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ABSTRACT | Emotion and sentiment play a central role in

various human activities, such as perception, decision-making,

social interaction, and logical reasoning. Developing artificial

emotional intelligence (AEI) for machines is becoming a bot-

tleneck in human–computer interaction. The first step of AEI is

to recognize the emotion and sentiment that are conveyed in

different affective signals. Traditional supervised emotion and

sentiment analysis (ESA) methods, especially deep learning-

based ones, usually require large-scale labeled training data.

However, due to the essential subjectivity, complexity, uncer-

tainty and ambiguity, and subtlety, collecting such annotations

is expensive, time-consuming, and difficult in practice. In this

article, we introduce label-efficient ESA from the computa-

tional perspective. First, we present a hierarchical taxonomy
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for label-efficient learning based on the availability of sample

labels, emotion categories, and data domains during training.

Second, for each of the seven paradigms, i.e., unsupervised,

semisupervised, weakly supervised, low-shot, incremental,

domain-adaptive, and domain-generalizable ESA, we give the

definition, summarize existing methods, and present our views

on the quantitative and qualitative comparison. Finally, we

provide several promising real-world applications, followed by

unsolved challenges and potential future directions.

KEYWORDS | Affective computing; artificial emotional intel-

ligence (AEI); emotion and sentiment analysis (ESA); label-

efficient learning.

I. I N T R O D U C T I O N
The experience of emotions significantly influences various
aspects of our daily life, ranging from perception and
decision-making to social interaction and logical reason-
ing. Because of the essential role of emotion in human–
computer interaction, it is suspicious to regard machines
to be intelligent without emotions [1]. Artificial emo-
tional intelligence (AEI) endows machines with the abil-
ity to recognize emotions, generate and adapt emotions,
and apply emotional information in goal accomplish-
ment and problem-solving [2], [3]. With emotions, intel-
ligent machines can provide humans, especially vulnerable
groups, with humanistic interactions and high-quality ser-
vice in real-world applications, such as companion robots
and mental illness monitoring [4].

There are different modalities that humans use to
express their emotions. Generally, these affective signals
can be classified into two groups: explicit affective cues
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Fig. 1. Illustration of the essential properties of emotions. (a) Subjectivity: the emotional reactions among viewers to the same stimuli

might differ significantly. Left: distribution of images on Abstract [9] and Emotion6 [10] datasets that are labeled with different emotion

categories. It is clear that almost none of the images are labeled with only one emotion category. Right: standard deviations (STDs) on

valence and arousal of the 58 subjects on the 36 video clips in the ASCERTAIN dataset [11]. (b) Complexity: different emotion categories are

contained in different psychological models (left) and compound facial expressions also exist (right) [12]. (c) Uncertainty and ambiguity: the

emotions the same content expresses might be uncertain and ambiguous [4], [13]. (d) Subtlety: variations of microexpressions are subtle

with a short duration.

and implicit affective stimuli [4]. The former group usually
corresponds to specific physical changes in human bodies,
such as facial expression, action, and physiological signals,
while the latter group refers to the external signals, such
as text, image, and video, that are widely used by humans
to share their opinions on social networks.

The first step of AEI is to recognize the emotion and
sentiment conveyed in the abovementioned affective sig-
nals, which is the focus of this article. Two groups of
psychological models are often employed to measure emo-
tions [5]. One group is categorical emotion states (CESs),
which represent emotions using specific discrete cate-
gories, such as binary sentiment (positive versus negative)
and Ekman’s six emotions (anger, disgust, fear, happiness,
sadness, and surprise) [6]. The other group is dimensional
emotion space (DES), where emotions are represented
with a continuous multidimensional Cartesian space, such
as valence–arousal–dominance (VAD) [7]. Corresponding
to the psychological models, different emotion and senti-
ment analysis (ESA) tasks can be performed: classification,
regression, detection, retrieval, and distribution learning.
The first four tasks can be conducted from the viewpoint of
either affective signals or users [5], i.e., dominant emotion
versus personalized emotion, while the distribution learn-
ing task is usually affective signal centric [8].

A general ESA framework includes three components:
affective signal collection and annotation, feature extrac-
tion, and classifier learning. To train an effective ESA
model, existing methods, especially deep learning-based
ones, usually require large-scale labeled training data.
However, due to the essential subjectivity, complexity,
uncertainty and ambiguity, and subtlety (see Fig. 1), col-
lecting such annotations with high quality is expensive,
time-consuming, and difficult in practice.

1) Subjectivity: For given affective stimuli, the emotional
reactions across viewers might be different [5]. Even
the same viewer may react differently at different
times. Viewers may have different physical and psy-
chological changes when perceiving the same emo-
tion [11].

2) Complexity: Emotion is becoming diverse and fine-
grained. No consensus on how many emotion
categories are necessary has been reached among
psychologists [5]. The number of emotion categories
in current psychological models ranges from 2 to over
100. Besides Ekman’s basic facial expressions, there
are also compound ones [12], such as happily sur-
prised as shown in Fig. 1(b), which makes it difficult
to collect sufficient data for all these categories.

3) Uncertainty and Ambiguity: The emotions that the
same content expresses might be uncertain and
ambiguous. For example, if one friend posted a tweet,
“What wonderful weather!,” we may infer that the
friend is having fun outside on a sunny day, but if
an image about a storm is attached, we can under-
stand that the friend uses sarcasm in the textual
content to reflect the bad mood. Simply using the
dominant emotion category is insufficient to represent
the blended facial expressions [13].

4) Subtlety: Variations among emotions might be subtle.
For example, the duration of microexpressions is only
between 0.065 and 0.5 s and the variation is very
small in a few facial action areas [14].

How to perform ESA with noisy, limited, or even no
labels? How to deal with incremental emotion categories
and training samples? How to increase the transferability
and generalizability of the trained models to new and
unseen domains?
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In this article, we attempt to answer these questions by
introducing label-efficient ESA (LeESA) from the compu-
tational perspective with proper depth for both experts in
this area and nonspecialists. First, we give a hierarchical
taxonomy based on the training settings of sample labels,
emotion categories, and data domains in Section II. Sec-
ond, for each of the seven LeESA paradigms, we give a
brief definition, summarize some representative and the
latest methods, and compare them both quantitatively and
qualitatively from Section III to Section IX. Third, we
introduce some promising applications based on LeESA
in Section X, followed by potential future directions in
Secion XI. Finally, we conclude this article in Section XII.

There have been some other recent surveys, reviews,
and tutorials on ESA, such as facial expression recognition
(FER) [15], [16], [17], [18], microexpression recogni-
tion [14], [19], textual sentiment classification [20], [21],
[22], [23], speech and music emotion recognition [24],
[25], [26], affective image content analysis [5], [27], [28],
bodily expressed emotion recognition [29], [30], emotion
recognition from physiological signals [31], [32], [33],
and multimodal emotion recognition [4], [34], [35], [36].
All these articles mainly cover ESA for a single specific
modality from the perspective of supervised learning based
on the assumption that sufficient training samples in the
target domain are cleanly annotated with a predefined
label set. Typically, these articles concentrate on reviewing
dataset construction, emotional feature extraction, and
classification strategy design.

