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ABSTRACT
Collecting full annotations to construct multi-label datasets is diffi-
cult and labor-consuming. As an effective solution to relieve the an-
notation burden, single positive multi-label learning (SPML) draws
increasing attention from both academia and industry. It only an-
notates each image with one positive label, leaving other labels
unobserved. Therefore, existing methods strive to explore the cue
of unobserved labels to compensate for the insufficiency of label
supervision. Though achieving promising performance, they gen-
erally consider labels independently, leaving out the inherent hi-
erarchical semantic relationship among labels which reveals that
labels can be clustered into groups. In this paper, we propose a
hierarchical prompt learning method with a novel Hierarchical
Semantic Prompt Network (HSPNet) to harness such hierarchical
semantic relationships using a large-scale pretrained vision and
language model, i.e., CLIP, for SPML. We first introduce a Hierar-
chical Conditional Prompt (HCP) strategy to grasp the hierarchical
label-group dependency. Then we equip a Hierarchical Graph Con-
volutional Network (HGCN) to capture the high-order inter-label
and inter-group dependencies. Comprehensive experiments and
analyses on several benchmark datasets show that our method
significantly outperforms the state-of-the-art methods, well demon-
strating its superiority and effectiveness. Our code will be available
at https://github.com/jameslahm/HSPNet.
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1 INTRODUCTION
Multi-label classification (MLC) aims to describe the image con-
tent with multiple semantic labels. Benefiting from the collected
multi-label datasets with full annotations, MLC has achieved re-
markable progress in recent years [18, 24, 34, 40]. However, when
the label set scales up, collecting full annotations for large-scale
datasets becomes very difficult and labor-consuming. Therefore, a
full labeling strategy encounters a huge limitation in the practical
application of MLC. To mitigate this issue, researchers have dedi-
cated themselves to a new setting, i.e., single positive multi-label
learning (SPML), in which merely one positive label is annotated for
each image [5, 11, 12, 35]. Such an extreme setting has shown great
superiority in reducing the annotation burden [36], thus drawing
increasing attention from both academia and industry. However,
compared with the full label setting, the insufficiency of supervision
causes great challenges to SPML [5].

Existing works strive to tackle such an insufficiency issue by min-
ing knowledge from the unobserved labels, aiming to recover more
unlabelled but potentially true labels. Nonetheless, most works
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Figure 1: The hierarchical semantic relationships among la-
bels. Solid lines denote the explicit label-group dependency
in the hierarchical semantic structure. Dashed lines are the
implicit inter-label and inter-group dependencies.

simply explore the cue of unannotated labels independently, with-
out consideration of the semantic relationships among labels. For
example, [13, 41] propose to correct the loss for labels individu-
ally according to the model’s predicted probability. [42] present an
entropy-maximization loss to acknowledge each unannotated label
separately.

It’s a consensus that there generally exist rich semantic relation-
ships among different labels [3, 7, 45]. For example, “table” and
“chair” are likely to appear together. “fish” is not likely to co-occur
with “sky”. Intuitively, unobserved labels can be reasoned from
observed labels by leveraging their semantic relationships, thus
facilitating mining more supervision information. Such label de-
pendencies have been explored under the full label setting [3] and
the partial label setting [7] with graph neural networks [33]. How-
ever, rare works pay attention to leveraging such dependencies
to enhance the SPML performance. The main reason is that the
severe deficiency of label annotations in SPML makes it hard to
establish sufficient label dependencies to discover more unobserved
true labels.

Recently, large-scale vision-language pretrained models such
as the Contrastive Language-Image Pre-training (CLIP) [23], have
become one of hottest topics in both academic and industrial com-
munities. By exploring contrastive learning with about 400 million
noisy image-text pairs, CLIP can well exploit the semantic rela-
tionships between images and their associated texts. Thanks to the
language supervision, models based on CLIP achieve impressive
results on various downstream vision tasks [19, 27, 37]. For exam-
ple, [44] propose a context optimization method, dubbed CoOp, to
adapt CLIP to the single-label classification, achieving impressive
classification performance. [27] present dual prompts, i.e., a posi-
tive prompt and a negative one, to transfer the knowledge in CLIP
to multi-label classification. Despite great performance, existing
methods, e.g., [27, 44], simply strive to leverage the label seman-
tics in CLIP, taking no consideration of the abundant semantic
dependencies, which is convincingly valuable in SPML.

To harness the promising label dependency in CLIP for SPML,
we are motivated by an intrinsic characteristic, i.e., the hierarchical
semantic relationship, which indicates that labels can be clustered

into groups, as shown in Figure 1. We can observe: 1) the label–
group dependency: each label can be associated with one group
according to a certain measurement, e.g., the semantic similarity.
For example, “cat" and “dog" belong to the “animal" group. 2) the
inter-label dependency: semantically related labels, which can be
within or across groups, can co-occur in the same image; 3) and
the inter-group dependency: among groups, there also implicitly
exist dependencies that may indicate the co-occurrence. Intuitively,
labels in the same group are more likely to be reasoned from the
given positive label than those in other groups that are less se-
mantically related to the positive label. Therefore, leveraging the
label-group correspondence, models can conveniently grasp related
unobserved labels within an identical group and pay more atten-
tion to less related inter-group labels, thus relieving the burden
of mining complicated label dependencies. Therefore, compared
with simple label dependencies, such hierarchical semantic
relationships can provide richer dependencies, thus being
notably favorable for SPML.

