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Abstract. Recently, large-scale vision-language models such as CLIP
have demonstrated immense potential in zero-shot anomaly segmenta-
tion (ZSAS) task, utilizing a unified model to directly detect anomalies
on any unseen product with painstakingly crafted text prompts. How-
ever, existing methods often assume that the product category to be
inspected is known, thus setting product-specific text prompts, which
is difficult to achieve in the data privacy scenarios. Moreover, even the
same type of product exhibits significant differences due to specific com-
ponents and variations in the production process, posing significant chal-
lenges to the design of text prompts. In this end, we propose a visual
context prompting model (VCP-CLIP) for ZSAS task based on CLIP.
The insight behind VCP-CLIP is to employ visual context prompting
to activate CLIP’s anomalous semantic perception ability. In specific,
we first design a Pre-VCP module to embed global visual information
into the text prompt, thus eliminating the necessity for product-specific
prompts. Then, we propose a novel Post-VCP module, that adjusts the
text embeddings utilizing the fine-grained features of the images. In
extensive experiments conducted on 10 real-world industrial anomaly
segmentation datasets, VCP-CLIP achieved state-of-the-art performance
in ZSAS task. The code is available at https://github.com/xiaozhen228/
VCP-CLIP.
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1 Introduction

In the field of industrial visual inspection, zero-shot anomaly segmentation
(ZSAS) endeavors to accurately localize and segment anomalous regions within
novel products, without relying on any pre-customized training data. Due to
its significant potential applications in scenarios with data privacy concerns
or a scarcity of annotated data, ZSAS has garnered increasing attention from
researchers [5,8,10,31]. Unlike traditional anomaly segmentation methods [26],
ZSAS requires strong generalization ability to adapt to significant variations in
visual appearance, anomalous objects, and background features across different
industrial inspection tasks.

In recent, CLIP [22] has emerged as a vision-language foundation model for
addressing the ZSAS task. As shown in Fig. 1(a), existing CLIP-based methods
map images and their corresponding two-class text into a joint space and com-
pute cosine similarity. Image regions that have high similarity with the defect-
related text are considered as anomalies. For example, WinCLIP [10], AnVoL
[8], and APRIL-GAN [5] extract dense visual features by applying multi-scale
windowing or patching to images and align normal and abnormal image regions
separately through a two-class text prompt design. However, the existing CLIP-
based methods [5,8,10,31] present significant challenges in practical applications.
On the one hand, previous methods [5,8,10] assume that the product category
(e.g., wood) of inspected images is known in advance and utilize this informa-
tion to design product-specific textual prompts (e.g., a photo of a normal wood).
However, the product categories are unattainable or unpredictable in data pri-
vacy scenarios, rendering these methods unusable. Furthermore, we conducted
an experiment in which we replaced the product categories (names) in the text
prompts with semantically similar terms in WinCLIP, such as substituting bottle
with container or vessel. We observed fluctuations in segmentation performance
of up to ±8% in terms of Average Precision (AP) metric. This motivates us to
reconsider the importance of product names in text prompts, especially since
some product names are ambiguous (e.g., pcb1, pcb2, pcb3 in the VisA [33]
dataset). Even within the same product category, significant differences arise
due to specific components and differences in the production process, such as
variations in appearance color, size, and manufacturing materials, among others.
Recently, AnomalyCLIP [31] attempted to design object-agnostic text prompts,
but they replaced all product name with a uniform description “object”, lead-
ing to challenges in adapting to complex industrial scenarios. On the other
hand, mapping images and text separately into a joint space [5,10,31] without
any interaction does not facilitate mutual understanding of various modalities,
and easily leads to image overfitting to certain text prompts. As illustrated in
Fig. 1(a), where the output image and text embeddings are directly aligned,
this approach results in a limited grasp of diverse modalities, thereby affecting
anomaly segmentation performance.

