated weights are then applied to modulate tokens to
be merged through re-activation. As a result, PYRA enables adaptive calibration
of the learned feature distribution with low computational complexity (Fig. 3).

Parallel Yielding Adaptive Weights. We aim to optimize the merging pro-
cess of each chosen token pair. Inspired by feature modulation [44,59], we pro-
pose to modulate token features before merging. Formally, for encoder block [
with 7 pairs of tokens in D dimensions to be merged, we group the ¢, and
t!, tokens as token matrices M! = [t} .-t} ] and M} = [t - ,tﬁh]
where M!, M} € RP*". We learn a modulation matrix W' € RP*" that adap-
tively modulates tokens at the granularity of each channel. We emphasize that
directly learning W' is redundant [24] and cannot adaptively satisfy the condi-
tions with different images and token pairs. Therefore, we further specify the goal
as learning decoupled weights 8, = fp(M!, M}) € RP*1 for feature channels
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and 6L = f.(M}, M}) € R™" for feature tokens, where W' = §\,6L, separately.
We propose to generate 65, and &' in a parallel yielding manner.

Specifically, for layer I with r tokens to be merged, we create two learnable
vectors as the modulation weight generator inside the transformer block: W} €
R™! and W} € R™P. To guarantee that W} and W}, digest the token features
from both tokens in a token pair, we first normalize the sum of token pairs to
construct the token information matrix:

M} ;, = LayerNorm(M! + M!) € RP*", (4)

info

We normalize the distribution of Mil tokens by leveraging the LayerNorm(-)

nfo
operation to enable smoother gradients when training W! and W]l:,. With the
token information matrix, we then yield the adaptive weights d%, and & paral-
lelly:
8p = My, W} e RV

info

oL =whM!, € RV,

nfo

()

Re-activation for Token Modulation. Simply generating &%, and §. via
matrix multiplication still faces several possible issues. First, no measures have
taken to ensure that d%, and 4’ stay in a normal range. Second, decoupling
weights to feature tokens and feature channels results in a low-rank modulation
weight matrix W', which exhibits limited expressive capacity and thus could
be unable to optimally modulate tokens in complicated data distributions. To
cope with these issues, we conduct token modulation in a re-activation strategy.
Specifically, we first broadcast 5ZD to 353 € RP*" and conduct sigmoid activation
o(-) on it, and then modulate M! for an intermediate modulation result:

Ml =20(3%) © M. (6)

where ® is Hadamard product. M, !is then modulated with sigmoid-activated
broadcast weight 0. € RPX" again to acquire the modulated tokens:

Ml — M+ (20(6L) — 1) © M, (7)

Note that we use the original tokens M! to create a residual connection that
preserves the gradient flow during training. The modulated M! tokens are then
merged with M} with average pooling. We use a random Gaussian initialization
for generator W! and zero for generator W, so re-activation is equivalent to
identity transformation at the beginning of training. Token modulation is con-
ducted only on M! to guarantee the parallelism in training and inference, as tﬁnk
tokens are distinct while different tflk might point to the same té token.

Discussion. Our PYRA effectively enhances the calibration of features for
downstream tasks. Specifically, by utilizing parallel yielding adaptive weights,
PYRA effectively decouples the modulation weight from the feature token and
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Table 1. The complexity comparisons between conducting PEFT with and without
PYRA. The FLOPs metric is obtained during inference.

Model Metric Total |PEFT w/o PYRA | (%) |PEFT w. PYRA (%)

ViT-Base | # params | 86M 0.29M 0.34% | 0.30M 0.35%
FLOPs 16.37G | 16.37G 100% | 8.15G 49.79%

ViT-Large | # params | 303M | 1.18M 0.39% | 1.20M 0.40%
FLOPs 57.37G | 57.37G 100% | 28.76G 50.13%

the feature channel, i.e., dp and J,, enabling comprehensive perception of the
feature distribution in downstream tasks. Furthermore, considering the challenge
of capturing an accurate feature distribution for parameter-efficient training,
such smooth re-activations by Eq. (6) and Eq. (7) can constrain the negative
impact on weight values brought by limited perception of feature distributions,
thus leading to better token modulation for improving feature representations
in downstream tasks. As a result, the proposed PYRA can maintain discrimina-
tive information to an utmost degree during token merging, leading to improved
performance while achieving complexity reduction.

