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Abstract. In the past few years, large-scale pre-trained vision-language
models like CLIP have achieved tremendous success in various fields.
Naturally, how to transfer the rich knowledge in such huge pre-trained
models to downstream tasks and datasets becomes a hot topic. During
downstream adaptation, the most challenging problems are overfitting
and catastrophic forgetting, which can cause the model to overly focus
on the current data and lose more crucial domain-general knowledge. Ex-
isting works use classic regularization techniques to solve the problems.
As solutions become increasingly complex, the ever-growing storage and
inference costs are also a significant problem that urgently needs to be
addressed. While in this paper, we start from an observation that proper
random noise can suppress overfitting and catastrophic forgetting. Then
we regard quantization error as a kind of noise, and explore quantiza-
tion for regularizing vision-language model, which is quite efficiency and
effective. Furthermore, to improve the model’s generalization capability
while maintaining its specialization capacity at minimal cost, we deeply
analyze the characteristics of the weight distribution in prompts, con-
clude several principles for quantization module design and follow such
principles to create several competitive baselines. The proposed method
is significantly efficient due to its inherent lightweight nature, making
it possible to adapt on extremely resource-limited devices. Our method
can be fruitfully integrated into many existing approaches like MaPLe,
enhancing accuracy while reducing storage overhead, making it more
powerful yet versatile. Extensive experiments on 11 datasets shows great
superiority of our method sufficiently. Code is available at github
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1 Introduction

Recently, deep learning models and related technologies have seen rapid develop-
ment [9,11–13,23–25,50,51,66,67]. Vision-language model (VLM) like CLIP [59]
is one of the hottest research topics and leads to huge success. The excellent gen-
eralization ability is a crucial cornerstone of such achievements [27,54,59,60,69].
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Fig. 1: Overall performance comparison with existing vision-language tuning methods.
Our method outperforms all of the state-of-the-art competitors with significantly fewer
storage space. Based on the proposed quantization algorithm, our method could be
integrated into many of the existing methods and bring consistent improvements with
excellent efficiency.

When people have access to downstream data, it is better to tune the pre-
trained VLM on the target dataset for higher accuracy. However, such full fine-
tuning could easily cause the model to overfit the small downstream dataset and
face catastrophic forgetting problem, leading to severe performance drop.

To solve the problem, in this paper we will start from rethinking the rela-
tionship between noise and generalization. We propose to think noise as a kind
of regularization techniques, which may be helpful for alleviating overfitting and
catastrophic forgetting problem. As in Sec. 3.2 and Fig. 2, we then find that
directly adding some random Gaussian noise to the tunable prompts of vision-
language models would result in a performance gain in several cases, which
partly validates our conjecture about using noise as a form of regularization. In
particular, excessive noise diminishes the model’s adaptation capability, while
insufficient noise fails to provide effective regularization. Only noise of moderate
intensity is beneficial for the model’s generalization.

However, Gaussian noise is absolutely random and hard to control, and thus
it is difficult for us to take full advantage of such type of noise to benefit gener-
alization. Instead, we point out that quantization error is also a form of noise,
and therefore, it is also possible to leverage quantization error to enhance the
model’s generalization performance. With this idea in mind, we thoroughly ana-
lyzed the distribution pattern of prompt weights in Sec. 3.3 and derived several
design principles for quantization algorithms based on the observed phenom-
ena. In Sec. 4, following the principles we summarized, we successfully designed
an efficient quantization-aware training algorithm, which largely enhances the
model’s generalization ability while quantizing.
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Since our design is general, we could fruitfully integrate our quantization
strategy into many existing methods and reach a higher accuracy with much
smaller model size due to the lightweight nature of quantization. For example,
we integrate our method onto an existing popular method MaPLe, and our
QMaPLe earns 0.57% accuracy improvement with only 0.25× size.

In conclusion, we summarize our contribution as follows:

– We deeply analyze the effect of noise and rethink the relationship between
noise and generalization in Sec. 3.2 for vision-language models. As a result,
we confirm that moderate noise would promote the model generalization

– We are the first to propose to quantize prompts. By detailed observation
and hard thinking, we conclude several principles about how to effectively
design a quantization method for the prompts of vision-language models.

– Following the principles we concluded, we build our method and success-
fully quantize the prompts as well as some other weights, and our method
significantly outperforms existing ones as in Fig. 1. Extensive experiments
show great power of our method. In base-to-new generalization, domain gen-
eralization, cross-dataset transfer and few-shot learning settings, we consis-
tently reach competitive results, winning many state-of-the-art tuning meth-
ods with a much smaller size of model.

2 Related Works

2.1 Vision-Language Models

In recent times, large-scale vision-language models have demonstrated remark-
able performance across various tasks. Seminal works such as [27, 59, 69, 71,
74]. Classic works have focused on learning multimodal representations through
self-supervised methods using extensive sets of image-text pairs. Among these,
CLIP [59] stands out as a milestone achievement, employing contrastive learning
to align vision and language representations and achieving exceptional perfor-
mance. A well-trained vision-language model is invaluable, offering substantial
support to various fields. Successful applications of these robust models include
few-shot recognition [77, 78], detection tasks [15, 52, 61, 73], and segmentation
tasks [7,37,48,60]. Furthermore, for video data, research efforts have emerged in
video classification [58] and video understanding [31].