To address the aforementioned problems, a straightforward and effective
visual context prompting (VCP) model based on CLIP is proposed for ZSAS
task. As shown in Fig. 2(a), we aim to perform anomaly segmentation on novel
(unseen) products (such as bottle and hazelnut) after training on limited seen
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Fig. 1. A comparison between existing CLIP-based methods and VCP-CLIP. VCP-
CLIP introduces a Pre-VCP module and a Post-VCP module, offering a distinct
enhancement over existing CLIP-based methods. (a) Existing CLIP-based methods.
(b) VCP-CLIP

products (such as cashews and pcb1) in auxiliary datasets. Existing methods
[5,10] rely on manually defined text prompts as shown in Fig. 2(b). The uni-
fied text prompts are used as the baseline as shown in Fig. 2(c) in this paper,
where the product categories are set as continuous learnable tokens. The pro-
posed Pre-VCP module, depicted in Fig. 2(d), is an upgraded version of the
baseline. It incorporates global image features to more accurately encode the
product category semantics in the text space. To facilitate understanding of
global image features, a deep text prompting (DTP) technique is introduced to
refine the text space. Compared to the baseline, Pre-VCP enables the transition
from uniform prompts to image-specific prompts, significantly reducing the cost
of prompt designs. To enhance the mutual understanding of features from dif-
ferent modalities, the Post-VCP module is further proposed, which adjusts the
output text embeddings based on fine-grained visual features. This approach
further strengthens CLIP’s ability to accurately segment anomalous regions.

In conclusion, we propose a visual context prompting model based on CLIP
(VCP-CLIP) for the ZSAS task. As depicted in Fig. 1(b), we extract the global
and dense image embeddings from the image encoder. The former is integrated
into the input text prompts after passing through the Pre-VCP module, while the
latter is utilized for fine-grained image features in anomaly segmentation. A Post-
VCP module is further designed to update the text embeddings based on fine-
grained visual features, effectively facilitating mutual understanding between
different modalities and further enhancing the model’s generalization ability to
novel products. The final anomaly maps simultaneously integrate segmentation
results aligned from the original text embeddings and dense image embeddings,
which helps further enhance the segmentation performance.

The main contributions of this work are as follows:

1. We propose a novel visual context prompting model based on CLIP, namely
VCP-CLIP, to tackle the ZSAS problem. By training on a limited set of
seen products, VCP-CLIP can localize anomalies in any unseen product, even
when the product category is unknown. Compared to current text prompting
approaches [5,8,10,31], our approach utilizes visual context prompting to
fully activate CLIP’s anomalous semantic perception ability.
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Fig. 2. Comparison of different text prompting methods. (a) Task setting. (b) Manually
defined text prompting. (c) Designed unified text prompting. (d) Designed pre-visual
context prompting.

2. We reveal for the first time that visual context provides additional information
for text prompts in the ZSAS task. Specifically, the Pre-VCP and Post-VCP
modules are designed to utilize global and fine-grained image features for
text prompting, respectively. In doing so, VCP-CLIP avoids extensive manu-
ally defined text prompting engineering, thus alleviating the overfitting issue
arising from pre-training on specific text prompts.

3. In extensive experiments conducted on 10 real-world industrial anomaly seg-
mentation datasets, VCP-CLIP exhibits superior zero-shot performance in
segmenting anomalies on unseen products.

2 Related Work

Prompt Learning. Prompt learning is initially applied in the field of NLP,
aiming to utilize affordable annotated data to automatically generate prompts,
thereby enhancing the capabilities of foundation models, such as CLIP [22],
GPT-3.5 [21], and LLaMA [27] in downstream tasks. CoOp [22] first introduces
prompt learning in the CLIP model, utilizing learnable prompt tokens in the
textual space. VPT [11] and ZegCLIP [32] insert trainable embeddings in each
layer of the image encoder, allowing refinement of the image space to better
adapt to downstream semantic segmentation task. These methods aim to enable
the pretrained backbone to adapt to the target domain using prompt learning. In
recent works, CoCoOp [30] and DenseCLIP [23] guide the pretrained backbone
to adapt to the target domain through the visual context prompting. Related
to our VCP module is CoCoOp, which incorporates visual contexts into text
prompts to improve the classification performance on novel categories. However,
our VCP replaces product categories within the text prompts rather than the
entire sentence, in contrast to CoCoOp. The proposed approach has been vali-
dated as more effective than CoCoOp in ZSAS, which does not necessitate prior
knowledge of product categories.
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Zero-Shot Anomaly Segmentation. With the advancements of foundation
models such as CLIP [22] and SAM [13], ZSAS has increasingly captured the atten-
tion of researchers. According to whether auxiliary data for training is required,
existing methods can be broadly categorized into two groups. 1) Training-free
methods. Building upon CLIP, WinCLIP [10] and AnVoL [8] carefully craft text
prompts to identify anomalies without training on auxiliary datasets. The former
proposes a window-based approach, aggregating classification results from images
within different scale windows using harmonic aggregation. The latter utilizes V-V
attention instead of the original Q-K-V attention in the image encoder to extract
fine-grained features and adaptively adjusts for each image during testing in a
self-supervised manner. SAA/SAA+ [4] utilizes language to guide the Grounding
DINO [16] for detection of anomalous regions and then employs SAM for finely seg-
menting the detection results. However, these existing methods not only require
more complex prompt designs or post-processing but also introduce additional
computational and storage burdens during inference. 2) Training-required meth-
ods. APRIL-GAN [5], CLIP-AD [6], and AnomalyCLIP [31] utilize seen products
with annotations as auxiliary data to fine-tune CLIP for ZSAS on unseen prod-
ucts. These approaches employ linear layers to map patch-level image features to
a joint space of text and vision, facilitating alignment between different modal-
ities. AnomalyGPT [9] is another seminal work that utilizes the large language
model Vicuna [7] to guide the model in locating anomalies. Through supervised
pretraining on synthesized anomaly images, AnomalyGPT can support multi-turn
dialogues and locate anomalies in unseen products. However, existing methods
all overlook the role of visual context in fine-grained multimodal alignment, and
they may struggle when confronted with complex industrial anomaly segmenta-
tion scenes. Recently, ClipSAM [14], an integration of CLIP and SAM, has been
employed for cross-modal interaction in ZSAS task. However, the two-stage pre-
diction has increased the complexity of the model.