In this paper, we propose a hierarchical prompt learning method
by a Hierarchical Semantic Prompt Network, namely HSPNet,
which aims to explore the valuable hierarchical semantic rela-
tionship using CLIP for SPML. Specifically, we first introduce a
HierarchicalConditionalPrompt (HCP) strategy to efficiently adapt
CLIP to the downstream task of SPML. By explicitly conditioning
label prompts on their associated group representation, the pro-
posed HCP can well grasp the label-group dependency, ending up
with compact group-aware label features. Besides, we propose a
Hierarchical Graph Convolutional Network (HGCN) to compre-
hensively capture the high-order inter-label and inter-group rela-
tionships. Thanks to HGCN, our method can enable subtle semantic
associations, thus enhancing the label hypothesis prediction.

To verify the effectiveness of our proposed HSPNet, we con-
duct extensive experiments on a series of widely used benchmark
datasets for SPML, i.e. MS COCO [17], NUSWIDE [4], CUB [29],
and Pascal VOC [8]. Experimental results show that our method
can significantly outperform the state-of-the-art methods on all
datasets, well demonstrating its effectiveness and superiority. We
further reveal the remarkable generalization capability of HSPNet
in other practical MLC scenarios, e.g., the few-shot SPML setting
and the partial label setting, where our method also obtains consis-
tent performance gains compared to other methods. Additionally,
we investigate the efficacy of HSPNet in scenarios with a lack of
explicit group information, by clustering label features to automati-
cally construct hierarchical relationships. The experimental results
well demonstrate its practicality in such scenarios.

To sum up, our contributions are three folds:

• We propose a Hierarchical Semantic Prompt Network (HSP-
Net) which can effectively explore the hierarchical semantic
relationship in the vision-language pretrained model, i.e.,
CLIP, to compensate for the dilemma of poor supervision in
SPML.

• We design a Hierarchical Conditional Prompt (HCP) and a
Hierarchical Graph Convolutional Network (HGCN), which
can efficiently incorporate the label-group dependency in
the hierarchical prompt learning and capture the high-order
inter-label and inter-group relationships, respectively.
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• We conduct extensive experiments and analyses on widely
used benchmark datasets, which show our method can con-
sistently achieve state-of-the-art performance, well demon-
strating its effectiveness and superiority.

2 RELATEDWORK
Multi-label classification with single positive labels. Thanks to the

rapid development of deep learning and the emergence of large-
scale multi-label datasets, multi-label classification under different
settings has achieved great progress in past years. Various improve-
ments for loss function [24] and backbone networks [18] obtain
notable success under the full label setting and the partial label
setting. However, they are not perfectly applicable in SPML due
to the special limitation of only one positive label for each image.
To mitigate the issue of severely weak label supervision, different
robust losses are designed for SPML. [41] present a Hill loss and
a self-paced loss correction method to alleviate the effect of false
negative labels. To relieve the memorization effect during training
in SPML, [13] further propose to correct or reject the large loss
samples. [42] then design an entropy-maximization loss to attain
a special gradient regime for unobserved labels. In addition to the
robust loss design, different training schemes are also proposed
to increase the pseudo-label annotations. [28] design a scheme to
ignore the labels expected to be unobserved positives. [42] fur-
ther propose an asymmetric pseudo-labeling strategy to generate
more precise supervision. Though previous works in SPML achieve
notable performance gains, the label dependencies are generally
ignored, resulting in limitations in alleviating the deficiency of label
supervision.

Mining label dependencies for MLC. Considering associated ob-
jects normally co-occur in one image, capturing label dependencies
to discover more positive labels is actively explored in the full la-
bel setting [18, 31] and the partial label setting [7, 45]. However,
adapting existing methods to SPML is limited mainly due to the few
annotations. For example, [3, 31] adopt the conditional probability
matrix to model the label dependency explicitly, while such statistic
information depends on adequate annotations. [30, 38] present the
CNN-RNN architecture and [18] leverage the transformer decoder
structure to capture the label co-occurrence dependency implicitly,
which, however, require sufficient label supervision for training.
Moreover, the hierarchical semantic relationships which provide
richer label dependencies are rarely explored in MLC. Therefore,
different from previous works, we aim to introduce such hierarchi-
cal relationships into SPML without the dependence on sufficient
label annotations, which is notably valuable in SPML.

Vision-language models in downstream visual tasks. Recently,
vision-language pretrained models have obtained remarkable suc-
cess in various downstream visual tasks [15, 23, 32, 39]. Therefore,
researchers actively explore how to leverage the abundant prior
knowledge in vision-language pretrained models [9, 10, 19, 26, 27,
37]. [37] propose a Dual-Modal decoder to align visual and textual
features for zero-shot multi-label classification. Additionally, [19]
present fusioner to pair the visual representation and language
concept for adapting the vision-language pretrained models to the
task of open-vocabulary semantic segmentation. Dual prompts are

used in [27] for MLC. They present a positive prompt and a nega-
tive one to transfer the knowledge in CLIP. However, they discard
the hierarchical semantic relationship among labels and thus not
optimal for exploring CLIP’s knowledge.

3 METHODOLOGY
In this section, we describe the proposed hierarchical semantic
prompt network (HSPNet) in detail. Our HSPNet aims to explore
the hierarchical semantic relationship using CLIP for SPML. To this
end, we first extract cross-modality features for the input image
and labels using CLIP. Then, we propose a hierarchical conditional
prompt strategy to adapt CLIP to SPML efficiently via incorporating
the hierarchical label-group structure (see Section 3.1). To further
enhance the semantic representation with high-order hierarchical
semantic dependencies, we adopt a hierarchical graph convolutional
network to refine the label features and the group features with
inter-label and inter-group relationships (see Section 3.2). Figure 2
illustrates the overview of our HSPNet.