3.3 Complexity Analysis

We present the parameter and computation complexity for introducing PYRA to
PEFT for task adaptation. In each ViT block, PYRA introduces D + r training
parameters and 4rD extra FLOPs. For a ViT model with L layers and R total
merged tokens, in total, our PYRA introduces LD+ R extra training parameters
and conducts 4RD extra FLOPs beside PEFT.

To better demonstrate the training-inference efficiency of our PYRA, we
compare the complexity between attaching PYRA to task adaptation via PEFT
(here we employ LoRA [24]) and plainly conducting PEFT without PYRA. As
shown in Table 1, PYRA keeps the training efficient feature of PEFT by intro-
ducing only a tiny amount of training parameters, which however, results in a
substantial efficiency boost for inference, i.e., at around 50% for both ViT-B and
ViT-L models. Results in Sect. 4 show that PYRA achieves comparable perfor-
mance to the PEFT counterpart without PYRA. This well indicates that PYRA
is an effective method for training-inference efficient task adaptation.

4 Experiments

4.1 Experimental Setting

Datasets. We conduct extensive experiments on task adaptation benchmarks
to verify the effectiveness of PYRA within the challenge of training-inference
efficient task adaptation. Specifically, we choose the VTAB-1k [67] benchmark for
the evaluation. VTAB-1k is a challenging benchmark that consists of 19 different
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Table 2. Results on the VTAB-1k [67] benchmark under low compression rate. Bold
and underline denote the best and second-best accuracy within compression methods.
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Model: ViT-B/16 (Throughput: 425)
PEFT | 0.34% | 425|67.1 [90.2 [69.4 [99.1 [90.5 |85.7 |54.1 [83.1 [95.8 |84.3 |74.6 [82.2 [69.2 |50.1 |79.2 |81.8 [47.1 [31.1 |42.6 |74.76
RaP 3.43% 654]25.9 |68.4 |53.3 |64.0 |57.4 |71.3 |21.5 |75.8 |87.9 |59.3 |73.6 |43.1 |53.8 |26.3 |60.5 |73.5 |25.5 |16.7 |27.9 | 55.57
SPVIiT |4.46% 567 |41.6 | 75.4 [61.1 |83.2 [66.2 |56.1 |28.3 |79.3 |94.2 |73.3 |73.6 |70.6 |61.5 |42.4 |67.8 |75.4 |50.5|28.9 |31.3 |64.16
DiffRate | 0.35% | 709 | 37.1 | 84.6 |63.7 |96.7 |86.2 |32.6 |48.2 |78.9 |85.8 |67.0 |73.7 [32.9 |29.8 |34.1 |55.7 |12.6 |16.0 | 13.1 |21.5 |55.82
ToMe | 0.34% | 753 | 64.6 | 90.4 |67.9 |98.5 |89.8 |83.0 |53.2|82.6 |94.7 83.5|74.9 |81.9 |69.8(49.2 |76.9 |81.946.5 |31.0 43.1|74.10
PYRA | 0.35% | 745 | 67.5|90.3 |69.3 | 98.9(90.0 84.6 |53.1 |83.3 95.7|83.3 |75.2 82.6 68.9 |50.8 80.0 818 |45.8 |32.2 42.8 | 74.69
Model: ViT-L/16 (Throughput: 130)
PEFT | 0.39% |130|77.1 |91.4 |73.4 [99.5 [91.3 |89.6 |57.6 [85.9 |96.1 |87.3 |76.1 [83.1 |63.0 |50.7 |82.1 |81.7 |53.5 |32.2 |36.6 | 76.52
RaP 1.95% | 196 | 43.2 [ 87.9 [62.6 [52.8 [81.7 |86.7 [34.7 [78.4 [92.4 [73.3 |73.6 [68.0 |59.6 |46.9 |82.4 |75.5 |43.6 [24.5 |25.7 |65.64
SPVIiT |247% | 188|48.1 |87.5 [65.2 |94.4 |77.4 |80.9 |38.8 |79.9 |93.9 |79.8 |74.3 |78.2 |65.8|47.4 |74.1 |82.3 |50.3 |31.0 |37.9 |70.22
DiffRate | 0.39% | 221 | 50.9 |86.8 |70.3 |97.8 |88.3 |39.0 |52.3 |80.2 |87.2 |722 |74.2 |32.6 |32.3 |36.5 |57.4 |22.8 26.6 |15.2 |23.4 |59.53
ToMe | 0.39% |227|76.1 |91.1 |72.3 |99.2 |91.7 89.2 |56.4 |86.4 |95.1 |86.6 |75.1 824 |61.9 |50.9 |81.4 |81.6 |53.5|33.4 36.8 |76.11
PYRA | 0.40% | 225|76.6|91.3 | 73.299.3|91.5 | 89.4 |57.1|86.9 95.9 | 87.1|76.2 83.2|63.2 |52.8 83.1|82.5|52.6 |34.8 39.076.84