3 Our Method

3.1 Problem Definition

Our approach follows the generalized ZSAS methods adopted in works [5,31],
which requires segmenting the anomalies in unseen products Cu after train-
ing on seen products Cs with pixel-annotations. During the training stage, the
model generates pixel-wise classification results based on two categories of tex-
tual descriptions: normal and abnormal. During the testing stage, the model is
expected to directly segment anomalies in unseen products. It is worth noting
that Cu ∩ Cs = ∅ and the products used in the training and testing stages come
from different datasets. This undoubtedly poses a significant challenge to the
model’s domain generalization capability.

3.2 The Design of Baseline

Existing CLIP-based improvement methods have three main drawbacks: 1) man-
ually designing text prompts is time-consuming and labor-intensive, 2) product-
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Fig. 3. Framework of VCP-CLIP. Our approach incorporates richer visual knowledge
into the textual space, and cross-modal interaction between textual and visual features
by using a Pre-VCP module and a Post-VCP module.

specific text prompts cannot adapt to data privacy scenarios, and 3) the local-
ization results are easily influenced by the semantics of product categories in the
text prompts [31]. To address the aforementioned issues, we propose a baseline
that incorporates two main designs: unified text prompting (UTP) and deep
text prompting (DPT). As shown in Fig. 3, given an input image X ∈ R

h×w×3

and two-class text prompts, the designed baseline (marked in red dashed) first
extracts patch-level image features and text features separately. Then, the patch-
level image features are mapped to a joint space, where the similarity between
image features and text features is computed to generate anomaly maps. Finally,
anomaly maps from multiple intermediate layers of the image encoder are fused
after upsampling to obtain the final results.

Unified Text Prompting (UTP). A unified template for generating normal
and abnormal text prompts is designed as follows:

H = [a][photo][of ][a][state][v1][v2] · · · [vr]
where vi, i ∈ {1, 2, · · · r} is a C-dimensional learnable vector embedded into
the word embedding space, used to learn the unified textual context of the
product categories. A pair of opposing [state] words, such as “good/damaged”
and “perfect/flawed”, is utilized to generate normal and abnormal text prompts,
respectively. H represents the word embedding matrix corresponding to specific
prompts in the textual space. In this paper, we choose a common state word
pair, i.e. “good/damaged”.

Deep Text Prompting (DTP). Before statement, let us first review the infer-
ence process of the CLIP text encoder briefly. Before being fed into the text
encoder, [SOS] and [EOS] are respectively added to the front and back of the
text prompt, indicating the beginning and end of the sentence. Afterwards, these
tokens are mapped to a discrete word embedding space, capped to a fixed length
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of 77 in CLIP. Let us denote the word embeddings as [s,H, e, J ] ∈ R
77×C , where

s and e are C-dimensional word embeddings corresponding to [SOS] and [EOS]
tokens, respectively. J is a placeholder matrix initialized to zero to ensure a fixed
length of the word embeddings. The final output text embedding at the position
of the [EOS] token is aligned with the image features after passing through a
linear projection layer.