Some other articles summarize and compare differ-
ent label-efficient learning paradigms, such as unsuper-
vised learning [37], [38], [39], semisupervised learning
(SSL) [40], [41], low-shot learning [42], [43], [44],
incremental learning [45], [46], [47], weakly supervised
learning [48], [49], transfer learning [50], [51], domain
adaptation (DA) [52], [53], [54], [55], and domain gen-
eralization (DG) [56], [57]. These articles are mainly
presented from the viewpoint of machine learning with
applications in traditional computer vision (CV) and nat-
ural language processing (NLP) tasks. Directly applying
these methods to ESA cannot guarantee to perform well
without considering the essential properties of emotions.
There exist clear differences between label-efficient meth-
ods designed for ESA and other general tasks.

1) For unsupervised ESA, instead of learning general
semantic information [58], emotional information
conveyed by social data, such as sentiment words and
emoticons, is utilized in many LeESA methods [59],
[60].

2) For semisupervised ESA, the intrinsic ambiguity of
emotions leads to low accuracy of pseudo label [61].
Therefore, it is necessary to combine the prior knowl-
edge (e.g., polarity) and effective techniques (e.g.,
label smoothing) for training LeESA [62].

3) In terms of weakly supervised ESA, most general tasks
solve coarse label problems, such as instance-level

annotation for detection and segmentation [48],
[49]. However, the LeESA approaches are mainly
concerned with the problem of learning with noisy
clues [63], [64].

4) For low-shot ESA, the complexity caused by a large
number of visual concepts makes it more challenging
than the general tasks [5]. To address this issue, prior
knowledge, such as adjective–noun pairs (ANPs) for
visual concepts is usually introduced [65].

5) For incremental ESA, due to the subjectivity of emo-
tions, the data may have severe bias. Therefore,
ensemble learning that integrates multiple models is
leveraged in ESA methods [66].

6) For DA and DG, although discrepancy-based meth-
ods have good theoretical guarantees, the complexity
leads to suboptimal performance when directly min-
imizing the distance between distributions for ESA.
In contrast, the methods that utilize emotion cues
to design self-supervised tasks achieve better perfor-
mance [67].

Differently, this article aims to hierarchically organize
different label-efficient paradigms, comprehensively intro-
duce state-of-the-art methodologies as well as promising
applications for ESA without explicitly distinguishing dif-
ferent modalities, and rationally provide potential outlooks
for future research.

II. L e E S A TA X O N O M Y
In this section, we define a hierarchical taxonomy of LeESA
and compare different paradigms with the traditional
supervised learning setting.

Let x and y that are drawn from a given data distribution
P (x, y), respectively, represent the affective signal and
emotion label.1 For a given target domain, suppose that the
distribution is PT (x, y), and the target dataset drawn from
PT is DT = {(XT , YT )} = {(xj

T , yj
T )}NT

j=1. Similarly, if we
have another source domain that is related to the target
domain, we can have source distribution PS(x, y) and
source dataset DS = {(XS , YS)} = {(xi

S , yi
S)}NS

i=1. Here, xi
S

and xj
T are the observed affective signals in the source and

target domains, respectively, NS and NT are the numbers
of source and target samples, respectively, and yi

S and yj
T

are the corresponding emotion labels. Suppose that the
label sets in the source and target domain are CS and CT ,
respectively. Let NL

T and Y L
T denote the number of labeled

training samples in the target domain and corresponding
labels, respectively. Please note that our final task is to per-
form ESA on the target test set. The traditional supervised
ESA is usually performed under such settings: the training
set of the target domain is fully labeled (i.e., NL

T = NT ),
emotion categories are fixed (CT is defined in advance)
and provided once, the training samples are provided once,

1For example, x can be facial expressions, text, images, and any
other modalities that are used to express emotions; y can be discrete
emotion categories for emotion classification, continuous VAD values for
emotion regression, and probability distributions for emotion distribution
learning.
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Fig. 2. Hierarchical taxonomy of LeESA based on the availability of sample labels, emotion categories, and data domains during training.

the emotion labels are clean, and all emotion categories
contain a relatively similar amount of labeled data.

In real-world applications, such settings are difficult to
meet. Thus, it is imperative to study LeESA. Here, we
define seven LeESA paradigms.2

1) Unsupervised ESA: The training set of the target
domain is unlabeled (i.e., NL

T = 0), and no other related
and labeled source domain is available (XT is available
during training).

2) Semisupervised ESA: The training set of the target
domain is partially labeled (i.e., NL

T < NT ), and all
emotion categories contain a specific amount of labeled
data (XT and Y L

T are available during training, and dif-
ferent categories in CT are labeled with a relatively similar
amount).

3) Weakly Supervised ESA: The training set of the target
domain is fully labeled, emotion categories and training
samples are provided once, and emotion labels contain
noise (XT and unclean YT are available during training).

4) Low-Shot ESA: The training set of the target domain
is fully labeled, emotion categories and training samples
are provided once, and some emotion categories contain
only a few or even no labels (XT and Y L

T are available
during training, and some categories in CT contain few or
no labels).

5) Incremental ESA: The training set of the target
domain is fully labeled, and emotion categories and/or
training samples are provided incrementally (XT and YT

are available during training, and CT and/or XT are
incremental).

6) Domain-Adaptive ESA: The training set of the target
domain is unlabeled, another related and labeled source

2For simplicity, we focus on the most popular situations when
defining these LeESA paradigms. They can be modified and combined
in real-world applications. More situations for these seven paradigms
can be found in Sections III–IX.

domain is available, and the target data are available dur-
ing training (XS , YS , and XT are available during training).

7) Domain-Generalizable ESA: The training set of the
target domain is unlabeled, another related and labeled
source domain is available, and the target data are unavail-
able during training (XS and YS are available during
training).

A brief hierarchical taxonomy of LeESA is shown in
Fig. 2. For the seven paradigms, the methods for a specific
modality are beneficial for other modalities. First, some
methods can be directly transferred to another modality
to solve similar problems. In particular, in the emotion and
sentiment clue-based methods in Section III, these clues
(e.g., sentiment words and emoticons) are leveraged as
auxiliary knowledge for training. These methods can be
easily transferred to other modalities to address the prob-
lem of lacking annotation [63], [68]. Second, although
some techniques based on the data distribution cannot
be transferred, e.g., pixel- and word-level preprocessing,
the strategy designed for a specific problem is insightful
for other modalities. For instance, the regularization-based
semisupervised strategies in speech [69] are utilized to
address the nonstationary and multirhythm of EEG [70],
and sample reweighting designed for DA of NLP tasks [71]
is also leveraged for FER [72].

III. U N S U P E R V I S E D E S A
Although there has been significant progress toward ESA,
most existing methods mainly rely on large-scale manually
labeled corpora. Unfortunately, emotion and sentiment
labels are not prelabeled, or even nonexistent, in most
practical situations, and are scarce, especially for complex
fine-grained ESA tasks, such as the aspect-based textual
sentiment analysis.
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Table 1 Categorization and Representative Methods for Unsupervised ESA

Leveraging massive amounts of unlabeled data becomes
an opportunity for ESA. There are currently two technical
routes. One route is to use the rich artificially defined
emotion and sentiment clues without any machine learn-
ing or deep learning techniques, which are called emotion
and sentiment clue-based methods. The other route is to
use the self-supervised learning framework to implicitly
capture semantic information from the well-designed pre-
training tasks without labeled data, which are called self-
supervised learning-based methods. We will introduce the
algorithms of these two routes in the following subsections,
and we summarize them in Table 1.