2.2 Parameter-Efficient Fine-Tuning

Recently, a series of works [20, 22, 24, 25, 28, 30, 39, 42, 45, 49, 65, 77, 78] have
been proposed to help transfer the learnt knowledge, where one of the most
popular field is parameter-efficient fine-tuning (PEFT). PEFT aims to transfer
a pre-trained model to downstream tasks by a minimum number of parame-
ters. Originating from natural language processing tasks, classic methods like
adapter [24], prompt tuning [29,36,39,43,44,62] and LoRA [25] follows a similar
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principle to add extra modules with a small number of parameters into the back-
bone model, freeze the original parameters and only tune and store the newly
added parameters. Inspired by the success of PEFT in language field, researchers
have extended such kind of approaches to adapt visual models in a similar fash-
ion [6,20,28,42,75]. In the field of vision-language modeling, several explorations
have been made as well. Bahng et al. [1] exclusively apply prompt tuning to the
image encoder. CoOp [78] replaces the fixed template in CLIP [59] with tunable
text prompts. CoCoOp [77] leverages image features to guide the optimization
of tunable text prompts in CoOp. Other works [33, 35] optimize both image
and text prompts simultaneously and establish additional connections between
different modalities. To mitigate overfitting and catastrophic forgetting, various
works [5,34,68,76] integrate regularization modules or losses into prompt tuning.

2.3 Quantization

Quantization is one of the most effective compression methods [4, 8, 10, 21, 38,
47, 70] for deep learning models. Generally, parameters such as weights and ac-
tivations are typically stored as 32-bit floating-point numbers, which consume
a significant amount of memory and require intensive computation during in-
ference. Quantization [18, 19, 56] involves representing these parameters with
reduced precision, such as 8-bit integers or even lower bit-widths. By doing
so, quantization can significantly reduce the memory footprint and computa-
tional complexity of the model without significantly sacrificing accuracy. Quan-
tization methods can be divided into two groups, Post-Training Quantization
(PTQ) [2,16,26,41,46,53,55,72] that consumes few resources but suffers higher
accuracy loss, and Quantization-Aware Training (QAT) [3, 14, 32, 40, 57] that
relies on plenty of resources for training and shows better accuracy. Existing
works aim to minimize quantization error to improve accuracy, while our work
demonstrates that both excessive and insufficient errors are detrimental to model
generalization. To achieve optimal generalization performance, a moderate error
is required.

3 Exploring Quantization in Model Generalization

3.1 Preliminaries: Prompt Tuning of Vision-Language Models

CLIP comprises a text encoder L and an image encoder V. Typically, L is im-
plemented as a language transformer, whereas V may be realized using either
a convolutional neural network or a vision transformer. In this study, following
the methodologies outlined by [77,78], we employ a ViT-B/16 model [13] as the
image encoder V, except where otherwise specified. The subsequent sections will
provide a brief overview of the methods used to prompt CLIP for prediction
tasks.
Text Encoder Consider a text encoder composed of M layers. For the k-th
layer, denoted as Lk, the inputs consist of a sequence of prompt tokens P l

k−1
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and a [CLS] token clk−1, while the outputs are represented by P l
k and clk. The

initial inputs, P l
0 and cl0, correspond to the word embeddings of the prompts

combined with the label, such as “A photo of a [CLS] ” or alternatively, some
randomly initialized vectors. Formally, we denote P l

k ∈ Rnl×dl

and clk ∈ Rdl

,
where nl signifies the length of the text prompts and dl represents the dimen-
sion of the word embeddings. For each layer, 1 ≤ k ≤ M , the relationship is
given by [P l

k, c
l
k] = Lk([P

l
k−1, c

l
k−1]). The output feature of the text encoder

f l ∈ Rdv

, where dv is the dimension of the visual feature space, is calculted by
projecting the [CLS] token of its last layer to the visual latent space through a
linear transformation, i.e. f l = Proj(clM ).
Image Encoder Suppose there are N layers in the image encoder. For k-th layer
Vk, the inputs are a series of image tokens Ik−1, a classification token cvk−1 and
prompt tokens P v

k−1, and the outputs are Ik, cvk and P v
k . The inputs of the first

layer I0 and cv0 are the patch embeddings of the input image and the pre-trained
class token. P v

0 is randomly initialized. Formally, Ik ∈ Rp×dv

, cvk ∈ Rdv

and P v
k ∈

Rnv×dv

, where p denotes the number of image patches and dv denotes the di-
mension of visual embedding. ∀1 ≤ k ≤ N , [P v

k , c
v
k, Ik] = Vk([P

v
k−1, c

v
k−1, Ik−1]).

The output feature of the image encoder is fv = cvN .
Prediction For image classification, suppose there are C classes, and {f l

c}Cc=1

are the text features. Label y’s probability is p(y|fv) =
exp(sim(fv,f l

y)/τ)∑C
c=1 exp(sim(fv,f l

c)/τ)

where sim(·, ·) denotes cosine similarity function and τ is temperature. The final
prediction is ẑ = argmax

1≤y≤C
(p(y|fv)).

We have introduced shallow prompts. There are also different types of prompts.
Several works [28, 33] use them for improve performance.They directly add
and tune the prompt in each layer in the feature encoder, instead of inherit-
ing the output prompt calculated by the last encoder. Now we have [_, clk] =
Lk([P

l
k−1, c

l
k−1]) and [_, cvk, Ik] = Vk([P

v
k−1, c

v
k−1, Ik−1]). Note that P l and P v

are independent tunable parameters. They are no longer determined by the pre-
vious layer.