To better align fine-grained normal and anomalous visual semantics with
text, deep text prompting is designed to further refine the textual space as shown
in Fig. 3. In specific, continuous trainable embeddings are inserted at the begin-
ning of text embedding in each transformer layer of the text encoder. Assum-
ing the text encoder’s (i+1)-th layer is represented as Layertexti+1 , the inserted
embeddings are Pi ∈ R

n×C and the output text embedding is g. The process is
formulated as follows:

[si, ,Hi, ei, Ji] = Layertexti ([si−1, Pi−1,Hi−1, ei−1, Ji−1]) (1)
g = TextProj(Norm(eNt

)) (2)

where i = 1, 2, · · · Nt, s0 = s, H0 = H, e0 = e. Nt is the number of text encoder
layers. TextProj(·) and Norm(·) respectively denote final text projection and
LayerNorm [1] layers. For normal and abnormal text prompts, we denote the
embeddings after DTP as gn and ga, respectively. Since the masked self-attention
is employed in the text encoder, [si, Pi,Hi, ei, Ji] and [si,Hi, Pi, ei, Ji] are not
mathematically equivalent. We adopted the former because the model can only
attend to tokens before itself, thus placing the learnable embeddings at the
beginning of the sentence leads to a greater degree of refinement in the textual
space. More details are shown in the Appendix B.2.

How to Acquire the Anomaly Map? For an input image X ∈ R
h×w×3,

patch-level visual feature map Zl
s ∈ R

H×W×dI , l = 1, 2, · · · , B are extracted
from the image encoder layers, where H = h/patchsize,W = w/patchsize, dI
is the size of image embeddings and B is the number of extracted intermediate
patch-level feature layers. Then, the feature maps are mapped to a joint space
and align with text embeddings using a single linear layer by calculating the
cosine similarity. Let us respectively denote the visual and textual features in
the joint space as F l

s ∈ R
HW×C and Ft = [gn, ga] ∈ R

2×C , where C is the
embedding size in the joint space. The process of acquiring the anomaly map
can be formulated as:

M l
1 = softmax(Up( ˜F l

s
˜FT
t )/τ1), l = 1, 2, · · · B (3)

where τ1 denotes the temperature coefficient, which is set as a learnable param-
eter. Up(·) is an upsampling operation with bilinear interpolation. ˜(·) represents
the L2-normalized version along the embedding dimension.

3.3 The Design of VCP-CLIP

The baseline has made some progress, but still faces the following three main
problems: 1) The unified text prompt does not consider specific visual contexts.
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2) Overfitting phenomena may occur in the unified text prompt. 3) Insufficient
interaction between information from different modalities limits further improve-
ment in segmentation performance. In this end, we further designed two novel
visual context prompting modules, namely Pre-VCP and Post-VCP as shown in
Fig. 3. In contrast to the baseline, the global features of the image are encoded
into the text prompt using the Pre-VCP module. The Post-VCP module receives
patch-level features from the image encoder and text features from the text
encoder as inputs to generate the anomaly map.

Pre-VCP Module. We designed a Pre-VCP module to introduce global image
features into the text prompts of the baseline. Due to the extensive alignment
of image-text pairs during the pretraining process of CLIP, the embedding at
the [CLS] token position of the image encoder encompasses rich global image
features. We combine the global image features with learnable vectors in the
baseline to facilitate the fusion with the unified category contexts. Specifically,
the global image features are initially mapped to the word embedding space
through a small neural network, namely Mini-Net. This can be expressed as
{xi}ri=1 = h(x), where xi ∈ R

1×C , i = 1, 2, · · · r represents the mapping results,
which are combined with embeddings corresponding to the product category:

z(x, v) = [z1(x1, v1), z2(x2, v2), · · · , zr(xr, vr)] (4)

where zi = xi + vi. For the Mini-Net h(·), a parameter-efficient design utilizing
only a one-dimensional convolutional layer with (r, 1 × 3) kernels is employed.
The final text prompt based on Pre-VCP can be expressed as follows:

Hv = [a][photo][of ][a][state][[z1(x1, v1)][z2(x2, v2)] · · · [zr(xr, vr)]

For convenience in the subsequent text, we refer to the text prompt template as
“a photo of a [state] [z(x, v)]”.

Post-VCP Module. To further enable the text embedding to adapt based on
fine-grained image features, we devised a Post-VCP module, as illustrated in
Fig. 3. The text embedding Ft ∈ R

2×C and flattened visual embedding Zl
s ∈

R
HW×dI from each layer are projected into a latent space with C-dimension.