A. Emotion and Sentiment Clue-Based Methods

Each of the modalities we deal with contains a lot
of emotional clues, such as the emotional words in the
text, the facial expressions of humans in the image, and
the accent in the speech. Compared with image and
speech, text is more capable of expressing emotions inde-
pendently [73]. Specifically, visual features (e.g., color
histograms and visual attributes) lack direct emotional
semantic clues. Similarly, emotional features that are
purely extracted from speech are more ambiguous. Typi-
cally, there are two categories of emotion and sentiment
clue-based ESA methods. One is the unsupervised algo-
rithms that target only text modality, and the other is
the unsupervised algorithms for multiple modalities that
use the sentiment clues hidden in textual information to
connect visual or audio features with sentiment labels.

The rich emotion and sentiment clues hidden in text are
introduced in detail as follows.

1) Sentiment Words: The words that can directly express
sentiment and emotion are called sentiment words.
According to the sentiment category, the sentiment words
can be divided into positive (such as “good” and “per-
fect”) and negative (such as “bad” and “terrible”). Also,
according to the emotion category, they can be divided
into happy (such as “delighted” and “joyful”), sad (such
as “unhappy” and “disappointed”), angry (such as “over-
heated” and “rage”), and other emotions. There are a lot
of research works to build the sentiment dictionaries, such
as WordNet [74] and SentiWordNet [75]. Many dictionar-
ies not only list the words of various emotions but also
include the intensity of emotions [75]. In addition, the

emotional inversion role of negation words in the text is
considered [76].

2) Emoticons: Emoticon that is short for “emotion icon”
refers to a pictorial representation or text format of facial
expressions. Emoticons are now being widely used in our
daily life to directly express our emotions. For example,
“:(” conveys bad emotion. People prefer to use emojis
instead of words to express their emotions, especially on
social media. Many researchers use emojis to automatically
construct large-scale naturally labeled corpora [77]. Simi-
larly, emojis are explicit clues that often appear in text to
express emotions.

3) Target–Sentiment Word Pairs: Sometimes it is reck-
less to directly determine the emotion of a text based
on emotional words or emojis. For example, the word
“well” does not express a positive meaning in all contexts.
Some researchers [78] proposed that the collocation of
the sentiment word (“well”) and its corresponding target
(“play”) can better convey emotional clues.

Based on the above rich sentiment and emotion
clues, most researchers weigh these emotional clues and
sum them to determine the emotional polarity of the
text [87]. Paltoglou and Thelwall [59] proposed an
intuitive, less domain-specific, unsupervised, and lexicon-
based approach to estimate the level of emotional intensity
in order to make predictions. The approach is appropriate
for subjectivity detection and sentiment polarity classi-
fication, which are two complementary tasks. The pro-
posed algorithm outperforms supervised algorithms in the
majority of experiments on the Twitter, MySpace, and Digg
datasets. Hu et al. [60] proposed a method by counting the
word frequency in the user description and predicted the
sentiment by measuring the word’s sentiment. Other schol-
ars use these textual emotion clues to simulate manually
annotated sentiment labels, to automatically train emotion
classifiers. Zeng et al. [79] used target–opinion word pairs
as a supervision clue to learn a sentiment classifier instead
of labeled training data. The target–sentiment word pairs
are extracted by using dependency parsers and several
simple handcrafted rules, and they are used as supervision
clues, which are very flexible for sentiment classification
tasks in different granularities. This method outperforms
unsupervised baselines and obtains comparable results to
supervised methods in the customer reviews domain and
clinical narratives domain.

Vol. 111, No. 10, October 2023 | PROCEEDINGS OF THE IEEE 1163
Authorized licensed use limited to: Tsinghua University. Downloaded on January 02,2024 at 13:28:35 UTC from IEEE Xplore.  Restrictions apply. 



Zhao et al.: Toward Label-Efficient Emotion and Sentiment Analysis

The advantage of this type of approach is that it is more
practical, and the disadvantage is that heuristic rules need
to be artificially specified and are not easy to extend to new
datasets. What is more, because such models do not have
rich and explicit sentiment supervisory clues to guide, the
model’s ability to learn emotional expression is weak.

For multimodal data, we can also use the emotional
clues from the text to assist in identifying the emotions
of other modalities, such as the emotions expressed in
images. The success of the unsupervised techniques for
sentiment analysis on social media images is based on the
strong assumption that the (visual, textual) pair shares
the same sentiment polarity. In detail, there is always text
around the image, and the sentiments of the text and
image are consistent. This also means that the emotional
clues in the text can be used to identify the sentiment of
the image. In [80], an unsupervised sentiment analysis
framework is proposed to exploit relations among visual
concepts and relevant contextual information for senti-
ment analysis of social images.

However, the common situations of metaphor, sarcasm,
and implicit expression of sentiment are ignored under
such a scenario, resulting in the mismatching problem
of sentiment information between images and the corre-
sponding texts. Thus, more social media resources, such as
link information, user history, geolocation, and nationality,
are supposed to be exploited for more accurate sentiment
analysis.

B. Self-Supervised Learning-Based Methods

As a new type of machine learning method, self-
supervised learning has received more and more attention.
The so-called self-supervised learning is to obtain super-
vision clues through the input data itself without manual
labels. Instead of obtaining manually labeled data, there
are many ways to obtain pseudo “labeled” data, such as
masking a portion of the data and then using the remaining
visible portion to predict the masked portion; randomly
modifying the data or adding noise to the data and then
learning a restoration or denoising model to restore the
corrupted data to the original data; augmenting the data;
selecting and forming the semantically unchanged data
as a positive example with the original data; and then
randomly selecting from the other data to form a neg-
ative example. Compared with the model without self-
supervised pretraining, the self-supervised learning-based
ESA approaches can obtain better performance for down-
stream tasks since the pretrained model trained on a large
scale of “labeled” data has better generalization ability.

Specifically, the self-supervised learning-based ESA can
be divided into three categories.

1) Generative Pretraining-Based ESA: Generative
pretraining-based models learn the representation in
the pretraining phrase by autoregressively predicting
the next target given the previous input. Specifically,
generative pretrained transformer (GPT) utilizes casual
language modeling, which is a well-known objective for

training a language model, to pretrain the parameters.
It is well worth trying to utilize the pretrained model,
such as GPT3 [81], to conduct unsupervised ESA.
Brown et al. [81] adopted the prompt, which is a text
paragraph describing the task to enable the model to
generate the answer.

2) Contrastive Pretraining-Based ESA: The core idea of
contrastive pretraining is to learn how to distinguish
between different data. During unsupervised contrastive
pretraining, the unlabeled texts/images are clustered in
the latent space, forming fairly good decision boundaries
between different classes [82]. Contrastive pretraining-
based models utilize the relationship between samples
as the supervision information to train an ESA model.
For example, contrastive language–image Pre-training
(CLIP) [83] leverages the relationship between the image
and its textual caption to learn the representation. This
method is called cross-modal contrastive learning, which
aims to pull close the representations for the positive
text–image pairs and pull away the negative pairs. As
this pretraining objective enables the model to output the
relevance score between an image and a text, we can
construct different prompts such as “it makes someone
happy/sad/” and utilize the pretrained model to generate
the relevance scores. The statement with the highest score
is considered to be true.