3.2 Rethinking the Relationship between Noise and Generalization

Some existing work has explored how to use the addition of noise to suppress
model overfitting, e.g ., techniques like Dropout [63] that randomly drops con-
nections, and random jittor that directly introduce perturbations in the input
data. However, the impact of directly adding noise to model weights has been
less explored, especially in the context of prompt structures, which have become
popular only in recent years, in Transformer architectures. The variations of the
specialization capability represented by the test accuracy on base, seen classes
and the generalization capability represented by the test accuracy on new, un-
seen classes. The curves of different colors represent the data under the influence
of random Gaussian noise of different intensities, e.g . “Noise_0.01” adds ran-
dom noise with a distribution of N (0, 0.012) to the prompt. “Noise_0” denotes
the baseline prompt tuning. As training progresses, the generalization capability
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Fig. 2: The variations of the specialization capability represented by the test accuracy
on base, seen classes and the generalization capability represented by the test accuracy
on new, unseen classes on average of the ten datasets in base-to-new generalization
setting in Sec. 5 except for time-consuming ImageNet. The curves of different colors
represent the data under the influence of random Gaussian noise of different intensities,
e.g . “Noise_0.01” adds random noise with a distribution of N (0, 0.012) to the prompt.
“Noise_0” denotes the baseline prompt tuning. As training progresses, the generaliza-
tion capability of baseline prompt tuning continuously decreases while the specializa-
tion capability improves. Therefore, we expect that adding noise can achieve a better
balance between generalization and specialization. However, excessive noise, e.g . 0.1,
greatly diminishes the model’s specialization capability, while insufficient noise, e.g .
0.001, fails to provide effective regularization. Only noise of moderate intensity out-
performs baseline in specialization-generalization trade-off, effectively enhancing the
unseen class accuracy without significantly compromising seen class accuracy.

of baseline continuously decreases while the specialization capability improves.
Therefore, we expect that adding noise can achieve a better balance between
generalization and specialization. However, excessive noise, e.g . 0.1, greatly di-
minishes the model’s specialization capability, while insufficient noise, e.g . 0.001,
fails to provide effective regularization. Only noise of moderate intensity outper-
forms baseline in specialization-generalization trade-off, effectively enhancing the
unseen class accuracy without significantly compromising seen class accuracy.

Quantization, the technique of mapping parameter values from high precision
to low precision, can also be viewed as introducing some form of noise into the
parameters, and thus can possibly improve the genralizability as the noise did
in Fig. 2. Compared to Gaussian noise, quantization error is more controllable.
Better still, quantization also has another major advantage: it can significantly
reduce the storage required for parameters. Therefore, using quantization algo-
rithms to generalize vision-language models is a very promising direction.

3.3 Characteristics of Prompts in Vision-Language Models

In this subsection, we will demonstrate the characteristics of prompts in the
vision-language model to facilitate targeted design of quantization schemes.

We start from analyzing the training procedure of CoOp [78], which freezes
all the parameters in backbone and tunes the added prompts only. The histogram
about the frequency of weights of prompts for different training epochs is shown
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Fig. 3: The histogram about the frequency of weights of prompts during training of
CoOp [78] on eurosat dataset. We find the shape of the prompt’s weight distribution
remains largely unchanged throughout the entire training, but the variance of the
weight distribution increases rapidly at the beginning of training. Additionally, we also
notice that there are almost no outliers in the prompt’s weights throughout the entire
training process, and apart from the unstable initial training phase, the changes in
weights between adjacent phases are not significant, indicating a very gentle overall
updating trend.

in Fig. 3. We observe that the shape of the prompt’s weight distribution remains
mostly consistent throughout the entire training process. However, the variance
of the weight distribution increases rapidly at the initial stages of training. Refer
to Fig. 6 for more details. Moreover, we notice minimal presence of outliers in
the prompt’s weights throughout the training process. Apart from the unstable
initial training phase, the changes in weights between consecutive phases are not
substantial, indicating a very gentle overall updating trend.

Taking into account the observations from Secs. 3.2 and 3.3, we can draw the
following conclusions:

– Because the prompt weights are not sensitive to noise, and moderate noise
in the current scenario not only does not degrade the model’s performance
but actually enhances its generalization ability, we can possibly adopt some
quantization strategies that are considered very aggressive and highly likely
to significantly degrade performance, such as 1-bit quantization, without
causing destructive effects on the model’s generalization ability.

– Given that the parameters targeted for quantization in the current scenario
constitute only a tiny fraction of the total model parameters, we speculate
that QAT may have more advantages over PTQ, as any additional training
costs incurred by QAT which is considered a major drawback in traditional
situations would naturally be kept at a low level due to the low proportion
of parameters targeted for quantization. Due to the observation in Fig. 2
that both excessive and insufficient noise are detrimental to generalization,
in designing the QAT algorithm, we no longer need to always minimize
quantization error as the objective, as in classic algorithms. Instead, we
aim to maintain the quantization error at a moderate level. Furthermore,
as seen in Fig. 3, the changes in prompt weight distribution during most of
the training time are gentle, indicating that we can appropriately continue
to use past-time algorithm state without the need for real-time updates.