tasks from diverse domains: 1) natural images captured in the actual world; 2)
specialized images from professional fields; and 3) structured synthesized images.
Each task only contains 800 training samples and 200 validation samples.

Models. We choose two ViT backbones pre-trained on the ImageNet-21K [16],
i.e., ViT-L/16 and ViT-B/16, for comparison. Additionally, we also generalize
our PYRA to different backbones and pre-train methods, including DeiT-B [51]
and ViT backbones pre-trained by MAE [20].

Implementation Details. We choose LoRA [24] as the PEFT module for all
methods due to its simplicity and mergeability. For ease of explanation,
we omit the “+LoRA” when comparing different methods. We append
LoRA only on the Q,K, and V projection matrices, and apply the training sched-
ule for LoRA following [17,69]. The generators are trained along with LoRA
modules. During inference, we merge the LoRA module to the backbone. All
throughputs are measured during inference on a GeForce RTX 3090 GPU. More
details can be found in the supplementary materials.

4.2 Performance Comparison on Task Adaptation Benchmark

We verify the effectiveness of PYRA for training-inference efficient task adapta-
tion on (1) low compression rate: comparing the performance of different meth-
ods under the same sparsity ratio (here we set sparsity ratio=50%); (2) high com-
pression rate: comparing the performance between the competing methods and
the smaller-scale model with similar throughput levels. We leverage ViT-L/16
and ViT-B/16 for these inspections. The competing methods include RaP [35],
SPVIT [30], DiffRate [8], and ToMe [2]. Comparisons to more baselines are in
the supplementary materials. For RaP and SPViT, we first train the backbone
with LoRA on downstream tasks, then we prune the models, and lastly we re-
train the parameters attached by the pruning method and LoRA. DiffRate and
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Table 3. Results on the VTAB-1k [67] benchmark under high compression rate. Bold
and underline denote the best and second-best accuracy within compression methods.
*: As a comparison of similar throughputs, we compare ViT-B/16 with PEFT on ViT-
S/16, and ViT-L/16 with PEFT on ViT-B/16.
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Model: ViT-B/16 (Throughput: 425)
PEFT* | 0.34% | 1350 |57.7 |88.2 | 70.1 | 98.7 |88.7 |85.7 |44.9 |81.4 |94.7 |84.6 |73.6 |81.6 |64.1 |48.1 {80.0 |72.9 |38.4 |22.9 |37.7 |71.85