3) Predictive Pretraining-Based ESA: There are various
predictive pretraining objectives, including masked lan-
guage modeling [84], replaced token detection [85],
masked vision modeling [88], and cross-modal match-
ing [86]. Masked language modeling is introduced by
bidirectional encoder representations from transformers
(BERT) [84], which makes the model predict the masked
word based on the context. To apply BERT on unsupervised
ESA, Shin et al. [89] constructed the prompt following
GPT3. They used [MASK] as the placeholder and let BERT
predict the corresponding word. The prompt could be like
“it was [MASK].” To mitigate the mismatch between pre-
training and fine-tuning of BERT, the replaced token detec-
tion is proposed in ELECTRA [85], which lets the model
discriminate whether the token is replaced. The prompting
method for ELECTRA [90] is similar to it for BERT. The
difference lies in using different classification labels to
replace the [MASK] token separately and making ELEC-
TRA discriminate whether the filled word is replaced. If
the output result is “original,” this answer will be accepted.
This method obtains 82.8% in terms of accuracy on SST-2.
As for multimodal data, different from the mask language
modeling, masked vision modeling samples and masks the
visual features of vision regions or patches, and lets the
vision-language model reconstruct the masked features.
Also, cross-modal matching is presented to capture the
inherent relationship between different modalities, which
makes the model predict 1 for the matching pairs and 0 for
others. Similar to CLIP, the matching scores can be calcu-
lated and the statement with the highest matching score is
taken as the final answer. An example of masked language
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Fig. 3. Example of masked language modeling and masked vision

modeling in self-supervised learning.

modeling and masked vision modeling for image–text pair
data is shown in Fig. 3.

In recent years, some predictive pretraining models
have also achieved good performance in fine-tuning down-
stream ESA tasks, such as SentiBERT [91], SentiLARE [92],
and SKEP [93]. They build emotion-related pretrain-
ing tasks at the word level, by introducing word-level
emotional knowledge, such as emotional words, part-of-
speech, or part-of-speech parse trees, in the mask language
model (MLM) task of BERT. However, they ignore the
design of pretraining tasks at the sentence level. Also,
SentiWSP [94] designs pretraining tasks at both word
level and sentence level to enhance the model’s ability to
capture sentiment information in text and uses a word-
level sentiment substitution detection task to enhance the
discriminator’s learning of sentiment information in the
text through joint training of the generator and discrimi-
nator. The discriminator is then trained at the word level
to improve its ability to capture the sentiment of the whole
sentence through a contrastive learning framework.

Self-supervised learning was first used in NLP tasks
and achieved impressive performance, and in recent years,
it has also made amazing progress in CV tasks. Com-
pared with other unsupervised learning methods for ESA,
self-supervised learning-based algorithms are most worth
trying.

IV. S E M I S U P E R V I S E D E S A
For ESA, due to subjectivity and ambiguity, it is challenging
to construct a large-scale dataset with reliable annota-
tion [4], [5]. Recent research utilizes major voting to anno-
tate the emotional datasets. Many workers are employed
to provide their emotional responses to given affective
stimuli, and the class with the most votes is labeled as
the ground truth. This strategy alleviates the subjectivity
and ambiguity issue via the generally considered dominant
emotion, but the reliability of the labels depends on a
large number of workers. In this way, semisupervised ESA
is proposed to be a promising direction due to the low
demand for labeled data. On the one hand, training models
in the semisupervised setting can significantly reduce the
cost of annotation. On the other hand, semisupervised
algorithms [115] progressively select high-confidence sam-
ples for training, which potentially alleviates the impact

of unreliable data. Therefore, semisupervised ESA has
attracted increasing attention.

SSL aims to design algorithms that learn from both
labeled and unlabeled data. In terms of ESA, there are
three commonly used strategies to train robust models in
the SSL settings, i.e., graph-based methods, regularization-
based methods, and pseudo-label-based methods, as
shown in Fig. 4 and summarized in Table 2. Next, we will
introduce these three groups of methods.

A. Graph-Based Methods

The graph-based SSL methods focus on the geometry
relations induced by labeled and unlabeled data. Generally,
the geometry relation is modeled by a graph G = {V, E},
where nodes V are the samples and edges E are the
similarities between the samples. After mining the intrin-
sic relations among samples, it is possible to propagate
information from a few labeled data through the graph
structure.

In the early days, Internet shopping was not popular-
ized, and there was little rating data for the review of
products. In order to automatically analyze the user’s satis-
faction with products, Goldberg and Zhu [95] adopted an
SSL algorithm to make use of reviews with and without rat-
ings. The algorithm is optimized based on the assumption

Fig. 4. Conceptual illustration of semisupervised ESA: (a)

graph-based method, (b) regularization-based method, and (c)

pseudo-label-based method.
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Table 2 Categorization and Representative Methods for Semisupervised ESA

that the function predicting ratings should be smooth
with respect to the graph. Specifically, the smoothness is
measured by the L2 distance, which is constrained within
the labeled data, within the unlabeled data, and between
the labeled and unlabeled data. Different from document-
level coarse-grained tasks, many researchers are interested
in utilizing SSL algorithms to address the expensive cost of
fine-grained word-level annotation. Rao and Ravichandran
[96] compared the performance of three classical graph-
based SSL algorithms, i.e., mincuts, randomized mincuts,
and label propagation on the word-level sentiment polarity
analysis. The experimental results demonstrate that min-
cuts and randomized mincuts have an advantage on the
recall, but the precision is lower than label propagation.
Sindhwani and Melville [97] constructed graph G with
(n + D) vertices, which consists of n documents and D

words. The undirected edge (i, j) exists if the jth word
appears in the ith document, and the weight is calculated
by frequency. Then, the graph is optimized based on three
rules: 1) the label of documents should be close to ±1
value (+1 represents positive and−1 represents negative);
2) the label of words should be close to ±1 value; and
3) the label of word i and document j should be similar if
the edge weight of i and j is large. Overall, the graph can
be completed and the sentiment value of the words can be
predicted in the training process.

B. Regularization-Based Methods

Due to the challenge of obtaining a reliable large-scale
affective dataset, the number of initial labeled samples is
insufficient. Furthermore, in some modalities, such as EEG
and speech, with weak, nonstationary, and multirhythm
properties, the samples contribute differently to the emo-
tional states [116]. Training on these datasets easily leads
to an overfitting problem. Therefore, researchers design
regularization strategies to improve the generalization
ability of the models.

Latent-variable model is an effective generative SSL
strategy with the ability to learn intrinsic representa-
tions with the help of the latent variables. Variational
autoencoder (VAE) is a representative latent-variable
model, which contains a probabilistic encoder and decoder.
Kingma et al. [98] extended VAE to SSL combined with a

classifier trained simultaneously. This scheme is leveraged
to address the instability of the speech and EEG sentiment
analysis [69], [70], [99]. Moreover, Latif et al. [100]
integrated gender identification and speaker recognition
as auxiliary tasks to further regularize the network. In
addition, Kim et al. [101] designed a 3-D autoencoder for
video emotion analysis to encourage the network to learn
spatial–temporal representation. For multimodal emotion
analysis, Du et al. [102] leveraged a generative model to
address the missing modality problem. Lian et al. [103]
introduced an intramodal interactive module to maintain
the information from each modality by leveraging multi-
modal features to reconstruct the supervision from each
modality.

Consistency-regularization methods apply a consistency
loss term to specify the prior constraints [117], which
is one of the mainstream SSL algorithms. Specifically,
a popular assumption is that the predictions should be
similar when the inputs are the perturbed versions of
the same image [115]. The typical consistency method
is the teacher–student model, which forces the predictions
of the student model to be consistent with those of the
teacher model. The constraint is formally defined as

min
x∈X

D (hstu (fstu (x)) , htea (ftea (x))) (1)

where fstu(·), ftea(·), hstu(·), and htea(·) represent the stu-
dent feature extractor, teacher feature extractor, student
classifier, and teacher classifier, respectively, and D(·, ·)
measures the distance between the distributions, which is
often implemented by mean squared error. The student
model is optimized according to the constraint. In turn,
the teacher model is updated by the exponential moving
average (EMA) strategy with the help of the parameters of
the student model.