8 T. Hao et al.

-1.1 1.9 -0.1 -2.2

0.5 -1.8 -1.7 0.6

1.6 0.7 -0.3 2.8

1: -1.9

2: -0.5

3:  0.6

4:  2.1 

Codebook, 16 bit

Constrained

Adaptive 

Clustering

W, 16 bit

-0.5 2.1 -0.5 -0.5

0.6 -1.9 -1.9 0.6

2.1 0.6 -0.5 2.1

Wq, 16 bit

backward by straight-through estimator

quantize quantize forward
CLIP

2 4 2 1

3 1 1 3

4 3 2 4

Windex, 2 bit

record

backward

-1.1 1.9 -0.1 -2.2

0.5 -1.8 -1.7 0.6

1.6 0.7 -0.3 2.8

W, 16 bit

look up

Disk
save save

Training

Storage

1: -1.9

2: -0.5

3:  0.6

4:  2.1 

Codebook, 16 bit

parameters saved on disk

parameters with gradient

Fig. 4: Overview of Quantized Prompt. We set b = 2 for a clear explanation. Normal-
ization and denormalization processes are not shown here.

– Throughout the training process, the shape of the prompt weight distri-
bution remains roughly unchanged, with the main variation coming from
the distribution’s variance. Therefore, it may be beneficial to attempt to
eliminate the translation and scaling transformations of the distribution by
normalizing the distribution before quantization and denormalizing it after
quantization, which might help improve quantization accuracy.

– Since there are almost no outliers throughout the entire training process,
some classic algorithms are revitalized. Specifically, clustering algorithms
like K-Means are good choices, because one of the major drawbacks of them
in traditional usage is that they are greatly affected by outliers. In addition,
as we have analyzed before, there is not a high demand for dynamically
minimizing quantization error in vision-language generalization, opting for
a more efficient non-parametric clustering approach seems a better choice
compared with some complex parametric approaches.

4 Prompt Quantization

4.1 Preliminaries: Quantization Basis

Suppose there are m parameters in total to be quantized, which are denoted
by W ∈ Rm. Each wi here is a high-precision float-type number. A b-bit model
quantization algorithm divides the value range of parameters into 2b intervals
{Ui, 1 ≤ i ≤ 2b}, aiming to find a mapping Q from intervals to points, mapping all
values within an interval Ui to the same quantized value qi, i.e. Q(x) = qi,∀x ∈
Ui. We define the quantization error E =

∑N
i=1 ||Q(Wi)−Wi||2. Such error

serves as the objective of K-Means algorithm as well, so it can be ensured that
each time clustering is redone using the K-Means algorithm, the quantization
error will most likely decrease.
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4.2 Overview of Quantized Prompt

Based on the observation and analysis in Sec. 3.3, we build a simple yet quite
proper quantization algorithm for generalizing vision-language models. As stated
before, we choose a widely-used clustering method K-Means, to construct the
mapping Q. Initially, K-Means algorithm is run to fit the pre-trained prompt
weights, and record the codebook, i.e. cluster centers. Normalization and de-
normalization are conducted beyond quantization to alleviate the influence of
varying variance. Formally, given the original prompt W with N parameters, we

first calculate µ = 1
N

∑N
i=1 Wi and σ =

√∑
1≤i≤N (Wi−µ)2

N , then normalize W

and get Ŵ = W−µ
σ . K-Means quantization is applied on Ŵ , and the quantized

prompt Wq = σQ(Ŵ ) + µ. Since Q is not differentiable, we adopt a common
practice to directly propagate the gradient across the quantization function by
Straight-Through Estimator (STE), i.e. ∂Q(x)

∂x = x.
The overall framework is shown in Fig. 4. In training, we keep tuning the

weight by the fake gradient propagated from quantization operation. For storage,
we first convert the fp16 parameters in prompt to b-bit indexes, which could be
used to search for the corresponding cluster center in the codebook. In Fig. 4, we
set b = 2 for a clear explanation. Compared with baseline method, our quantized
method could save a lot more storage space. Specifically, for storage, an ordinary
method needs 16N bits, while ours only needs bN +2b × 16. In experiments, we
usually set b to 1, 2 or 4, which is far more smaller than N . For example, with
b = 1, the storage space of our method is roughly 16× smaller than baseline.

Note that the codebook here is updated by a rule called “constrained adaptive
clustering”. We will give a detailed description of it in the following subsection.

4.3 Constrained Adaptive Clustering for Quantization

In Fig. 4, re-clustering the prompt every iteration like classic QAT algorithms
did to keep the codebook updated at all times is not a good choice. There are
three reasons: 1. K-Means algorithm is not quite efficient, and thus if we run
it every iteration then the training efficiency would decrease; 2. Only moderate
noise promotes generalization, so keep updating the clusters to minimize the
quantization error may be not helpful but harmful; 3. From Fig. 3, we can
observe that the weight changes are very gentle for most of the training time,
and the weight distributions of adjacent stages are highly similar. Therefore,
even if we update the internal clustering state of K-Means with these already
very similar data at each iteration, it’s difficult to generate a better clustering
solution, which is just futile effort.