Then the learnable queries Qt, keys Kl
s, and values V l

s can be obtained:

Qt = FtW
q
t ,Kl

s = Zl
sW

k
s , V l

s = Zl
sW

v
s (5)

where W q
t ∈ R

C×C ,W k
s ∈ R

dI×C ,W v
s ∈ R

dI×C are linear projection matrices
in the PreProj layer. To capture richer visual features for fine-tuning text, a
multi-head structure is adopted for computing attention maps to update text
features within each head using matrix multiplication:

{Q
(m)
t }{Kl(m)

s }{V l(m)
s } = Split(Qt,K

l
s, V

l
s ) (6)

A
l(m)
t = SoftMax(Q(m)

t Kl(m)T
s ), O

l(m)
t = A

l(m)
t V l(m)

s (7)

Ol
t = Concat(Ol(1)

t , O
l(2)
t , · · · , O

l(M)
t )W o

t (8)
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where m = 1, 2, · · · ,M . M is the number of heads, Q
(m)
t ∈ R

2×(C/M),K
l(m)
s ∈

R
HW×(C/M), V

l(m)
s ∈ R

HW×(C/M) represent the features within each head after
the Split(·) operation for partitioning along the embedding dimension. A

l(m)
t ∈

R
2×HW and O

l(m)
t ∈ R

2×(C/M) respectively refer to the attention maps and
the text features updated through the image feature within each head. After
concatenating all features along the embedding dimension using the Concat(·)
operation, a PostProj layer with weight matrix W o

t ∈ R
C×dI is employed to

obtain the final updated text embedding Ol
t ∈ R

2×dI from Ft. Then, the updated
anomaly map is calculated as:

M l
2 = softmax(Up( ˜Zl

s
˜OlT
t )/τ2), l = 1, 2, · · · B (9)

where τ2 is a temperature coefficient set as a learnable parameter.

Fig. 4. The visualization result of the
attention maps from the Post-VCP module.

To visually validate the effective-
ness of the Post-VCP module, we
show the attention maps A

l(m)
t under

different heads corresponding to nor-
mal and abnormal text embeddings.
These maps reveal that abnormal
text embeddings concentrate more on
defective regions of the image com-
pared to normal text embeddings.
This clear differentiation stems from
employing fine-grained visual con-
texts in the Post-VCP module to
update text embeddings from Ft to Ol

t (Fig. 4).

3.4 Training and Inference

Loss Function. In this work, we employed focal loss [15] and dice loss [18] to
supervise the learning of VCP-CLIP. The total loss function of VCP-CLIP is
calculated as:

Ltotal =
∑

l

Focal(M l
1, S) +

∑

l

Dice(M l
1, S)

︸ ︷︷ ︸

Baseline

+
∑

l

Focal(M l
2, S) +

∑

l

Dice(M l
2, S)

︸ ︷︷ ︸

Additional VCP modules

(10)

where the loss function consists of two components, one for the baseline and the
other for additional VCP module. M l

1 and M l
2, l = 1, 2, · · · B are anomaly maps

generated from the two branches mentioned above. S ∈ R
h×w is the ground

truth corresponding to the input image.

Inference. The ultimate anomaly maps come from different layers of the
image encoder by summation. The anomaly maps generated from the two
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branches are represented as M1 and M2. To further enhance the ZSAS capa-
bility, we introduced a weighted fusion policy to generate the final anomaly
map, Ma = (1 − α)M1 + αM2 , where α ∈ [0, 1] is a fusion weight designed as a
hyperparameter to balance the importance of different anomaly maps.

Table 1. Comparison with existing state-of-the-art methods. The (a, b, c) represents
the pixel-level AUROC (%), PRO (%) and AP (%), respectively. The methods denoted
by † are training-free, while the others are training-required.

Datasets WinCLIP † [10] AnVoL † [8] CoCoOp [30] AnomalyGPT [9] APRIL-GAN [5] Baseline(ours) VCP-CLIP(ours)

MVTec-AD (85.1, 64.6, 18.2) (90.6, 77.8, 28.1) (88.2, 83.2, 40.4) (79.5, 45.9, 23.7) (87.6, 44.0, 40.8) (89.2, 85.8, 45.2) (92.0, 87.3, 49.4)

VisA (79.6, 56.8, 5.4) (91.4, 75.0, 12.7) (94.9, 88.0, 24.8) (90.3, 61.5, 13.3) (94.2, 86.8, 25.7) (95.5, 89.6, 27.3) (95.7, 90.7, 30.1)

BSD (87.7, 56.8, 4.4) (96.3, 72.6, 13.3) (98.7, 85.3, 55.5) (87.8, 54.0, 37.9) (98.8, 61.6, 59.7) (99.1, 86.4, 58.5) (99.3, 87.0, 70.2)