For ESA, Liang et al. [105] proposed a cross-modal
distribution matching module, which assumes that the
emotional state of the internal modality should be con-
sistent with the text on the utterance level. Specifically,
the module is designed for large-scale unlabeled data, and
the maximum mean discrepancy (MMD) is leveraged to
measure the consistency. The calculated MMD value is
directly leveraged as a loss term to optimize the model.
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To minimize the entropy of the prediction [118], Zhang
and Etemad [104] sharpened the guessed distribution for
the unlabeled data. In addition, consistency regularization
is also integrated into the graph-based methods. After
constructing the graph G, a loss function is designed based
on the consistency assumption that the data with close
relation have a similar prediction [95], [97]. Combining
the advantages of consistency constraints and geometry
relations, these methods show competitive performance on
ESA.

C. Pseudo Label-Based Methods

Due to its powerful performance and superior gener-
alization ability, pseudo label becomes one of the most
popular methods for SSL [115], [119], [120]. The clas-
sical algorithms generate pseudo labels by selecting the
category that has the maximum probability of the predic-
tions. However, directly adopting pseudo labels will suffer
from confirmation bias [121]. Specifically, training with
the wrongly predicted labels can impact the performance
of the model and the error will be accumulated in this
process. Therefore, researchers focus on designing reli-
able methods to measure the confidence of the pseudo
labels [115], [122]. The commonly used cross-entropy-
based loss for unlabeled data can be denoted as follows:

Lunlab = 1[prob(qw
u )≥τ]

C∑
c=1

1[c=qw
u ] log (hc (f (xs

u))) (2)

where qw
u = arg max(f(xw

u )) denotes the pseudo label
from the weakly augmentation of unlabeled sample xu

and τ is the fixed threshold to divide reliable or unreliable
pseudo labels. Based on the methods, the high-confident
unlabeled data can be selected and combined into the
training process with labeled data.

Generating pseudo labels is a key step for these
methods, and some strategies have been proposed for
ESA. Considering the changing process of the sentiment,
Rong et al. [106] integrated the sentiment state vector
into the hidden layer to improve the recurrent neural
networks (RNNs), which implicitly enables the model to
generate more accurate pseudo labels. Benefiting from
the pretrained model which understands semantic infor-
mation, Kumar et al. [62] leveraged BERT to extend the
vocabularies for each emotion based on the seed. Then,
the pseudo labels are assigned according to these vocab-
ularies. Moreover, some methods combine decisions from
many models to obtain more reliable pseudo labels. Xiang
and Zhou [110] trained a separate sentiment model for
each topic cluster and replaced the single model with a
mixture of sentiment models. Then, the mixed prediction is
obtained based on the weight of each topic. For unlabeled
data, the pseudo labels are generated from the ensemble
decisions. Zhang and Singh [111] leveraged forward and
backward segment learner to model the mapping between
data and label, and the pseudo label is selected from

the learner with a larger probability value. In the real
world, the number of emotion and sentiment stimulation
for classes is imbalanced, and thus, Li et al. [112] improved
the sampling strategy to form new training subsets. In
addition, Sintsova et al. [107] utilized the exponential
operator to generate the weight of each class and then
reweighted the distribution to cope with the imbalance
problem. Besides the generation process, the measure-
ment of pseudo-label confidence is also an important step.
Hwang and Lee [113] automatically constructed lexicon
when training with labeled data. Then, the confidence
score of the unlabeled data is calculated according to the
lexicon. For multimodal ESA, the current methods mainly
pay attention to robust representation. Zhang et al. [108]
leveraged early fusion to combine the audio and visual
features. Li [109] designed a hierarchical fusion approach
to leverage multimodal information, which is helpful to
correctly model the uncertainty. In addition, Zhou et al.
[114] addressed the wrongly predicted pseudo labels by
curriculum learning. Specifically, the training process first
leverages the strong and balanced emotion samples and
subsequently utilizes the weak and imbalanced emotion
ones.

D. Discussion

Here, we qualitatively discuss the advantages and dis-
advantages of the three types of representative SSL algo-
rithms for ESA. First, the graph-based algorithms mine
the association among samples, which clearly models the
structure of the dataset [95], [97]. However, these meth-
ods usually have two limitations. First, as the vertices rep-
resent samples in the dataset, the space cost of n samples
is O(n2). Second, when new samples are added, these
methods have to reconstruct the graph by combining both
the original and new data to better and comprehensively
model the relations among the data. The regularization-
based methods have made much progress for SSL in recent
years [117], [121]. Essentially, these methods are designed
to prevent models from overfitting on small-scale labeled
datasets. Nevertheless, the regularization strategies often
ignore the mapping between unlabeled data and the poten-
tial label. In light of this consideration, pseudo-label-based
methods attract more and more attention due to their
practicality and simplicity [115]. For ESA, because of the
subjectivity and ambiguity, the low accuracy of pseudo
labels and the small proportion of high-confidence data are
two main challenges for the SSL setting. Current methods
focus on extracting discriminative features [103], [108] or
designing curriculum learning tasks [114], [116] to allevi-
ate the problems. In the future, label smoothing guided
by the polarity may be a promising direction to further
improve the performance of SSL-based ESA.

V. W E A K L Y S U P E R V I S E D E S A
Weakly supervised ESA has received much attention since
the dependence on labeled data is greatly reduced. In
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Table 3 Categorization and Representative Methods for Weakly Supervised ESA

detail, the weakly supervised methods are proposed to
address the two practical challenges, as shown in Fig. 5.
First, there exist potential relations among affective tasks,
and thus, training multitasks simultaneously can prompt
the robustness and performance of the model. For exam-
ple, the aspect and opinion are often mined from the
documents simultaneously [129], [130], [142]. Further-
more, detecting affective region is also optimized together
with the emotion recognition [131]. However, there is no
dataset simultaneously containing labels for these tasks.
In order to provide the supervision information for each
task, weakly supervised ESA has become an important
research topic. Second, the noisy labels for ESA are easy
to obtain, and thus, it is a promising topic to mine emo-
tional cues from these data. There are many websites
that provide reviews together with ratings, which can be
divided into either positive or negative sentiment by a fixed
threshold. Furthermore, the words also play an important
role in weakly supervised ESA [126], [143]. There are
some text-based tools such as SentiWordNet [144] and
SentiStrength [145], which calculate the sentiment values
of the words, and thus, many works leverage the value of
the words in the sentence to obtain noisy labels.

In detail, current weakly supervised ESA works focus
on the strategy of learning from inconsistent and noisy
labels. The inconsistent labels refer to the inconsistency
between fine-grained samples and coarse-grained supervi-
sion information, e.g., sentiment analysis at the word level
with annotation at the document level, affective region at

Fig. 5. Illustration of the motivations for utilizing weakly

supervised ESA methods. (a) Inadequate annotation for multiple

tasks: both emotion prediction and emotional region detection are

trained simultaneously, but only the emotion label is available.

(b) Noisy labels: a food review is assigned with a positive label

based on the rating, but actually, the comment is negative.

the pixel level with emotion label at the image level, and
emotion analysis at the frame level with emotion label at
the video level. The noisy labels are particularly common in
ESA. For example, many methods obtain annotation from
users’ ratings. Specifically, the polarity label can be gen-
erated according to a fixed threshold. The higher ratings
denote a positive opinion, and the lower rating denotes a
negative experience. Nevertheless, review ratings are not
reliable labels for the constituent sentences, which results
in noisy supervision information.