We propose constrained adaptive clustering to instruct the update of parame-
ters inside K-Means which would not updated by gradient at all. Intuitively, first,
we do not want too often update, so we set a minimum cluster update interval t.
Second, to avoid K-Means meaninglessly handling similar weights with current
cached state, i.e. the weights of prompt that triggers the last re-clustering, we
plan to only do re-clustering when current weight distribution is far different
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from the cached weight distribution. To reach the goal, Kullback-Leibler diver-
gence is a good metric. However, if we want to compute the Kullback-Leibler
divergence between two sets of discrete random variables, they must be defined
on the same event space. However, that’s not the case. So we first project each of
them into the same event space spanning by the K-Means clustering algorithm.
Specifically, given a current weight W cur, cached weight W old, quantization func-
tion Q, cluster centers C = {ci, 1 ≤ i ≤ 2b}, we will compute the W cur

index and
W old

index as in Fig. 4. Then, we can obtain the probability distributions of the in-
dices pcur and pold, respectively, implied by W cur

index and W old
index, thus successfully

transforming two originally unrelated discrete random variables into the same
event space. The Kullback-Leibler divergence could be computed as follows:

KL(pcur||pold) =
2b∑
i=1

pcur(i) log
pcur(i)

pold(i)
(1)

The update would continue only if Kullback-Leibler divergence exceed a cer-
tain threshold TKL which shows the distribution difference is significant.

5 Experiments

We evaluate the method and make comparisons with the latest state-of-the-art
methods in terms of the following settings across a wide range:

1. Base-to-new generalization, which models are trained with base classes
and evaluated on both base and new classes.

2. Domain generalization, which aims to show generalization to the domain
shift, especially for out-of-distribution data.

3. Cross-dataset transfer, which aims to see if the method has the potential
to transfer beyond a single dataset. It is a much more challenging problem
because the fundamentals can be totally changed across different datasets.

4. Few-shot learning, which aims to evaluate the adaptation performance of
the model to extract knowledge from a dataset whose samples are very few,
e.g . 1, 2, 4, 8 or 16 samples.

All methods are initialized with the same CLIP weights provided by the
open-source CLIP [59]. In Appendix, we provide more details of datasets, ex-
perimental setting and competitors introduction. Due to page limit, we also put
some detailed experimental results into Appendix, e.g . the performance of each
method on each dataset in base-to-new generalization setting.

5.1 Main Results

Base-to-new Generalization The average results over 11 datasets are shown
in Tab. 1. For complete results, please refer to the Appendix. Our proposed
QCoOp reaches 77.43% average harmonic mean accuracy within merely 0.26KB
size. QCoOp outperforms all kinds of lightweight state-of-the-art methods with
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Table 1: Comparisons with latest methods in base-to-new generalization. H: harmonic
mean [64]. QCoOp and QMaPLe are significantly better than other competitors, which
prove that our quantization design could be fruitfully integrated into many existing
approaches to further improve the performance and efficiency.

Size Base New H

CLIP [59] 0KB 69.34 74.22 71.70
CoOp [78] 4.1KB 82.69 63.22 71.66
CoCoOp [77] 70.8KB 80.47 71.69 75.83
Adapter [17] 1051KB 82.62 70.97 76.35
LoRA [25] 258KB 84.30 67.33 74.86
ProGrad [79] 16.4KB 82.79 68.55 75.00
QCoOp 0.26KB 80.68 74.44 77.43
MaPLe [33] 7096KB 82.28 75.14 78.55
QMaPLe 1774KB 83.02 75.57 79.12

Table 2: Comparisons with latest methods in domain generalization. QCoOp gets
comparable or even better results with the latest state-of-the art methods with much
fewer parameters, showing excellent robustness for domain shift.

Source Target
Size ImageNet -V2 -Sketch -Adversarial -Rendition Average

CLIP 0KB 66.73 60.83 46.15 47.77 73.96 57.18
CoOp 4.1KB 71.51 64.20 47.99 49.71 75.21 59.28
CoCoOp 70.8KB 71.02 64.07 48.75 50.63 76.18 59.91
Adapter 1051KB 69.33 62.53 47.67 49.17 75.42 58.70
LoRA 258KB 70.30 62.37 42.43 38.40 68.97 53.04
ProGrad 16.4KB 72.24 64.73 47.61 49.39 74.58 59.07
QCoOp 0.26KB 70.67 63.87 48.93 51.10 76.90 60.20

much more efficiency and higher accuracy. For heavier methods like MaPLe, our
method can be fruitfully integrated into existing solutions. Besides prompts, we
also perform a similar quantization operation on the other weights of MaPLe
that are in the linear layers. As a result, QMaPLe not only shows stronger gen-
eralization and adaptation capability and gives 0.57% higher accuracy, but also
enjoys a much more smaller model size compared with the original MaPLe.

Notably, when comparing QCoOp and a lightweight method ProGrad, even
if QCoOp is 63× smaller than ProGrad, QCoOp still outperforms it by a clear
margin, demonstrating the outstanding efficiency and effectiveness.

Domain Generalization In this paragraph, ImageNet, ImageNet-A, ImageNet-
R, ImageNet-v2, and ImageNet-S are used to construct domain generalization
experiments. As shown in Tab. 2, on downstream target datasets, QCoOp gets
better average accuracy compared with the other methods with significantly
better efficiency. For CLIP, CoOp, CLIP-Adapter and ProGrad, there is a clear
performance gap between our method and them.

Cross-dataset Transfer In this paragraph, we do cross-dataset transfer eval-
uation to further verify our QPrompt. Results are shown in Tab. 3. CoOp is
good on source domain but fails on target domains. Probably because it focus
too much on the dataset shown to its eyes and face overfitting and catastrophic
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Table 3: Results in the cross-dataset transfer setting. QCoOp gives the highest accu-
racy on 5 of 10 datasets, which well demonstrates that QCoOp could maximally extract
general and data-agnostic knowledge from input images.