3.1 Hierarchical Conditional Prompt
Recently, the development of large-scale cross-modality pretrained
models draws great attention from the vision community. Researchers
investigate different prompt learning methods to efficiently adapt
such powerful large-scale models to downstream vision tasks, e.g.,
CoOp [44], CoCoOp [43]. However, such a simple prompt strategy
discards the rich hierarchical semantic dependency among labels,
thus being sub-optimal for SPML. Here, we present a hierarchi-
cal conditional prompt (HCP) strategy to explore the hierarchical
dependency between groups and labels. We encourage the SPML
model to learn prompts for groups and labels simultaneously. Then,
during the construction of prompts for labels, we optimize the la-
bel prompt conditioned upon its corresponding group with the
guidance of the label-group dependency.

Specifically, given a label set 𝑌 = {𝑦0, 𝑦1, ..., 𝑦𝑛}, we first obtain
their hierarchical structure like in Figure 1 by the provided concept
taxonomy in datasets or by manually dividing the labels into groups
based on their feature similarity or the semantic relationship in the
WordNet [20]. Then, we derive the groups 𝑍 = {𝑧1, 𝑧2, ..., 𝑧𝑚} and
the surjective function Φ : 𝑌 −→ 𝑍 by the hierarchical structure.
Through Φ, we can obtain a label set ℎ 𝑗 in which all labels belong
to the group 𝑧 𝑗 by:

ℎ 𝑗 = {𝑦 ∈ 𝑌 |Φ(𝑦) = 𝑧 𝑗 } (1)

Considering a CLIP model with a text encoder, denoted as 𝐸 (·)
and an image encoder, denoted as 𝐹 (·), we introduce a fixed prompt
template, i.e., a photo of a [CLS] where [CLS] is the name of a given
group, to extract the group features. For ease of explanation, we
denote the word embeddings of the prefix “a photo of a” as 𝒐 𝑗 , which
is generated by the CLIP model. Then, for each group 𝑧 𝑗 , the group
feature 𝒈 𝑗 of 𝑧 𝑗 can be derived via the text encoder of CLIP by:

𝒈 𝑗 = 𝐸 ( [𝒐 𝑗 , 𝒅 𝑗 ]) (2)

where 𝒅 𝑗 is the word embedding of 𝑧 𝑗 in the pretrained CLIP.
To incorporate the label-group dependency into the extraction

of label features, we dedicatedly leverage the hierarchical semantic
structure in the construction of label prompts. We design a group-
aware meta network to generate the label prompts based on 𝑮 =
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Figure 2: The overview of the proposed HSPNet. We design a hierarchical conditional prompt (HCP) strategy to explore the
inherent label-group dependency between labels and groups. A hierarchical graph convolutional network (HGCN) is introduced
to grasp the inter-label and inter-group dependencies.

{𝒈1,𝒈2, ...,𝒈𝑚}, where 𝑮 is a combination of group features derived
from Equation (2). The group-aware meta network is a lightweight
neural network, which is composed of two linear layers and one
activation layer, i.e. Linear-ReLU-Linear. We denote the network as
Meta(·). For each label𝑦𝑖 ∈ ℎ 𝑗 whereℎ 𝑗 is a label set corresponding
to the group 𝑧 𝑗 (see Equation (1)), we can obtain its group-aware
label prompt with 𝑁 learnable soft prompt tokens conditioned on
its corresponding group feature 𝒈 𝑗 by:

𝒔𝑖 = {𝒗𝑖1, 𝒗𝑖2, ..., 𝒗𝑖𝑁 } = Meta(𝒈 𝑗 ) (3)

where 𝒔𝑖 denotes the group-aware label prompt of 𝑦𝑖 . Then, we can
derive the group-aware label feature 𝒕𝑖 of 𝑦𝑖 by:

𝒕𝑖 = 𝐸 ( [𝒔𝑖 , 𝒆𝑖 ]) (4)

where 𝒆𝑖 is the word embedding of 𝑦𝑖 in the pretrained CLIP.
As illustrated by Equation (3), the label prompt for label𝑦𝑖 , i.e., 𝒔𝑖 ,

is conditioned on the group representation, i.e., 𝒈 𝑗 . For all 𝑦𝑖 ∈ ℎ 𝑗
corresponding to group 𝑧 𝑗 , they share the same group feature,
which naturally encourages label features belonging to the same
group to be clustered in the same manifold space, leading to more
compact group-aware feature clusters for labels. Such a property
can enable SPML models to conveniently associate semantically
related labels with the input image, relieving the burden of image-
label matching during training.

3.2 Hierarchical Graph Convolutional Network
As the HCP mainly leverages label-group relationships, the hierar-
chical inter-label and inter-group relationships are not adequately
explored. Therefore, we present a hierarchical graph convolutional
network (HGCN) to further comprehensively capture the high-
order inter-label and inter-group relationships. We first capture the
inter-label and inter-group relationships in the form of dependency
graphs. Then, two GCN modules are employed to refine the group

features, i.e., 𝑮 = {𝒈1,𝒈2, ...,𝒈𝑚} derived by Equation (2), and the la-
bel features, i.e., 𝑻 = {𝒕1, 𝒕2, ..., 𝒕𝑛} derived by Equation (4), with the
guidance of the group dependency graph and the label dependency
graph, respectively.

Given groups𝑍 = {𝑧1, 𝑧2, ..., 𝑧𝑚} and their features𝑮 = {𝒈1,𝒈2, ...,𝒈𝑚},
we can obtain the group correlation matrix 𝑨𝑍 = (𝑎𝑖 𝑗 )𝑚×𝑚 by:

𝑎𝑖 𝑗 = sim(𝒈𝑖 ,𝒈 𝑗 ) (5)

where sim(·, ·) denotes the cosine similarity. The correlation ma-
trix 𝑨𝑍 forms a graph, where nodes represent the groups 𝑍 and
each edge with the weight 𝑎𝑖 𝑗 indicates the semantic relationship
between group 𝑧𝑖 and group 𝑧 𝑗 .