Next, we will illustrate these methods in the following
sections. These weakly supervised ESA methods can be
divided into two groups: initialization-based methods and
refinement-based methods, as summarized in Table 3. The
initialization-based methods aim to generate supervision
information with the help of the inexact supervision infor-
mation, while the refinement-based algorithms leverage
unreliable weak labels to train a robust model for ESA.
Furthermore, some methods contain both initialization
and refinement steps. To elaborate on the strategies of
each group, we will introduce the strategies of these
methods.

A. Initialization-Based Methods

On the one hand, ESA suffers from the lack of suffi-
cient labeled data. On the other hand, for the multitask
training scheme, part of the tasks usually has no super-
vision information. Therefore, there are many researchers
considering directly initializing labels for training models.
Note that compared with the semisupervised algorithms,
these methods do not directly utilize labels such as semisu-
pervised settings but have related supervision information,
such as rating, emoticon, and hashtag. Here, we divide
the initialization-based methods into the following four
strategies.

1) Efficient Emotional Cue: The emotional cue is
a common but efficient resource for initialization.
First, the rating can be directly obtained from the
websites. For instance, the ratings of drugs ranging
from 1 to 5 are provided on the forum Askapatient
(https://www.askapatient.com/). Then, using 3 as the
boundary [64], the reviews with ratings lower than the
boundary are assigned as negative, and the reviews with
ratings higher than the boundary are considered positive.
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Similarly, Wei et al. [63] leveraged the sentiment dic-
tionary to extract keywords with distinct polarity. These
keywords are initialized to be the supervision informa-
tion for training visual emotion networks. Note that all
these processes are automatically implemented. Second,
the emotional cues, such as emoticon and hashtag, just
require a small amount of labeling. Qadir and Riloff [123]
annotated five seed hashtags for each emotion. The sen-
tences are considered to have the same emotion as the
hashtags, and classifiers are trained using these data. Then,
the emotion of other hashtags can be calculated by the
average prediction score of the sentences containing them.
In this way, more and more hashtags can be assigned an
emotion category and thus help to train the recognition
model. Chen et al. [68] explored the role of emoticon for
multimodal sentiment analysis and annotated 6k tweets
with clean labels for initialization. Then, the corresponding
emoticon and the sentiment representation are optimized
in the expectation–maximization (EM) algorithm. In these
methods, the labeled data are leveraged as the seed, which
establishes the mapping between supervision cues and
emotions. Then, more cues are integrated based on the co-
occurrence to further improve the robustness of the model.

2) Metric Diffusion: Many methods leverage metric
functions such as cosine similarity to diffuse emotion
and sentiment labels to the unlabeled data. Specifically,
the metric functions are used to measure the relations
between prototypes such as a lexicon. Compared with
the fully supervised methods, these methods only need a
small number of prototypes for each class instead of the
label for each instance. Therefore, the key factors of these
methods are the predefined prototypes and the metric of
the relations.

For text, the word is one of the most important pieces
of information to construct the prototypes. Read and
Carroll [124] leveraged the lexicon association, distribu-
tional similarity, and semantic spaces. Lexical association
determines the relation of the textual data by considering
the co-occurrence of the words with pointwise mutual
information. Semantic spaces utilize the points from the
high dimensions to represent concepts. In detail, the space
contains four dimensions here, which are basic elements
such as word stem, co-occurrence frequencies, embeddings
of the document, and the mapping transformation like
dimensionality reduction for the embeddings. Distribu-
tional similarity models the context as the group of gram-
matical relations of the words. Pereg et al. [125] proposed
a sentiment analysis system, which allows users to change
the prototypes. This process is called lexicon editing. When
the system automatically extracts the aspects and opinions
in the document, users can delete, add, or modify the
lexicon items related to the aspects. This process ensures
the discriminative and the correspondence of the lexicon
items. Then, the similarity between items and the subset of
the two sentiments is calculated to predict the label of the
text. For images, the high-level features are more suitable

as prototypes than the basic pixel-level ones. Borth et al.
[126] proposed to describe the visual concepts in images
by a vector consisting of ANPs. The values in the vector
represent the probability that the image contains the ANP.
Leveraging the ANP as prototypes and then calculating
the similarity between the vectors is a promising way to
initialize the label of the affective visual content.

3) Probabilistic Model: The classical statistic language
modeling leverages the probabilistic model to represent
the generalization of sequences of words [146], [147],
[148]. Furthermore, researchers consider that the words
and aspects in the document have close relation with
the sentiment. Therefore, many methods have been pro-
posed to incorporate sentiment into the probabilistic
model.

He [127] added emotional prior information to the
document-level analysis and proposed latent Dirichlet allo-
cation (LDA) with Dirichlet prior modified method. Specifi-
cally, they considered that the overall sentiment (negative,
positive, or neutral) of a document is first decided, and
then, the sequence of words is generated on account of the
prior information. Therefore, a Dirichlet prior distribution
is leveraged to incorporate sentiment knowledge. On the
other hand, sentiment information is usually used to mine
opinions on the aspect level. Lin et al. [128] proposed a
probabilistic modeling framework called a joint sentiment-
topic model. In the training phase, the sentiment and topic
are progressively detected from the text. First, the senti-
ment has a potential distribution based on the documents.
Second, according to the sentiment label, a topic (aspect)
can be further selected according to a certain distribution.
Third, the sequence of words can be generated on account
of the topic and sentiment. The distributions are also
initialized in LDA and optimized by the Gibbs sampling
process. Ramesh et al. [129] applied the technology of
analyzing aspects and polarity to MOOC reviews and sum-
marized effective suggestions for improving the quality of
lessons. Zeng et al. [130] proposed a scheme that predicts
an opinion word in the light of the target word. Specifically,
given a review and a target word, the sentiment can
be predicted by training a polarity classifier. Then, using
the target word and sentiment as prior knowledge, the
opinion word like “good” is generated by the opinion word
classifier.

4) Feature Generation: The methods that belong to the
feature generation group transform the features to obtain
the label. This group of methods is usually utilized in
multitask learning, which has no supervision information
for one harder task. Therefore, many methods leverage
other related easier tasks to train the model and transform
the feature as the pseudo label of the task. To improve the
performance in both tasks, the generated weakly super-
vised pseudo labels are used as auxiliary information to
guide the training of the easier task.

Giving a single annotation for a sample requires rel-
atively less cost. For instance, we can quickly assign an
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emotion label to an image or a document. However, giving
annotation on the pixel level or word level requires a
higher cost. Specifically, Peng et al. [149] demonstrated
that the importance of the pixels in an image is different.
For text, the words also have different contributions to the
sentiment of the sentence. Therefore, the emotion and sen-
timent intensity in fine-grained affective signals is helpful
for analysis. Yang et al. [131] proposed a coupled network
to simultaneously detect the emotional salient region and
recognize the emotion of an image. In detail, the features
extracted after the convolutional layers are adopted for
classification. The predicted results are leveraged as the
weight for each channel to generate the sentiment salient
map. The map contains the region that contributes sig-
nificantly to classification. Then, the original feature is
enhanced by multiplying with the sentiment map to better
capture the spatial information. In this way, both tasks can
be improved in the coupled networks. Similarly, Lee et al.
[132] used attention weight to explore the contribution
on word level, which achieves good performance on both
detection and recognition tasks.