Source Target
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Fig. 5: Average few-shot learning re-
sults on 11 datasets.

Fig. 6: KLD trend of prompt weights under
the same experiment with Fig. 3.

forgetting problems, which leads to a severe performance drop on unseen objects.
QCoOp wins on 5 of 10 datasets and its average accuracy is also slightly bet-
ter than the best competitor CoCoOp, showing that QCoOp could maximally
extract both general and data-agnostic knowledge from given images.

Few-shot Learning Here we will show the experiment results of QCoOp in the
few-shot learning setting that is originated from CoOp. Seen from Fig. 5, QCoOp
consistently outperforms zero-shot CLIP, CoOp, and CLIP-Adapter across all
the shot numbers. Such results demonstrate the superiority of QCoOp in adap-
tation ability when there are few samples in downstream tasks.

Overall, in base-to-new generalization, domain generalization, cross-dataset
transfer and few-shot learning, the proposed method can consistently accomplish
state-of-the-art performance while enjoying extremely high parameter efficiency,
fruitfully demonstrating the effectiveness and efficiency of the proposed method.

6 Analysis

6.1 Ablation Studies

Component In this subsection, we decompose the method into pieces and
show the influence of each component. As in Tab. 4, we clearly show how
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Table 4: Ablation study on separate component of QCoOp. Norm: Normaliza-
tion/Denormalization. CAC: Constrained Adaptive Clustering.

K-Means Norm CAC base new H

QCoOp
✓ ✗ ✗ 78.71 72.55 75.50
✓ ✓ ✗ 78.84 73.09 75.85
✓ ✓ ✓ 78.24 74.02 76.07

Table 5: Comparisons between QAT and PTQ based on CoOp. Both QAT and CoOp
are trained with the same hyper-parameters. Here the quantization bit is 1.

base new H
QAT 80.72 72.35 76.31
PTQ 82.21 68.50 74.73

much the K-Means algorithm, normalization/denormalization and constrained
adaptive clustering influence the final performance. One interesting point is
that K-Means+Norm+CAC only improves the new accuracy compared with K-
Means+Norm, showing the superiority of our constrained adaptive clustering.

Trend of the distributions of prompt between adjacent epochs. To
verify the opinions we proposed at the end of Sec. 6, we show the KLD of prompt
distributions between adjacent epochs during CoOp’s training in Fig. 6. Clearly,
this trend is consistent with what we summarized before.

QAT v.s. PTQ In Tab. 5, we study the choice of QAT or PTQ following
the same strategy, K-Means clustering, in the paper. Results show that QAT
consistently outperforms PTQ with the same hyper-parameters. The accuracy
on unseen new classes of PTQ is significantly lower than QAT, again proving
our opinion that quantization helps generalization by alleviating overfitting as
well as catastrophic forgetting. Quantization error is not always undesirable.

Quantization bit In Tab. 6 and Fig. 7, we show the results across multiple
quantization bits. In conclusions, more bits did not always lead to good results,
and new accuracy continues decreasing as the training goes on.

6.2 Performance on Self-Supervised Vision-Language Model

In this paragraph, we explore the usage of QCoOp among other different back-
bones besides CLIP. We choose a self-supervised vision-language model, SLIP [54]
to further verify the universality and robustness of our proposed method. The
experimental results are shown in Tab. 7. We could see that the base accuracies
of QCoOp and CoOp are similar, but the new accuracies of QCoOp is much

Table 6: Results across different quantization bits.
Size base new H

QCoOp (b = 1) 0.26KB 79.49 72.65 75.92
QCoOp (b = 2) 0.52KB 80.30 71.98 75.91
QCoOp (b = 4) 1.05KB 80.92 71.22 75.76
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Fig. 7: The same training curves with Fig. 2. Clearly, increasing quantization noise
leads to the same phenomenon with increasing gaussian noise, i.e. more generalizability
(new accuracy) and less adaptability (base accuracy).

Table 7: Results based on SLIP [54] model.
Size base new H

CoOp 4.1KB 68.65 46.60 55.51
QCoOp 0.26KB 68.33 74.04 71.07

higher than CoOp. Such observation verifies our assumption that quantization
is quite helpful for generalization again.

7 Conclusion

With the development of huge vision-language models, how to effectively and
efficiently adapt such huge models to downstream tasks becomes a challenging
problem. Much effort has been made to leverage the potential of prompt tuning
in adapting vision-language models. However, existing methods suffer from inef-
ficiency. To reach extremely efficient generalization, we propose QPrompt based
on the detailed analysis and deep understanding of the characteristics of the
prompt weight distribution. Following the several principles concluded by us,
we use K-Means clustering algorithm as the base of our quantization method.
To adaptively control the quantization error and minimize the number of re-
clustering operations, we propose to do a dynamic check every few iterations.
If the Kullback-Leible divergence between the current weights and the origi-
nal weights used in the last clustering exceeds a predefined threshold and the
quantization error also increases, we will let the model re-cluster the weights
and update the new centers and weights. Similarly, continue this process un-
til completion. The proposed method could be simply integrated into many of
the existing vision-language tuning methods like CoOp and MaPLe and reach
good performance. Importantly, our proposed method is significantly effective
and efficient. Extensive experiments show that the designed quantization algo-
rithm indeed improves the genralizability of vision-language model, and save a
lot more storage space as well.
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A Datasets