To eliminate the noise inside the correlation prior, the top 𝐾
elements are reserved and the remaining elements are set to zero
for each row 𝒂𝑖 in 𝑨𝑍 , resulting in a sparse matrix 𝑨𝑍 = (𝑎𝑖 𝑗 )𝑚×𝑚
formulated as:

𝑎𝑖 𝑗 =

{
𝑎𝑖 𝑗 , 𝑖 𝑓 𝑗 ∈ topK(𝒂𝑖 )
0, 𝑖 𝑓 𝑗 ∉ topK(𝒂𝑖 )

(6)

To alleviate the over-smoothing problem, we derive the final group
dependency graph 𝑨∗

𝑍
= (𝑎∗

𝑖 𝑗
)𝑚×𝑚 similar to [3] by:

𝑎∗𝑖 𝑗 =


𝑎𝑖 𝑗 · 𝑟/

𝑚∑︁
𝑗 ′≠𝑖

𝑎𝑖 𝑗 ′ , 𝑖 𝑓 𝑖 ≠ 𝑗

1 − 𝑟, 𝑖 𝑓 𝑖 = 𝑗

(7)

where 𝑟 is the hyper-parameter that determines the sum of weights
assigned to neighboring groups. 𝑨∗

𝑍
encodes the structural corre-

spondence of groups via the weights representing the semantic
relationships, which then can be used to refine the group features.
Given the label set 𝑌 = {𝑦1, 𝑦2, ..., 𝑦𝑛}, the label dependency graph
𝑨∗
𝑌
can be derived following the same procedure as 𝑨∗

𝑍
.

With the guidance of the hierarchical dependency graph, i.e.,𝑨∗
𝑍

and𝑨∗
𝑌
, we employ the graph convolutional network (GCN) with 𝐿
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layers to progressively refine the group features𝑮 = {𝒈1,𝒈2, ...,𝒈𝑚}
and the label features 𝑻 = {𝒕1, 𝒕2, ..., 𝒕𝑛}, which are denoted as the
group-level GCN and the label-level GCN, respectively. For groups,
taking 𝑯 0

𝑍
= 𝑮 as the input features, the 𝑙-th GCN layer is updated

as follows:

𝑯 𝑙+1
𝑍 = 𝜌 (𝑨∗

𝑍𝑯
𝑙
𝑍𝑾

𝑙
𝑍 ) (8)

where 𝜌 is the activation function and𝑾𝑙
𝑍
is the learnable parame-

ters in the 𝑙-th layer. Then, we can obtain the refined group features
via a residual connection, i.e., 𝑮∗ = 𝑯 0

𝑍
+ 𝑯𝐿

𝑍
. For labels, given the

label features 𝑻 and label dependency graph 𝑨∗
𝑌
, we also utilize 𝐿

GCN layers to refine the input features 𝑯 0
𝑌
= 𝑻 , in which the 𝑙-th

GCN layer is updated by:

𝑯 𝑙+1
𝑌 = 𝜌 (𝑨∗

𝑌𝑯
𝑙
𝑌𝑾

𝑙
𝑌 ) (9)

where 𝜌 is the activation function and𝑾𝑙
𝑌
is the 𝑙-th layer’s learn-

able parameters.We obtain the refined label features𝑻 ∗ = {𝒕∗1, 𝒕
∗
2, ..., 𝒕

∗
𝑛}

by 𝑻 ∗ = 𝑯 0
𝑌
+ 𝑯𝐿

𝑌
.

Thanks to the GCN, the group and label features can be pro-
gressively refined through the hierarchical semantic relationships
represented by 𝑨∗

𝑍
and 𝑨∗

𝑌
. Thus, semantically similar labels and

groups will be closer in the feature space, while semantically dif-
ferent labels and groups will obtain more discriminative features.
Refined group features can generate better label prompts and re-
fined label features can further lead to stronger matching between
the image and its related labels, which is desired in SPML.

3.3 Training Objective
For an image 𝒙 , we obtain its feature 𝒇𝑥 via the image encoder 𝐹 (·)
in CLIP as 𝒇𝑥 = 𝐹 (𝒙). The predicted probability 𝑝 (𝑦𝑖 |𝒙) that the
image 𝒙 contains the label 𝑦𝑖 can be computed as:

𝑝 (𝑦𝑖 |𝒙) = 𝜎 (sim(𝒇𝑥 ,𝒇 𝑦𝑖 )/𝜏) (10)

where 𝒇 𝑦𝑖 can be the label feature 𝒕𝑖 of 𝑦𝑖 obtained by Equation (4)
or the refined label feature 𝒕∗

𝑖
derived by Equation (9). 𝜎 is the

sigmoid function. 𝜏 is the learnable temperature parameter in CLIP.
sim(·, ·) denotes the cosine similarity.

During training, we adopt the same objective as the one in [41]
to optimize the HSPNet:

𝐿 = −
𝑛∑︁
𝑖=1

{𝑦𝑖 (1 − 𝑝𝑖 (𝑚′))𝛼 𝑙𝑜𝑔(𝑝𝑖 (𝑚′)) + (1 − 𝑦𝑖 )

[I(𝑝𝑖 ≤ 𝛽)𝑝𝛼𝑖 𝑙𝑜𝑔(1 − 𝑝𝑖 )+
(1 − I(𝑝𝑖 ≤ 𝛽)) (1 − 𝑝𝑖 )𝛼 𝑙𝑜𝑔(𝑝𝑖 )]}

where 𝑝𝑖 (𝑚′) = 𝜎 (sim(𝒇𝑥 ,𝒇 𝑦𝑖 )/𝜏 −𝑚
′) and 𝑝𝑖 denotes the pre-

dicted probability 𝑝 (𝑦𝑖 |𝒙). 𝛼 is empirically set to 2.𝑚′ is the margin
parameter which is set to 1 by default. 𝛽 is a threshold used to
correct annotations for unobserved labels, which is empirically set
to 0.6.