B. Refinement-Based Methods

Although it is difficult to obtain exact emotional annota-
tions, many frameworks have been proposed to automat-
ically obtain affective data with noisy labels [63], [126],
[150]. Therefore, it is important to explore refinement
strategies that train robust models with these weakly
labeled data. Here, we will introduce the refinement-based
methods for ESA into two groups: feature calibration and
iterative adjustment.

1) Feature Calibration: To the target of learning distinc-
tive representations to obtain reliable prediction, many
methods design strategies based on the features to cali-
brate the network. For ESA, due to the existence of polarity
and ambiguity, many feature-based methods have made
significant progress.

Guan et al. [133] proposed to train an embedding
space that maintains the general sentiment relation of
the samples. Specifically, the samples are selected to form
pairs and then design loss terms to reduce distances for
same-label pairs and increase distances for opposite-label
pairs. Furthermore, Yang et al. [134] considered that the
emotional samples with the same polarity have a relatively
closer relation. The polarity-based hierarchical emotion
model is different from other recognition tasks. A triplet
constraint is proposed to leverage the prior information.
In detail, the commonly used emotion model can be sep-
arated according to the polarity. Therefore, a loss term
with three types of pairs has been proposed to constrain
the model. First, the samples with the same emotion have
the closest relations. Second, the samples with different
emotions but the same polarity are closer than the ones
with different polarities. By adding emotional constraints
to features with prior information, the network can be
implicitly calibrated in the training process. From another

perspective, due to ambiguity, an affective image may con-
tain more than one emotion, and each emotion contributes
differently to the image. Xue et al. [135] designed a
nonextreme channel attention mechanism to alleviate the
impact of noisy labels. This method enables the network to
prevent overconfidence in one emotion and pay attention
to the nondominant emotions. In addition, She et al. [136]
proposed a multiple kernel network, which utilizes pooling
layers to extract the informative features from a small-
scale dataset with accurate annotation and a large-scale
dataset without manual annotation. In this way, both the
abundant visual patterns and emotionally discriminative
concepts can be learned in the multiple kernel feature
fusion module.

2) Iterative Adjustment: Due to the robustness of itera-
tive adjustment, it is practical to learn with weakly anno-
tated data step by step [4], [5], [49]. In this section, we
will introduce the methods that adopt the iterative strategy
in ESA from two aspects: data and task.

You et al. [137] proposed a strategy of progressively
selecting reliable samples for refinement on a large-scale
dataset without manual labeling. To achieve this goal,
they first trained a model on the dataset with unreliable
labels. Next, a subset of training instances is selected
according to the prediction score by the model. Then,
the model is further fine-tuned on the selected subset.
The central of this method is the strategy of selecting a
cleaner subset based on the entropy minimization [118].
For example, a sample with a predicted distribution of
[0.9, 0.1] is more reliable than the sample with [0.6,
0.4]. In addition, multiple-instance learning is a classical
method for learning with inexact supervision [138], [139].
Specifically, multiple-instance learning aims to predict the
emotion of each segment, but we only have the label of
the sample, which consists of many segments. Angelidis
and Lapata [139] proposed to select the most negative and
most positive segments into the training set according to
the predicted distribution. Then, combine these segments
via a gated recurrent unit (GRU)-based attention mech-
anism to output the prediction of a sample. Repeating
the process iteratively, the model can be optimized end-
to-end by the samples’ loss. Differently, Zhang et al. [49]
iteratively updated the weight of each segment describing
the sample to replace the most confident segment. In this
way, more segments can be integrated into the training
process, which implicitly reduces the impact of unreliable
segments. From the perspective of the task, Panda et al.
[140] considered the hierarchy (i.e., Parrott’s hierarchical
emotion model) and proposed an effective curriculum-
guided training strategy to gradually learn discriminative
representations. Besides, Min [64] and Deriu et al. [141]
first trained the model on a large-scale weakly labeled
dataset and then fine-tuned it on a small-scale accurately
labeled dataset. By training iteratively in this way, the
model can learn robust representations and perform well
on the emotion and sentiment datasets.
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Table 4 Categorization and Representative Methods for Low-Shot ESA. The Second Column Indicates From Which the Methods Learn Prior Information

C. Discussion

The initialization-based methods aim to generate labels
by extra information (i.e., efficient emotion cue and seed
of metric diffusion) or intra-assumption (i.e., distribu-
tion of probabilistic model or feature). The refinement-
based methods design training strategies to reduce the
impact of uncertain labels and learn useful information
simultaneously. In general, the former methods are often
utilized in situations where little supervision information
can be provided, and the latter methods usually have noisy
labels to train the models. Therefore, the initialization-
based methods are more challenging to achieve better
performance. In addition, for ESA, it is easy to collect
a weakly annotated dataset. Therefore, we believe that
combining initialization and refinement modules for an
efficient learning framework is a promising direction.

VI. L O W - S H O T E S A
Typical deep learning-based ESA methods require a large
amount of annotated data for parameter optimization
and thus are data-hungry. However, it is usually time-
consuming, laborious, error-prone, and high-qualified
labelers that are required to provide sufficient data with
well-annotated labels. As a result, this requirement can be
violated for ESA in the wild. The main reasons are mani-
fold. First, it is exhausting and expensive to provide accu-
rate and fine-grained labels for massive data from a wide
variety of modalities such as documents and videos. Sec-
ond, research on emotion and sentiment is still in its early
stages, which leads to a lack of large datasets dedicated
to specific emotion classification tasks. Just as an example,
the datasets collected for microexpression recognition usu-
ally contain a couple of hundreds of microexpression clips.
Third, specific tasks, such as microexpression spotting,
may require certain certifications to understand and mark
the emotion states from the samples [181], [182]. It is
thus challenging to invite enough well-qualified labelers
for annotation. Finally, the clear individual differences in
labeling and understanding emotion [183] as well as the
inconsistent perception of fine-grained emotion intensity
further hinder the acquisition of reliable emotion-related
annotations.

To meet this challenge, recent studies pay special atten-
tion to the low-shot learning paradigm such as few shot
and zero shot. Low-shot learning aims at finding solutions
to a series of learning tasks from a small amount of data

to avoid the overfitting problem. Take few-shot learning
(FSL) [42] as an example. In each of the tasks, also known
as episodes, few-shot learners are performed to solve the
C-class classification problems using only K samples for
each class, which is referred to as the C-way K-shot FSL
problem. On the other hand, zero-shot learning (ZSL) [43]
attempts to recognize unseen-emotional states without
providing any labeled data of the unseen tasks. Usually,
lateral information shall be provided, such as the attribute
profile of the new tasks and the relationship between the
seen and unseen tasks. Though both FSL and ZSL are
designed to handle tasks with limited labeled data, they
have different focuses. FSL focuses on recognizing new
classes based on limited examples, while ZSL focuses on
recognizing unseen classes using auxiliary information.

Modern deep models are usually with a large number of
parameters. In the low-shot ESA scenarios, they are usually
overparameterized and prone to overfit to limited sam-
ples [184]. In a comprehensive study about four distance
metric learning-based FSL algorithms for (few-shot) FER, it
is observed that the domain gap between the training and
testing data highly influences the generalization ability of
FSL algorithm [155]. A moderate domain shift is thus sig-
nificant to safeguard the performance. Another evaluation
on the performance of typical FSL methods for the general
image recognition task can be found in [185].

To solve the dilemma caused by insufficient labeled data,
different approaches bring in or share prior knowledge
from different sources. Accordingly, existing low-shot ESA
approaches can be briefly categorized into the following
six groups, as shown in Table 4.