GC (71.9, 44.2, 8.6) (92.1, 66.5, 14.1) (96.1, 81.6, 41.5) (60.0, 11.6, 2.3) (94.0, 21.5, 34.4) (97.5, 81.2, 39.6) (97.8, 83.8, 42.6)

KSDD2 (89.4, 65.9, 17.5) (95.9, 80.4, 33.9) (96.1, 90.9, 69.6) (91.5, 61.9, 29.7) (97.5, 49.6, 67.2) (99.4, 95.4, 71.6) (99.5, 98.0, 75.2)

MSD (47.0, 41.7, 1.5) (95.0, 68.6, 9.4) (96.1, 82.3, 27.0) (67.9, 22.7, 1.8) (98.1, 36.8, 36.0) (98.5, 91.0, 54.9) (99.0, 91.1, 61.0)

Road (78.1, 37.9, 11.0) (85.8, 39.9, 18.3) (91.0, 56.0, 29.4) (67.6, 15.5, 9.2) (89.0, 6.1, 30.4) (92.7, 62.9, 30.2) (93.6, 66.4, 32.1)

RSDD (91.4, 63.6, 3.7) (94.7, 75.5, 3.5) (99.1, 94.4, 37.4) (93.2, 58.4, 16.0) (99.1, 62.9, 35.9) (99.3, 95.9, 35.0) (99.5, 97.5, 44.1)

BTech (63.2, 22.8, 11.4) (85.6, 45.4, 32.1) (90.8, 70.1, 44.4) (75.9, 29.3, 17.6) (90.8, 18.8, 43.6) (91.2, 68.9, 43.7) (94.1, 74.6, 51.4)

DAGM (75.1, 43.1, 3.2) (83.4, 64.7, 10.7) (98.0, 94.7, 42.9) (81.9, 35.7, 4.7) (99.0, 44.1, 50.5) (99.1, 97.2, 48.9) (99.4, 98.3, 52.0)

4 Experiments

4.1 Experimental Setup

Datasets and Metrics. To assess the performance of the model, ten real indus-
trial anomaly segmentation datasets are used, including MVTec-AD [2], VisA
[33], BSD [24], GC [17], KSDD2 [3], MSD [29], Road [25], RSDD [28], BTech
[19], DAGM [20]. Since the products in VisA do not overlap with those in other
datasets, we use VisA as the training dataset for evaluation on other datasets.
For VisA itself, we assess it after training on MVTec-AD. Please refer to the
Appendix C for more details. To ensure a fair comparison, pixel-level AUROC
(Area Under the Receiver Operating Characteristic), PRO (Per-Region Over-
lap), and AP (Average Precision) are employed as the evaluation metrics, fol-
lowing the recent works [5,6].

Implementation Details. In the experiments, we adopt the CLIP model with
ViT-L-14-336 pretrained by OpenAI [22] by default. Specifically, we set the num-
ber of layers B for extracting patch-level features to 4. Since the image encoder
comprises 24 transformer layers, we evenly extract image features from layers {6,
12, 18, 24}. All images are resized to a resolution of 518×518, and then fed into
the image encoder. The length of the learnable category vectors r and the length
of the learnable text embeddings n in each text encoder layer are set to 2 and
1, respectively, by default. The number of attention heads M in the Post-VCP
module is set to 8. The fusion weight α for different anomaly maps is set to 0.75
as the default value. The Adam optimizer [12] with an initial learning rate of
4e-5 is used, and the model is trained for continuous 10 epochs with a batch size
of 32. All experiments are conducted on a single NVIDIA GeForce RTX 3090.
We conducted three runs using different random seeds and then averaged the
results. More details can be found in Appendix A.



Visual Context Prompting Model 311

4.2 Comparison with the State-of-the-Art

Two kinds of state-of-the-art approaches are used to compare with ours: training-
free approaches and training-required approaches. The training-free approaches
include WinCLIP [10] and AnVoL [8], which do not require auxiliary datasets for
fine-tuning the model but necessitate more complex manual prompt designs and
inference processes. The training-required approaches comprise CoCoOp [30],
AnomalyGPT [9] and APRIL-GAN [5], which adhere to the protocol of training
on the seen products and testing on the unseen products.

WinCLIP

AnVoL

AnomalyGPT

CoCoOp

APRIL-GAN

VCP-CLIP

Input

Fig. 5. Qualitative segmentation results. The first five columns use images from the
MVTec-AD dataset, and the last five are from the VisA dataset.