Since the proposed HCP and HGCN are separate from the image
encoder, we can conveniently derive label features, i.e., 𝑻 or 𝑻 ∗,
as decision boundaries for SPML after training. Therefore, during
inference, the HSPNet is equivalent to a convolutional neural net-
work, e.g., ResNet50. As a result, no extra computational cost is
brought by the proposed HSPNet.

4 EXPERIMENT
4.1 Experimental Setup

Datasets. For SPML, we conduct experiments on benchmark
datasets, i.e., COCO [17], PASCAL VOC 2012 (VOC) [8], NUSWIDE
(NUS) [4], and CUB [29]. Considering that one category and mul-
tiple attributes are annotated for each image in the CUB dataset,
we classify the images according to the attributes rather than bird
categories for CUB. Following [13, 41], we reserve one label in
the training set for multi-label datasets with full annotations to
simulate the single positive label setting. To fairly compare with
the state-of-the-art methods, we perform two different setups, i.e.,
the LargeLoss setup and SPLC setup, according to [13] and [41],
respectively. In the LargeLoss setup, we divide the training set into
80% for training and 20% for validation. For the SPLC setup, we
train on the full training set for all datasets.

Implementation details. For fair comparisons with other methods,
we adopt the ResNet50-based CLIP initialized by the published
pretrained weights. We use a single GPU with a batch size of 128.
Following [13, 41], we employ the widely used random horizontal
flip and random resized crop for data augmentation. Besides, we
adopt the Adam optimizer and OneCycle learning rate schedule
with 1𝑒−4 as the maximal learning rate during training. The mean
average precision (mAP) is adopted as the evaluation metric by
default. We directly use the label-group correspondence provided
in the original datasets. Details of the hierarchical structure for
different benchmark datasets are provided in Appendix A due to
the space limit.

4.2 Comparisons with State-of-the-Arts for
SPML

We compare our method with existing state-of-the-art methods
for SPML, including LSAN [5], ROLE [5], LargeLoss [13], Hill [41],
and SPLC [41]. To fairly verify the effectiveness of our method, we
employ their published codes of the state-of-the-art methods, i.e.,
LargeLoss [13] and SPLC [41], and re-implement them with the
same ResNet50-based CLIP as ours but with the single prompt learn-
ing strategy like CoOp [44]. Their results are denoted as LargeLoss*
and SPLC*, respectively. We also apply the state-of-the-art model
for the partial label setting, i.e., DualCoop [27], in the SPML using
their published code.

As shown in Table 1, for both setups, our method can signifi-
cantly outperform existing state-of-the-art methods on all bench-
mark datasets. Specifically, in the LargeLoss setup, compared with
the second best result, the proposed method can achieve a maxi-
mal performance improvement of 1.4% (COCO). In the SPLC setup,
the maximal performance improvement obtained by our method
can reach 1.6% (CUB). As a whole, our method can accomplish an
overall improvement of 1.9% in both setups, which indicates the
effectiveness of our method. Note that although DualCoop achieves
the state-of-the-art performance for the partial label setting (see-
ing Table 7), it does not adapt well in the difficult SPML setting,
which we attribute to insufficient positive and negative supervi-
sion in SPML. In contrast, the proposed HSPNet can effectively
explore the hierarchical semantic relationship to enhance the label
correspondence, making it a promising method for SPML.
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Table 1: Comparison results in SPML (%). Results in bold are the best performance and those with the underline are the second
best. * indicates models using CLIP weights as ours.

Method LargeLoss setup SPLC setup

COCO VOC NUS CUB Avg. COCO VOC NUS CUB Avg.

LSAN [5] 69.2 86.7 50.5 17.9 56.1 70.5 87.2 52.5 18.9 57.3
LargeLoss [13] 71.6 89.3 49.6 21.8 58.1 - - - - -

Hill [41] - - - - - 73.2 87.8 55.0 18.8 58.7
SPLC [41] 72.0 87.7 49.8 18.0 56.9 73.2 88.1 55.2 20.0 59.1
LargeLoss* 72.9 88.1 52.9 22.4 59.1 74.0 89.3 58.5 22.7 61.1
SPLC* 73.4 87.4 55.1 20.1 59.0 74.4 88.5 60.7 21.4 61.2

DualCoop* 72.9 87.8 50.6 21.0 58.1 73.5 89.5 55.9 21.9 60.2

HSPNet (ours) 74.8 89.4 56.3 23.4 61.0 75.7 90.4 61.8 24.3 63.1

Table 2: Quantitative results for the effect of different modules in our proposed HSPNet for both setups (%).

Model LargeLoss Setup SPLC Setup

COCO VOC NUS CUB Avg. COCO VOC NUS CUB Avg.

SPL 73.39 87.35 55.09 20.12 58.99 74.36 88.46 60.66 21.42 61.22
SPL+GCN 74.14 87.93 55.49 20.34 59.48 75.12 89.09 61.08 21.66 61.74

HCP 74.36 88.91 55.79 21.69 60.19 75.18 89.84 61.20 23.65 62.47
HCP+HGCN (i.e., HSPNet) 74.83 89.44 56.33 23.43 61.01 75.71 90.40 61.75 24.34 63.05

4.3 Ablation Study
In order to analyze the effectiveness of each module, we conduct
the ablation study in both the LargeLoss setup and the SPLC setup.
To verify the superiority of exploring the hierarchical semantic
relationship, we introduce two baseline methods: 1) a single prompt
learning (SPL) which directly tunes the learnable prompt tokens
like CoOp [44]; 2) SPL+GCN in which we use 𝐿 GCN layers to
refine the label features like Equation (9) on top of SPL. Only the
inter-label relationship is captured in SPL+GCN. For both baseline
methods, we initialize the SPML model with the same CLIP weights
as those used in our HCP and HSPNet for fair comparisons.