RaP 0.86% | 1029 |24.3 |40.1 |34.5 |41.8 [40.5 |21.7 |11.4 |75.8 |86.5 |35.1 |73.8 |49.6 [49.7 |28.1 [39.4 |13.8 |15.4 |12.4 |26.9 |42.60
SPVIiT | 4.46% 944 |23.7 [67.9 |51.9 |69.9 |53.2 |19.6 |13.1 |71.9 |81.3 |67.9 |74.7 |53.5 |61.9 |39.5 |57.4 |45.0 |34.5 |11.1 |23.2 | 52.49
DiffRate | 0.35% | 1308 |23.2 | 73.0 | 55.7 | 87.9 |66.7 |27.2 |29.3 |78.1 |77.8 |53.1 |73.6 [29.7 |28.6 |31.7 |52.6 |11.5 |17.2 |11.3 |20.3 |49.29
ToMe 0.34% | 1381 | 54.2 | 87.8 | 65.5 | 96.1 |81.7 |79.7 |45.279.4 | 93.6 |76.3 |73.8 |78.3 |65.7 |48.0 |71.3 |80.0 |45.8 |30.9 |41.2 |70.43
PYRA | 0.35% | 1365 |54.0 |89.3|67.1|96.5 | 84.0 |81.8 | 44.6 |81.2 94.6|79.5|75.1|79.9 | 67.0 49.2|76.9 82.6 47.8|31.9|42.0|72.06
Model: ViT-L/16 (Throughput: 130)
PEFT* |0.34% 425 |67.1 [90.2 |69.4 |99.1 [90.5 |85.7 |54.1 |83.1 |95.8 |84.3 |74.6 |82.2 |69.2 |50.1 |79.2 |81.8 |47.1 |31.1 |42.6 |74.76
RaP 0.65% | 301 |17.7 |37.1 |27.0 |46.2 |33.3 [23.2 |13.3 |76.5 |74.2 |54.4 |73.6 |50.4 [31.4 |25.7 |49.8 |53.1 [25.5 |13.4 |26.0 |44.11
SPVIiT |2.47% 289 |54.0 |87.6 |65.5 |94.8 |74.9 |32.6 |38.6 |81.8 |95.3|78.0 |74.0 |72.8 |61.2 |46.9 |70.2 |77.1 |47.4 |31.3 |28.6 | 66.90
DiffRate | 0.39% |416 |[47.4 |73.5 |54.1 | 84.3 [60.2 |19.6 |22.2 |50.0 |64.6 |42.8 [18.2 |31.5 |31.9 |31.1 |37.3 |22.0 |17.7 |14.8 |21.4 |40.48
ToMe 0.39% 431 |71.0 [90.9 |70.4 |98.3 |88.5 |87.2 |52.482.9 | 94.5 [83.1 |75.0 |80.7 |61.1 [48.9 |76.9 |80.8 |53.0 |32.1 |35.2 | 74.10
PYRA |0.40% |427 |71.6|91.8|71.1|98.5|89.7 88.152.2 |85.195.3|84.6|75.7|80.9|63.0| 51.7 | 82.0 |82.0 54.2|36.0 | 41.2|75.66

ToMe can be employed with LoRA during fine-tuning, while DiffRate demands
ImageNet-21K for searching the optimal compression schedule.

PYRA on Low Compression Rate. Results on low compression rate are
reported in Table 2. Overall, while achieving one of the best speedups on through-
put, our PYRA is the best performed method compared to other competing
methods using the lowest level of training parameters. Counting results on both
backbones, our PYRA achieves the best or second-best performance on 37 of
38 dataset metrics. Compared to directly conducting PEFT on the backbone,
while all competing methods cause worse results, our PYRA achieves compara-
ble adaptation performance on ViT-B/16, and even outperforms ViT-L/16. The
above results convincingly demonstrate that our PYRA successfully sets a new
benchmark, i.e. reaching comparable performance as the uncompressed model,
on low compression rate for training-inference efficient task adaptation while
accelerating the model to 1.75x speedup with only 0.4% training parameters.