Quantitative Comparison. Table 1 shows the quantitative performance com-
parison with other state-of-the-art methods on ZSAS. The best results are shown
in bold, and the second best results are underlined. It can be observed that the
proposed VCP-CLIP outperforms all other methods across all metrics, partic-
ularly in terms of AP. Due to the tiny anomaly regions on the Visa dataset,
its anomaly segmentation is more challenging. However, VCP-CLIP still main-
tains its advantage compared to other methods. Notably, it achieves state-of-
the-art results on VisA dataset, with AUROC score of 95.7%, PRO score of
90.7% and AP score of 30.1%. It is noteworthy that our baseline approach has
already achieved nearly superior performance compared to existing methods such
as CoCoOp, which similarly introduces global image information in the text
prompts. This is because our method simultaneously adjusts text embeddings
using fine-grained image features.
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Qualitative Comparison. For a more intuitive understanding of the results, we
visualized the anomaly segmentation results of our VCP-CLIP alongside another
five methods: WinCLIP [10], AnVoL [8], CoCoOp [30], AnomalyGPT [9], and
APRIL-GAN [5] on the MVTec-AD and VisA datasets in Fig. 5. The visual-
ization results clearly indicate that the compared approaches have a tendency
to generate incomplete or false-positive results, which can negatively impact the
performance of anomaly localization. In contrast, our VCP-CLIP effectively mit-
igates these issues, providing a more accurate and reliable approach to ZSAS.
More quantitative and qualitative comparisons are provided in the Appendix D.

Fig. 6. The AP improvement of VCP-CLIP over the
baseline for each product. (a) MVTec-AD (b) VisA

Fig. 7. Performance compar-
ison for different prompts
during training and testing.

4.3 Unified Text Prompting Vs. Visual Context Prompting

Same Prompts During Training and Testing. To better validate the effec-
tiveness of VCP-CLIP, we compared it with the proposed baseline on MVTec-AD
and VisA. Figure 6 illustrates the AP improvement of VCP-CLIP over the base-
line for each product. In specific, VCP-CLIP demonstrates varying degrees of
improvement among 13 out of the 15 products and 10 out of the 12 products on
the MVTec-AD and VisA datasets, respectively. This affirms the robust gener-
alization capability of VCP-CLIP, which is attributed to both the global visual
context in Pre-VCP and the fine-grained local visual context in Post-VCP.

Different Prompts During Training and Testing. To validate the robust-
ness of VCP-CLIP during the test process with different text prompts, we
employed text prompts different from those used during training on the MVTec-
AD and VisA datasets. Specifically, during training, the default state words
“good/damaged” were used. During testing, we reported the metric AP when the
state words were respectively “normal/abnormal”, “perfect/flawed”, and “pris-
tine/broken”. As shown in Fig. 7, our baseline performance sharply declined on
two datasets, while the performance of VCP-CLIP remained relatively stable.
This indicates that after incorporating VCP, the model can adaptively adjust
the output text embeddings based on input images, thereby avoiding dependence
on the specific text prompts used during training.
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Table 2. Ablation on different compo-
nents.

DTP VCP AUROC PRO AP

Pre Post
√ √

91.4 86.6 47.5
√ √

90.4 86.0 46.1
√ √

91.7 86.7 48.2
√

89.2 85.8 45.2
√ √ √

92.0 87.3 49.4

Table 3. Ablation on ensemble of differ-
ent patch-level image layers.

Image layers AUROC PRO AP

{6} 79.6 65.6 22.5

{12} 91.4 84.8 44.1

{18} 91.2 84.4 44.5

{24} 90.1 80.2 38.2

{6, 12} 91.1 85.9 46.2

{6, 12, 18} 91.8 87.1 49.2

{6, 12, 18, 24} 92.0 87.3 49.4

Table 4. Ablation on different template and state words in text prompts.