As shown in Table 2, each module in the proposed method can
consistently achieve performance improvements on all datasets
with different setups. Specifically, benefiting from incorporating
the label-group dependency in prompt learning, the designed HCP
can obtain overall improvements of 1.2% and 1.25% mAP, com-
pared with SPL in the LargeLoss setup and SPLC setup, respectively.
These results demonstrate the superiority of adapting the vision-
language model, i.e., CLIP, to SPML by the proposed group-aware
label prompt. On top of HCP, HCP+HGCN can further lead to 0.82%
and 0.58% mAP gains in the LargeLoss setup and SPLC setup, re-
spectively. Such improvements can be attributed to simultaneously
refining the label and group features with the hierarchical semantic
relationship in the introduced HGCN. Furthermore, the proposed
HSPNet can significantly outperform the SPL+GCN model by 1.53%
and 1.31% in terms of mAP in both setups, respectively. It well
demonstrates the strength of exploring the hierarchical semantic
relationship among labels in the task of multi-label classification
with single positive labels.

Table 3: Analyses on the label-group dependency (%).

SPL+GCN w/o LGP w/o GRP Ours

75.12 75.38 75.41 75.71

4.4 Model Analyses
In this section, we perform comprehensive analyses for our pro-
posed method. We conduct the experiments on the COCO dataset
in the SPLC setup following [41].

Analyses on the label-group dependency. The label-group depen-
dency determines how to assign labels to their corresponding
groups. Here, we inspect the effects of two circumstances: (1) labels
and groups are misaligned, and (2) semantic relationships among
groups are not well captured. Therefore, we randomly assign 𝑛 la-
bels to𝑚 groupswithout the label-group structure prior provided by
the benchmark dataset, denoted as “w/o LGP (Label Group Prior)".
We change the group names to “group1", “group2", ..., “groupm"
to eliminate the semantic relationship prior among groups in the
pretrained CLIP model, denoted as “w/o GRP (Group Relationship
Prior)". We employ the HSPNet for inspections. As shown in Ta-
ble 3, compared with “w/o LGP" and “w/o GRP", our method can
consistently obtain better performance, indicating that obtaining
accurate label-group dependency is beneficial.

Analyses on automated hierarchical dependencies. In practical
scenarios, explicit group information can be hard to obtain espe-
cially when there are a large number of labels. Under this circum-
stance, we propose to cluster label features and use the derived
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Figure 3: Left: Comparison results in the few-shot setting. Middle and right: Visualization results of label features learned by
SPLC* and our HSPNet, respectively. Each color stands for one group. Labels in the same group are in the same color. Best
viewed in color.

Table 4: Analyses on the automated hierarchical dependen-
cies (%).

SPL SPL+GCN HSPNet-cluster HSPNet

74.36 75.12 75.62 75.71

Table 5: Analyses on the learnable group-aware label prompt
(%).

group-unaware group-aware

𝒘𝑖 [𝒔𝑖 ,𝒘𝑖 ] 𝒔𝑖 +𝒘𝑖 𝒔𝑖

74.36 75.17 75.11 75.18

cluster-centric features as the group representations, i.e., 𝑮 (see
Equation (2)). As a result, we can automatically construct the hi-
erarchical dependencies for SPML. We conduct experiments with
the HSPNet, and denote HSPNet with such automated hierarchical
dependencies as “HSPNet-cluster”. As shown in Table 4, “HSPNet-
cluster” can significantly outperform the baseline methods, i.e., SPL
and SPL+GCN. Besides, it achieves comparable performance with
our HSPNet. These results indicate that grouping labels according
to the feature cluster is sufficient to provide rich hierarchical de-
pendencies among labels and groups, and thus applicable when no
explicit group information is provided.

Analyses on the group-aware label prompt. Here, we investigate
the effect of different strategies to construct the prompt for labels
with the hierarchical semantic structure in HCP. Given a label 𝑦𝑖
with its embedding 𝒆𝑖 , we denote the label prompt as 𝑋𝑖 which
is fed into the text encoder 𝐸 (·) with 𝒆𝑖 (see Equation (4)). For
ease of explanation, we denote the learnable label prompt for 𝑦𝑖
in the single prompt learning (SPL) strategy like CoOp [44] as
𝒘𝑖 = {𝒖𝑖1, 𝒖𝑖2, 𝒖𝑖3, ..., 𝒖𝑖𝑁 }. Given 𝒔𝑖 = {𝒗𝑖1, 𝒗𝑖2, ..., 𝒗𝑖𝑁 } derived by
Equation (3), we discuss four variants to obtain the prompt for label
𝑦𝑖 : 1) directly using 𝒔𝑖 like HCP, i.e., 𝑋𝑖 = 𝒔𝑖 ; 2) concatenating 𝒔𝑖
and 𝒘𝑖 , i.e., 𝑋𝑖 = [𝒔𝑖 ,𝒘𝑖 ]; 3) adding 𝒔𝑖 with 𝒘𝑖 , i.e., 𝑋𝑖 = 𝒔𝑖 + 𝒘𝑖 ;
4) directly using 𝒘𝑖 like SPL, i.e., 𝑋𝑖 = 𝒘𝑖 . As shown in Table 5,
three ways that construct group-aware prompts, i.e., 𝒔𝑖 , [𝒔𝑖 ,𝒘𝑖 ]

Table 6: Analyses on the HGCN (%).