PYRA on High Compression Rate. Results are reported in Table 3. With
comparable throughputs to the smaller-scale model and minimal training param-
eters, PYRA outperforms all competing methods and achieves the best perfor-
mance on 35 of 38 dataset metrics. Compared to the smaller-scale model with
comparable throughput, PYRA successfully outperforms it. On the compressed
ViT-L/16, PYRA even surpasses ViT-B/16 by 0.9%. This shows that PYRA,
as the state-of-the-art, effectively bridges the adverse compression gap between
compressed large-scale models and small-scale models, as mentioned in Sect. 1.
Therefore, PYRA is an applicable alternative for acquiring a smaller-scale model
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Table 5. VTAB-1k [67] results on both
Table 4. VTAB-1k [67] results on both  compression rates for DeiT-B (Through-
compression rates for ViT-L (MAE) put: 431).
(Throughput: 130).
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VIT-L (MAE) PEFT 0.39% 130 | 75.96 DeiT-B PEFT 0.34% 431 |73.76
RaP [35] 2.01% 182 | 67.55 RaP 135] 3.57% 695 62.34
- o ‘ . Di . 2.1
VIT-L (MAE) DiffRate [8] | 0.39% | 221 | 46.91 DeiT-B iffRate [8]/0.35%|734 |52.10
ToMe [2] |0.39% 227 | 74.97 ToMe [2] |0.34%|747 |72.83
PYRA 0.40% | 225 | 76.13 PYRA 0.35%|740 |73.55
VIT-B (MAE) EEETgr gjg’ 425 72;‘1‘ DeiT.S  PEFT  |0.34% 1332 70.01
o [33] 0.T6%) 298 | 52. RaP [35] |1.09% 1187 |57.70
VIT-L (MAE) DiffRate [8] | 0.39% | 416 | 48.03 )
ToMe [2] | 0.39% 431 | 68.20 DeiT-B DiffRate [8]/0.35%|1314 |44.51
PYRA 0.40% | 497 | 70.33 ToMe [2] 10.34% 1351 |68.68
PYRA 0.35%)1341 |70.13

(3.2x speedup) on downstream tasks through efficient training (0.4% training
parameters) when no pre-trained small-scale model is available.

PYRA on Self-supervised ViT Backbone. We conduct the experiments on
both compression rates on self-supervised ViT-L/16 (MAE) [20]. As shown in
Table4, PYRA significantly surpasses all competing methods. Under low com-
pression rate, PYRA outperforms directly transferring the uncompressed back-
bone. Under high compression rate, PYRA also eliminates adverse compression.
These results show that PYRA generalizes well for self-supervised visual models.

PYRA on Different Architectures. To further verify the generalizability
of PYRA, we conduct the above experiments on the DeiT-B [51]. As shown
in Table 5, PYRA achieves comparable performance to the uncompressed model
under low compression rate and eliminates adverse compression under high com-
pression rate, indicating its generalizability to other transformer architectures.

PYRA Consistently Yields Better Models of Different Throughputs.
To further show the superiority of PYRA for different compression rates, we
compress the chosen backbones for a series of speedups and compare the results
with the strongest baseline, ToMe [2], under similar values of throughputs. As
shown in Figs.2 and 4, PYRA consistently outperforms ToMe and flattens the
accuracy-throughput curve. Therefore, our PYRA is applicable to acquire task-
specific smaller-scale models of different throughputs consistently in the absence
of pre-trained parameters for smaller-scale models.
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Fig. 4. Comparisons between PYRA and ToMe [2] under different compression rates
for ViT-Large (MAE) and DeiT-Base. Red boxes: PYRA mitigates the performance
drops under low compression rate. Green boxes: PYRA eliminates adverse compres-
sion under high compression rate. (Color figure online)

Table 6. Ablation study results for PYRA on ViT-B/16 under high compression rate.
Here for # params we report only the parameters introduced by token modulation.

Method W, | Wp | Activation | # params | Natural | Specialized | Structured | Average
Baseline X | x X 0 72.87 80.78 57.64 70.43
Plain W, Vv o x X 0.19K 72.90 81.07 57.66 70.54
o() & Wi VAPPSRV 0.19K 7318 | 81.69 57.65 70.84
Plain Wp X || x 8.45K 73.09 |81.13 58.43 70.88
o) & Wp x v |V 8.45K 73.31 | 82.17 58.44 71.31
Plain W, & Wp |/ |/ X 8.64K 73.77 81.37 58.81 71.32
PYRA v v v 8.64K 73.91 |82.60 59.66 72.06