Building upon prior research [77, 78], we utilize eleven datasets pertaining to
image recognition to substantiate the effectiveness of the proposed methodology
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in addressing the base-to-new generalization task. These datasets encompass
two repositories dedicated to generic object classification, namely ImageNet and
Caltech101, five repositories catering to fine-grained classification, including Ox-
fordPets, StanfordCars, Flowers102, Food101, and FGVCAircraft, one repository
for scene recognition, denoted as SUN397, one repository for action recognition,
known as UCF101, one repository for texture classification, termed DTD, and
one repository for satellite imagery recognition, designated EuroSAT. Consistent
with earlier studies [33, 77–79], for each dataset in base-to-new generalization,
we evenly partition the classes into two distinct groups that do not overlap,
with one group serving as the base classes and the other as the new classes. We
train all models only using the base classes and conduct evaluation on both the
base and new classes to verify the specialization capability and generalization
capability of the models.

In the domain generalization task, we leverage ImageNet-A, ImageNet-R,
ImageNetv2, and ImageNet-S to assess the robustness of the model. In this con-
text, the model is initially trained using ImageNet, followed by direct utilization
of images from the aforementioned datasets for inference.

Concerning the cross-dataset transfer task, the datasets mirror those utilized
in the base-to-new generalization task. Analogous to domain generalization, the
model undergoes initial training on ImageNet followed by inference on the re-
maining ten distinct datasets.

For the few-shot learning task, the datasets align with those employed in the
base-to-new generalization task. The model is trained and assessed with varying
numbers of shots, specifically 1, 2, 4, 8, and 16 shots separately.

The dataset partitioning mirrors that of earlier works [77,78]. We present the
average model performance over three iterations with distinct random seeds to
ensure fair comparisons.

B Training Configuration

Following the conventional setup outlined in [77], we employ ViT-B/16 as the
image encoder within CLIP. Prior to feeding into the image encoder, each train-
ing image is resized to 224×224. To augment the data, standard techniques such
as random cropping and flipping are applied, consistent with the methodology
described in [77]. During training, a batch size of 32 is utilized, and stochastic
gradient descent (SGD) is employed to optimize the learnable parameters. Sim-
ilar to the approach detailed in [78], a warm-up scheme is implemented during
the first epoch, which proves crucial for prompt tuning. All other baselines are
configured strictly according to the specifications provided in their respective
original papers.

Hyperparameter tuning is performed via a grid search methodology, guided
by the parameter configurations reported in previous studies [33,78]. For experi-
ments involving QCoOp, the quantization bit of the prompts is set to 1 by default
unless otherwise specified. In the case of QMaPLe experiments, the parameters
in the projection layer, responsible for transforming text prompts into image
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Table 8: Full results in base-to-new generalization. H: harmonic mean [64].
(a) An overview of the size of different methods..

Method CoOp CoCoOp Adapter LoRA ProGrad QCoOp MaPLe QMaPLe

size 4.1KB 70.8KB 1051KB 258KB 16.4KB 0.26KB 7096KB 1774KB

(b) Average
Base New H

CLIP 69.34 74.22 71.70
CoOp 82.69 63.22 71.66
CoCoOp 80.47 71.69 75.83
Adapter 82.62 70.97 76.35
LoRA 84.30 67.33 74.86
ProGrad 82.79 68.55 75.00
QCoOp 80.68 74.44 77.43
MaPLe 82.28 75.14 78.55
QMaPLe 83.02 75.57 79.12

(c) ImageNet
Base New H

CLIP 72.43 68.14 70.22
CoOp 76.47 67.88 71.92
CoCoOp 75.98 70.43 73.10
Adapter 76.53 66.67 71.26
LoRA 74.77 58.47 65.62
ProGrad 77.03 68.80 72.68
QCoOp 76.17 70.73 73.35
MaPLe 76.66 70.54 73.47
QMaPLe 76.93 70.73 73.70

(d) Caltech101
Base New H

CLIP 96.84 94.00 95.40
CoOp 98.00 89.81 93.73
CoCoOp 97.96 93.81 95.84
Adapter 98.20 93.20 95.63
LoRA 98.49 90.33 94.24
ProGrad 98.50 91.90 95.09
QCoOp 97.80 95.03 96.40
MaPLe 97.74 94.36 96.02
QMaPLe 97.97 95.00 96.46

(e) OxfordPets
Base New H

CLIP 91.17 97.26 94.12
CoOp 93.67 95.29 94.47
CoCoOp 95.20 97.69 96.43
Adapter 94.40 94.10 94.25
LoRA 94.90 92.57 93.72
ProGrad 94.40 95.10 94.75
QCoOp 95.17 97.60 96.37
MaPLe 95.43 97.76 96.58
QMaPLe 95.67 97.63 96.64

(f) StanfordCars
Base New H

CLIP 63.37 74.89 68.65
CoOp 78.12 60.40 68.13
CoCoOp 70.49 73.59 72.01
Adapter 77.13 69.23 72.97
LoRA 81.07 65.30 72.34
ProGrad 79.00 67.93 73.05
QCoOp 73.73 72.90 73.31
MaPLe 72.94 74.00 73.47
QMaPLe 75.00 73.67 74.33

(g) Flowers102
Base New H

CLIP 72.08 77.80 74.83
CoOp 97.60 59.67 74.06
CoCoOp 94.87 71.75 81.71
Adapter 97.70 70.83 82.13
LoRA 98.23 60.20 74.65
ProGrad 96.27 71.07 81.77
QCoOp 95.57 74.67 84.22
MaPLe 95.92 72.46 82.56
QMaPLe 96.43 74.33 83.95