HCP w/o inter-group w/o inter-label HSPNet

75.18 75.52 75.39 75.71

and 𝒔𝑖 + 𝒘𝑖 , can consistently outperform the single prompt, i.e.,
𝒘𝑖 , with a similar margin, indicating the general advantage of the
proposed hierarchical prompt learning. Considering that, compared
with directly using 𝒔𝑖 , both [𝒔𝑖 ,𝒘𝑖 ] and 𝒔𝑖 +𝒘𝑖 need to tune more
prompt tokens due to the introduction of 𝒘𝑖 , we adopt 𝒔𝑖 only in
our HCP and HSPNet by default.

Analyses on the hierarchical graph convolutional network. On
top of HCP, we further verify the positive effects of inter-label
and inter-group relationships used in HGCN. To achieve this goal,
we wipe out the group-level GCN and the label-level GCN in the
HGCN, separately, which are denoted as "w/o inter-group" and
"w/o inter-label", respectively. As shown in Table 6, both inter-label
and inter-group relationships can achieve consistent performance
gains. Combining both kinds of relationships can further enhance
the label hypothesis prediction, leading to an overall performance
gain of 0.53% over HCP. These results demonstrate the effectiveness
of exploring both kinds of relationships.

Results on the few-shot SPML setting. To investigate the perfor-
mance of the proposed HSPNet with few training images in SPML,
we conduct the experiments on the few-shot SPML setting, follow-
ing [13]. We randomly sample training images with a ratio ranging
from 10% to 100% as in [13]. As shown in Figure 3, our method can
consistently outperform the state-of-the-art methods with a signifi-
cant margin on different ratios of labels. Besides, as the number of
labels decreases, the performance gains of the proposed HSPNet
increase. Particularly, compared with LargeLoss, our method can
obtain an improvement of 11.86% in terms of mAP when only given
10% of the training images. Compared with the strong baseline,
i.e., SPL+GCN, the proposed HSPNet can still enjoy 1.38% mAP
improvement on average. These experimental results demonstrate
the effectiveness of the proposed method even with few training
images in SPML. They also show the robustness of our method.
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Table 7: Quantitative results compared with the state-of-the-art methods under the partial label setting (%). The bold and the
underline indicate the best and the second best results, respectively. * indicates results that use CLIP weights as ours.

Datasets Method 10% 20% 30% 40% 50% 60% 70% 80% 90% Avg.

COCO

SSGRL 62.5 70.5 73.2 74.5 76.3 76.5 77.1 77.9 78.4 74.1
GCN-ML 63.8 70.9 72.8 74.0 76.7 77.1 77.3 78.3 78.6 74.4

SST 68.1 73.5 75.9 77.3 78.1 78.9 79.2 79.6 79.9 76.7
SARB 71.2 75.0 77.1 78.3 78.9 79.6 79.8 80.5 80.5 77.9

DualCoop* 78.9 81.1 81.9 82.7 82.9 83.2 83.4 83.7 83.9 82.4
HSPNet (ours) 78.3 81.4 82.2 83.6 84.3 84.8 85.0 85.4 85.6 83.4

VG-200

SSGRL 34.6 37.3 39.2 40.1 40.4 41.0 41.3 41.6 42.1 39.7
GCN-ML 32.0 37.8 38.8 39.1 39.6 40.0 41.9 42.3 42.5 39.3

SST 38.8 39.4 41.1 41.8 42.7 42.9 43.0 43.2 43.5 41.8
SARB 41.4 44.0 44.8 45.5 46.6 47.5 47.8 48.0 48.2 46.0

DualCoop* 45.6 47.6 48.5 49.1 49.4 49.3 49.9 50.1 50.3 48.9
HSPNet (ours) 43.0 46.7 48.7 49.9 50.5 51.1 51.4 51.6 51.9 49.4

Table 8: Quantitative results for the effect of different mod-
ules in our proposed HSPNet under the partial setting (%).

Model COCO VG-200 Avg.

SPL 81.54 47.55 64.55
SPL+GCN 82.12 48.11 65.12

HCP 82.60 48.43 65.52
HCP+HGCN (i.e., HSPNet) 83.39 49.41 66.40

Visualization analysis. To qualitatively show the effectiveness of
our proposed method, we visualize the learned label features for
COCO.We choose SPLC* as our baseline since it is a state-of-the-art
method with CLIP weights as ours but without consideration of
the label relationship. As shown in Figure 3, we can observe that,
compared with SPLC*, the proposed HSPNet can generate more
compact label feature clusters for SPML. Such a clustering result is
consistent with the inherent hierarchical semantic structure among
labels, indicating the success of the proposed method in learning
better semantically discriminative label features and thus benefiting
the image-label matching.

4.5 Results on Partial Label Setting
Details. To verify the generalization of the HSPNet to other prac-

tical MLC scenarios, we conduct experiments on standard bench-
mark datasets, i.e., COCO and Visual Genome (VG-200) [14], under
the partial label setting, following [22, 27]. We randomly maintain
partial annotations for the training images with a ratio ranging
from 10% to 90% and the average results are reported. Please refer
to Appendix A for details of experiments.

Results. As shown in Table 7, ourmethod can also obtain superior
results to the state-of-the-art methods in the partial label setting.
Specifically, on the COCO dataset, compared with DualCoop which
also leverages CLIP, the proposed HSPNet can achieve 1.0% mAP
gain on average. On the VG-200 dataset, which is more difficult
than COCO, our method can consistently obtain better results with

gains of 0.5% mAP on average. Note that although our method is
inferior to DualCoop under small ratios of partial labels, when the
ratio is increasing, our method can quickly catch up DualCoop
and significantly outperform it with maximum gains of 1.7% mAP
(90% in COCO). These results adequately verify that our method
can obtain consistent performance improvements under the partial
label setting, well demonstrating its good generalization capability.