Template State words AUROC PRO AP

this is a [state] photo of [z(x, v)] perfect/flawed 91.9 87.3 48.5

normal/abnormal 90.1 86.1 48.7

flawless/imperfect 91.3 87.0 49.0

pristine/broken 91.2 86.5 48.8

good/damaged 91.5 86.9 49.1

a photo of a [state] [z(x, v)] perfect/flawed 91.8 87.2 48.8

normal/abnormal 91.7 86.6 48.7

flawless/imperfect 92.1 87.2 49.2

pristine/broken 92.0 87.1 49.3

good/damaged 92.0 87.3 49.4

4.4 Ablation Studies

Influence of Different Components. To assess the impact of different com-
ponents on VCP, experiments were conducted on MVTec-AD. Results in Table 2
indicate performance when using DTP, Pre-VCP or Post-VCP individually.
Notably, the optimal performance for VCP is achieved when all combined. It
can been seen that the performance decline is more pronounced after removing
Post-VCP compared to Pre-VCP. We also attempted to remove the learnable
text embeddings from each layer of the text encoder (without DTP), which
resulted in a decrease of 0.3% in AUROC, 0.6% in PRO, and 1.2% in AP. This
is because the original text space cannot directly comprehend the global fea-
tures of images, while DTP ensures deep fine-tuning of each text encoder layer,
thereby fostering mutual understanding and fusion of different modalities.

Influence of Ensemble of Different Patch-Level Image Layers. In Table 3,
we explore the impact of patch-level features from different image encoder layers
on VCP-CLIP’s performance. The experiments were conducted on the MVTec-
AD dataset. An intuitive observation is that image features from intermediate
layers (i.e. the 12th and 18th layers), contribute more to the final segmenta-
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tion result. Image features from lower layers (i.e., the 6th layer) are too low-
level, while those from higher layers (i.e., the 24th layer) are overly abstract.
Their effectiveness is not as pronounced as those from intermediate layers. How-
ever, We observed a positive correlation between incorporated layer numbers
and improved segmentation results. To maintain high performance, we adopted
all patch-level features from {6, 12, 18, 24} layers in VCP-CLIP.

Ablation on Text Prompt Design. As demonstrated in Table 4, we con-
sidered two commonly used text prompt templates and explored the impact
of different prompting state words in the proposed VCP-CLIP on MVTec-AD.
Specifically, we designed the following two text prompt templates: 1) this is a
[state] photo of [z(x, v)]; 2) a photo of a [state] [z(x, v)]. The state words (e.g.
“perfect/flawed”) are respectively inserted into the template to generate normal
and abnormal text prompts. It can be observed that for the same template with
different state words, our VCP-CLIP model consistently maintains similar per-
formance, validating the robustness towards the state words. Furthermore, the
second type of template, default employed in VCP-CLIP, outperforms the first
type overall, which may be attributed to the repeated usage of similar template
during the pre-training process of the vanilla CLIP.

Table 5. Ablation on different input res-
olutions upon VCP-CLIP.

Input resolution AUROC PRO AP Time (ms)

2242 91 84.6 38.1 101.6

3362 90.7 87.6 44.9 104.5

5182 92.0 87.3 49.4 127.9

5462 91.2 85.3 45.1 134.9

7982 90.8 85 38.4 265.3

Table 6. Ablation on different Pre-
trained backbone upon VCP-CLIP.

Pretrained backbone AUROC PRO AP Time (ms)

ViT-B-16-224 89.4 82.2 37.9 84.4

ViT-L-14-224 91.9 85.7 43.3 105.1

ViT-L-14-336 92.0 87.3 49.4 127.9

Ablation on Different Pretrained Models and Resolutions. In Table 5
and Table 6, we conducted a comprehensive analysis of the impact of varying
input image resolution and pre-trained backbone on MVTec-AD. The former
is tested using ViT-L-14-336, while the latter reports the optimal performance
under different backbones pre-trained by OpenAI. The inference time was simul-
taneously tested for a single image (average of 200 images). We observe that a
moderate increase in input image resolution contributes to more precise segmen-
tation (higher AP). However, deviations from the original pre-training resolution
(3362 to 7982), leading to model degradation. This outcome can be attributed
to the model deviating from the original image space. The result in Table 6
shows that our VCP-CLIP achieves the optimal segmentation performance in
ViT-L-14-336. Therefore, we have chosen it as the default backbone.

5 Conclusion

In this paper, we present VCP-CLIP, a novel zero-shot anomaly segmentation
(ZSAS) method achieved through the integration of visual context prompting



Visual Context Prompting Model 315

(VCP). The core methodology involves incorporating richer visual knowledge
into the textual space and cross-modal interaction between textual and visual
features. Specifically, a Pre-VCP and a Post-VCP module are designed to respec-
tively introduce global and fine-grained image features into the textual space.
With this design, our model can directly segment anomalies in novel products
without any prior knowledge. Extensive experiments conducted on 10 real-world
industrial anomaly segmentation datasets showcase VCP-CLIP’s state-of-the-art
performance in ZSAS.
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