(h) Food101
Base New H

CLIP 90.10 91.22 90.66
CoOp 88.33 82.26 85.19
CoCoOp 90.70 91.29 90.99
Adapter 90.40 90.40 90.40
LoRA 88.57 87.30 87.93
ProGrad 90.17 89.53 89.85
QCoOp 90.87 91.90 91.38
MaPLe 90.71 92.05 91.38
QMaPLe 90.63 92.10 91.36

(i) FGVCAircraft
Base New H

CLIP 27.19 36.29 31.09
CoOp 40.44 22.30 28.75
CoCoOp 33.41 23.71 27.74
Adapter 39.57 32.27 35.55
LoRA 46.27 28.83 35.53
ProGrad 42.63 26.97 33.04
QCoOp 37.50 34.03 35.68
MaPLe 37.44 35.61 36.50
QMaPLe 39.10 34.90 36.88

(j) SUN397
Base New H

CLIP 69.36 75.35 72.23
CoOp 80.60 65.89 72.51
CoCoOp 79.74 76.86 78.27
Adapter 81.67 73.93 77.61
LoRA 79.73 69.00 73.98
ProGrad 80.70 71.03 75.56
QCoOp 79.20 77.93 78.56
MaPLe 80.82 78.70 79.75
QMaPLe 81.33 78.27 79.77

(k) DTD
Base New H

CLIP 53.24 59.90 56.37
CoOp 79.44 41.18 54.24
CoCoOp 77.01 56.00 64.85
Adapter 80.47 52.23 63.35
LoRA 82.93 54.90 66.06
ProGrad 76.70 46.67 58.03
QCoOp 74.97 58.37 65.63
MaPLe 80.36 59.18 68.16
QMaPLe 80.77 57.63 67.27

(l) EuroSAT
Base New H

CLIP 56.48 64.05 60.03
CoOp 92.19 54.74 68.69
CoCoOp 87.49 60.04 71.21
Adapter 86.93 64.20 73.86
LoRA 94.90 65.67 77.62
ProGrad 91.37 56.53 69.85
QCoOp 83.53 69.80 76.05
MaPLe 94.07 73.23 82.35
QMaPLe 94.30 79.47 86.25

(m) UCF101
Base New H

CLIP 70.53 77.50 73.85
CoOp 84.69 56.05 67.46
CoCoOp 82.33 73.45 77.64
Adapter 85.80 73.63 79.25
LoRA 87.47 68.03 76.53
ProGrad 83.90 68.50 75.42
QCoOp 81.87 75.93 78.79
MaPLe 83.00 78.66 80.77
QMaPLe 85.10 77.50 81.12
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Table 9: Results of deep prompts for QCoOp.
total depth size base new H

1 0.26KB 79.49 72.65 75.92
2 0.52KB 78.19 73.67 75.86
3 0.78KB 79.82 72.27 75.86
4 1.04KB 80.77 72.31 76.31
5 1.30KB 81.14 72.67 76.67
6 1.56KB 81.65 72.68 76.90

Table 10: Comparisons of using quantized prompts in textual encoder and image
encoder at minimal size.

size base new H
QCoOp 0.26KB 79.49 72.65 75.92
QVPT 0.39KB 73.15 68.93 70.98

prompts, and the parameters in the prompts are all subjected to quantization,
with a quantization bit of 4. Additionally, following the structure of MaPLe, nine
transformer layers are typically modified within QMaPLe experiments.

C Full Base-To-New Generalization Results

As shown in Tab. 8, QCoOp and QMaPLe significantly improve the general-
ization capability represented by the accuracy on the new classes. Compared
with CoOp, QCoOp earns 11.22% accuracy gain on the new classes and 2.10%
accuracy drop on the base classes. Among all the lightweight SOTA methods,
QCoOp gets strongest harmonic mean accuracy on 7 out of 11 datasets including
ImageNet, Caltech101, StanfordCars, Flowers102, Food101, FGVCAircraft, and
SUN397. Compared with a heavy method MaPLe, QMaPLe achieves better har-
monic mean accuracy on 9 out of 11 datasets, including ImageNet, Caltech101,
OxfordPets, StanfordCars, Flowers102, FGVCAircraft, SUN397, EuroSAT and
UCF101.

D Experiments on Deep Prompt Configurations

In this paragraph, we investigate the impact of deep prompts, as described in Eq.
4 of the main text. By default, QCoOp employs prompts with a depth of 1, which
means the prompts are only added to the input layer. We systematically increase
the number of tunable prompts in subsequent transformer layers. Considering
that the text transformer in CLIP consists of 12 layers, we add prompts to a
maximum of 6 layers for verification. As illustrated in Table Tab. 9, incorporating
more prompts across multiple layers tends to improve the specialized capability,
albeit at the expense of a slight reduction in generalized capability. In summary,
at the expense of increased dimensionality, using more prompts across multiple
layers can improve the harmonic mean accuracy to some extent.
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E Prompt Modality Considerations for Minimizing
Storage Cost

In this paragraph, we conduct a brief comparison of quantizing prompts in the
visual transformer, following the approach outlined in VPT [28]. The results
are presented in Tab. 10. It is evident that when operating under a stringent
storage constraint, QCoOp outperforms QVPT in terms of both accuracy and
size efficiency. Adding prompts to the textual transformer is better.
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