We further conduct the ablation study to verify the effectiveness
of each modules under the partial setting. As shown in Table 8, each
module can consistently achieve performance improvements on all
benchmark datasets. Specifically, compared with SPL, the designed
HCP can obtain an overall 0.97% mAP improvement. Based on
HCP, our HGCN can further lead to a 0.88% mAP gain on average.
Moreover, our proposed HSPNet can significantly outperform the
SPL+GCN model by an overall 1.28% mAP, well demonstrating the
superiority of our proposed method.

5 CONCLUSION
In this paper, we propose a hierarchical prompt learning method
with a novel the Hierarchical Semantic Prompt Network (HSPNet)
for single positive multi-label learning. We use the CLIP model to
implement a hierarchical conditional prompt (HCP) strategy that
can recognize the label-group dependency between labels and their
corresponding groups. With the hierarchical graph convolutional
network (HGCN), the inter-label and inter-group dependencies can
be explored, enhancing the image-label matching. Thanks to both
HCP and HGCN, the HSPNet can successfully harness the hierar-
chical semantic relationship among labels, thus leading to superior
performance. Experimental results on multiple benchmark datasets
show that our method can consistently outperform various baseline
methods, well demonstrating its effectiveness and superiority.
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A EXPERIMENT SETTINGS
A.1 Datasets
For the single positive multi-label learning (SPML), we adopt four
benchmark datasets, i.e., COCO [17], PASCAL VOC 2012 (VOC) [8],
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Table 9: The statistics of all benchmark datasets.

Statistic LargeLoss setup SPLC setup Partial label

COCO VOC NUS CUB COCO VOC NUS CUB COCO VG-200

Classes 80 20 81 312 80 20 81 312 80 200
Groups 12 4 10 20 12 4 10 20 12 13

Training samples 65,665 4,574 120,000 4,795 82,081 5,717 119,103 5,994 82,081 82,904
Validation samples 16,416 1,143 30,000 1,199 - - - - - -

Test samples 40,137 5,823 60,260 5,794 40,137 5,823 50,720 5,794 40,137 10,000
Avg.label/img 2.9 1.5 1.9 31.5 2.9 1.5 2.4 31.5 2.9 10.7
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Figure 4: The hierarchical semantic structures of benchmark datasets in SPML (left: for COCO, middle: for VOC, right: for NUS).

NUSWIDE (NUS) [4], and CUB [29], following [5, 13, 41, 42]. Table 9
provides their statistics. The COCO dataset is one of the most
popular large-scale labeled image datasets, widely used for various
vision tasks, such as object detection [1], image captioning [21],
instance segmentation [6] and classification [25], etc. It consists
of 82, 081 images in the training set and 40, 137 images in the test
set, covering 80 classes that belong to 12 super categories. In the
LargeLoss setup, we split the training set into 65, 665 images for
training and 16, 416 images for validation. The VOC dataset is a
standardized image dataset for object recognition with a small label
set of 20 categories. It contains 5, 717 training images and 5, 823 test
images. We adopt 4, 574 images for training and 1, 143 images for
validation in the LargeLoss setup. The NUS dataset is a large-scale
web image dataset with 81 concepts. It is designed to explore web
image annotation and retrieval problems [4]. Since not all images
are available, we find two variants of NUS dataset in previous works,
i.e., [13] and [41], which are used in the LargeLoss setup and SPLC
setup, respectively. In the LargeLoss setup, NUS contains 120, 000
images for training, 30, 000 images for validation, and 60, 260 images
for test. In the SPLC setup, NUS consists of 119, 103 training images
and 50, 720 test images. The CUB dataset is a fine-grained dataset
for birds, covering 200 categories and 312 attributes. It contains
5, 994 images in the training set and 5, 794 images in the test set. In
the LargeLoss setup, 4, 795 images are used for training and 1, 199
images are used for validation.

For the partial label setting, we conduct experiments on two
benchmarks, i.e., COCO [17] and Visual Genome (VG-200) [14],

following [2, 22]. The COCO dataset is identical to the one used
in SPML. The Visual Genome dataset is a large-scale image-based
knowledge base, widely used in cognitive vision tasks, e.g., visual
relationship detection [16]. Following [22], the VG-200 dataset con-
tains 200 frequent labels from the original Visual Genome dataset
and the training set is composed of randomly selected 82, 904 images
while the left 10, 000 images are in the test set.

A.2 Implementation details
For SPML, we adopt the concept taxonomies provided in the COCO,
VOC, and NUS datasets to derive the hierarchical semantic struc-
tures, as shown in Figure 4. For the CUB dataset, we divide the
classes into groups based on the part of the bird described by the
attribute. Figure 5 provides the label-group correspondence of the
CUB dataset. We train the SPML model for 30 epochs in total.

For the partial label setting, we design the hierarchical structure
of the VG-200 dataset based on labels’ semantic relationships in
the WordNet [20], as shown in Figure 6. We adopt the same label-
group correspondence for the COCO dataset as in SPML. For a fair
comparison, we adopt the ResNet101-based CLIP, using the same
image resolution 448 × 448. For data augmentation, we employ
the widely used random horizontal flip and random resized crop,
following [2, 22]. We use two GPUs with a batch size of 32 during
training. Besides, we adopt the Adam optimizer and OneCycle
learning rate schedule with the maximal learning rate of 1𝑒−4. We
also train the model for a total of 30 epochs.
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Figure 5: The hierarchical semantic structure of the CUB dataset.
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Figure 6: The hierarchical semantic structure of the VG-200 dataset.
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