4.3 Ablation Studies

We do controlled experiments to identify the effect of individual components
in PYRA, i.e., the generators W, and Wp, and the sigmoid activation o(-)
applied on the generated modulation weights. Specifically, when using only a
single generator, we omit Eq. (6) and replace 4L in Eq. (7) with the broadcast
weight generated by the employed generator. When using the generators without
sigmoid activation, we simply remove the o in Eq. (6) and Eq. (7) while keeping
other calculations intact. We choose the ImageNet-21K pre-trained ViT-B/16
to carry out the ablation studies under high compression rates as in Table 3.
Results are shown in Table 6. Here the baseline method refers to conducting token
merging [2,8] while fine-tuning LoRA [24] for task adaptation. First, both W,
and Wp, no matter whether sigmoid activation is attached, lead to performance
gains, and employing them simultaneously outperforms using them individually.
This proves the superiority of our parallel yielding strategy. Second, compared to
the corresponding counterpart without activations, employing sigmoid activation
always leads to significant improvements, indicating the effectiveness of the re-
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Table 8. Adaptation performance com-
parison to the common gated generator.
We report token modulation parameters.

Table 7. Adaptation performance com-
parison to W,x p unadaptable to tokens.
We report token modulation parameters.
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activation. Overall, our PYRA yields the best adaptation performance, showing
that our strategies are effective and complementary.

4.4 Further Analysis on Different Designs

We conduct further analysis on ViT-B/16 model pre-trained on ImageNet-21K.
The baseline here refers to training LoRA with token merging [2,8] attached.
More analysis experiments can be found in the supplementary materials.

Impact of Making Modulation Weights Adaptive. In our PYRA, we
train modulation weight generators W}, and W/ to conduct adaptive modula-
tion on different merging tokens. To prove the necessity of making modulation
weights adaptive, we compare PYRA with the approach of directly training
final modulation weights W for each layer, and conduct token modulation as
M. — M!+ (20(Wh,,) — 1) © M!. For fair comparisons, we inherit the sigmoid
activation and the residual connection. As shown in Table 7, although with more
training parameters, training Wp . is still inferior to our PYRA. This indicates
that PYRA is a more effective strategy to conduct adaptive token modulation.

Compare with the Common Gated Generator. We compare PYRA
with setting the commonly-applied gated-style trainable module [12,22,31,62]
as modulation weight generator. Formally, for each ViT block, we insert a
learnable two-layer MLP module (MLP!(-)) with input dimension D, hidden
dimension d < D to ensure parameter-efficient training and fast inference, and
output dimension D. To generate modulation weights, we feed the informa-
tion matrix M! . into the MLP, and modulate the merging tokens thereafter:

info
§t' = MLP(M] ;) € RP*" Ml «— M! + (20(6' — 1) © ML. We set d = 4 for all
layers. As shown in Table 8, both the gated generator and our PYRA achieve per-
formance gains, while our PYRA surpasses the gated generator by 1.0% with sig-
nificantly fewer trainable parameters. This indicates that the decoupled weights
generated by our Wp and W, in PYRA are effective and parameter-efficient

compared to the common gating strategy.
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5 Conclusion

In this work, we defined and investigated a new challenge named training-
inference efficient task adaptation, in which the inference efficiency of large-scale
transformers is enhanced during parameter-efficient task adaptation. We pro-
pose a novel Parallel Yielding Re-Activation method (PYRA) to effectively cope
with the challenge by modulating token features during token merging. Specifi-
cally, PYRA generates decoupled parallel yielding modulation weights, and con-
ducts token modulation through re-activation. Extensive experiments show that
PYRA introduces negligible performance drops under low compression rate, and
bridges the gap of adverse compression between compressed transformers and
small-scale models under high compression rate. In real-world applications, our
PYRA is highly suitable to the scenario of transferring large-scale vision trans-
formers to downstream tasks where no small-scale model is presented.

Limitations. We have not yet validated the effectiveness of PYRA in object
detection and image segmentation. We plan to extend these tasks in the future.
Meanwhile, it is also applicable to attach pruning methods after training the
vision transformers with PYRA to eliminate additional parameters attached by
PYRA. We leave that topic to future studies.
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