A. Data Augmentation

The approaches falling into this category respond to
the problem of limited data from the viewpoint of data.
It augments data for enriching the training set so that
more supervised information with prior knowledge can be
leveraged [151]. Wang et al. [152] focused on few-shot
visual sentiment analysis and used noisy data of auxiliary
datasets to guide FSL. A noise matrix is generated using
the pretrained network on the auxiliary noisy data, which
is then served as reweighing parameters. A model is first
pretrained using the reweighted instance from the large
noisy dataset, then fine-tuned using the clean instances,
and finally retrained by relabeling the noisy data. In [153],
an end-to-end compositional generative adversarial
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network (Comp-GAN) is proposed to synthesize face
images with specified poses and facial expressions. The
extended set of instances of diverse high-quality help
to train a robust FER model with a good generalization
ability. Data augmentation is also widely used in NLP for
text sentiment analysis and stance detection. A masked-
and-then-generation supervised learning scheme is used
for data augmentation [154].

B. Pretrained and Fine-Tuning

The transfer learning paradigm is to build a model pre-
trained on a large auxiliary dataset such as ImageNet [186]
designed for different tasks, such as image recognition, and
then fine-tune it to the target dataset for ESA. Transfer
learning greatly diminishes the need to collect a large
amount of data and train a model from scratch. It allows
leveraging the model pretrained in a resource-rich task for
resourced-low tasks. The fine-tuning stage is designed to
learn C classes using a few K examples for each class. In
the fine-tuning stage, the network parameters are usually
frozen and a classifier is updated using the data of new
classes. Such a scheme is usually used as a baseline for few-
shot ESA [155], which has shown good performance in
addressing the data limitation issues for cross-lingual emo-
tion detection by leveraging the knowledge from resource-
rich languages [156]. More recently, models pretrained
using large-scale auxiliary dataset show great potential.
Xu et al. [142] discussed the posttraining of the pre-
trained BERT model for aspect-based sentiment analysis
and review reading comprehension, which is formulated as
a question-answering task. The training techniques, includ-
ing masked language model and next sentence prediction
(NSP), are introduced for domain knowledge posttraining.
MLM and NSP are then fused with the task-aware two-
pointer averaged cross-entropy losses to enhance both the
domain and task knowledge. Hosseini-Asl et al. [157]
regarded the feature extraction and prediction tasks in
ASBA as the sequence generation task, which is imple-
mented by a generative language model GPT2. The textual
generation model learns to predict polarities and aspects
without task-specific layers. The experiments show that
the GPT2-based generative few-shot model outperforms
the BERT with posttraining [142]. In [158] and [159],
a general pretrained multitask network (FaceBehaviorNet)
is trained for three facial behavior analysis tasks, including
expressions recognition, continuous affect estimation, and
facial action unit (AU) detection. It shows superior general-
ization performance on the task of compound expressions
under the low-shot setting. Moreover, Wei et al. [63]
established StockEmotion, a large-scale dataset from Web
data with a size of over one million images and noisy
fine-grained labels of emotion categories. A multimodal
feature extraction network, Emotionnet, is trained on
StockEmotion using the joint vision–text embedding losses.
The zero-shot evaluations on the EMOTIC dataset suggest
that a general model trained from scratch on StockEmo-
tion has strong generalizability, even without using any

EMOTIC instances for training [63]. The study [160] also
indicates that multilingual BERT generalizes well when
high-resource languages are transferred to low-resource
languages for cross-lingual ZSL.

Zhong et al. [161] introduced a lightweight fine-
tuning method to customize the transformer-based pre-
trained models, with a lightweight user-specific vector
(token). During FSL, the majority of the parameters of
the transformers are frozen and only the parameters of
the user-specific token are updated. The method surpasses
fine-tuning all parameters of the model in terms of both
accuracy and efficiency [161].

Recent work reveals that the input prompt of advanced
large-scale pretrained models such as GPT3 [81] provides
a natural mechanism, termed few-shot “in-context” learn-
ing, for FSL without fine-tuning. An encouraging example
of using GPT3 for few-shot sentiment analysis can be
found in [162]. A comprehensive study of few-shot cross-
lingual stance detection with prompt is provided in [163],
where pattern-exploiting learning (PET) and correspond-
ing prompt selection are evaluated.

C. Metric Learning

Instead of directly modeling the probability of one
sample belonging to a specific emotion class, which may
cause overfitting in an FSL setting, metric learning-based
methods measure the similarities between the unlabeled
samples with a few labeled samples, which reflects the
probability of two inputs belonging to the same category.

In particular, prototopical network (Protonet) [187] is
introduced to few-shot cross-subject cross-domain EEG
emotion recognition in [164]. Moreover, Yang et al. [165]
integrated the Siamese network [188], [189] with the self-
attention mechanism for text sentiment analysis. In [166],
Siamese networks are constrained via metric learning with
carefully designed additional supervision information for
efficient few-shot spontaneous speech emotion recogni-
tion. In addition, the study [167] treats the instance of
different corpora of the same classes as the targeted classes
in FSL and incorporates FSL to unsupervised DA (UDA).
It uses a relation network-based [190] architecture to
implement FSL for cross-domain speech emotion recog-
nition. In a recent study, Zou et al. [168] aimed to clas-
sify compound expressions that are unseen based on the
model trained only on seen basic expression datasets. Few-
shot compound facial expression learning is performed by
using a two-stage learning framework, with an emotion
branch and a similarity branch. In the inference stage, the
compound expression categories are output by the learned
similarity branch. The study [169] investigates few-shot
fine-grained emotion recognition using a small amount of
physiological signals data. A Siamese network is proposed
to learn the distance metric and a distance fusion module
is used to make the final prediction. Zhang et al. [170]
constructed a long interview video dataset of 50 patients
for autism trait classification. Based on handcrafted
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features, distribution calibration that aims to calibrate
the distribution of few-shot instances and the adaptive
posterior learning model [191] that can be considered as a
ProtoNet with a refinable class prototype are used for FSL.

D. Multitask Learning

Multitask learning [192] learns a group of relevant tasks
jointly with a majority part of the model shared. More
importantly, during the multitask learning process, by min-
ing task-agnostic and task-specific information, common
knowledge among tasks can be shared.

The pretrained FaceBehaviorNet [158], [159] has
shown the power in few-shot ESA by multitask learning.
Li and Shan [171] considered facial AU detection and FER
in the MTL scenario. A meta net is used to weigh the
AU and facial expression instances for adaptively transfer-
ring knowledge from the rich-resourced FER to the low-
resourced AU detection.

E. Embedding Learning

Zhan et al. [65] proposed a structural embedding
framework for zero-shot image emotion recognition. The
structural embedding framework utilizes mid-level ANP
features [126], which forms an intermediate embed-
ding space to close the gap between extracted low-
level visual features and expected high-level emotional
states. In [172], a portable prediction head approach is
designed to learn shared emotion embeddings for multi-
lingual common representation. The portable prediction
head approach is built by enforcing the multiway mapping
model to produce a common emotion space. It can be well
generalized to unseen language datasets (the alleged zero-
shot setting) using either feedforward network or BERT.

Xu et al. [173] studied zero-shot speech emotion
recognition and considered the emotional dimensions
as attributes, which link the paralinguistic features to
emotional states. After attribute learning, label learn-
ing further fulfills the maps from the attributes to the
emotional states. A group of auditory affective descrip-
tors (AADs) [193], including the per-emotion manu-
ally annotated, per-emotion semantic-embedding, and
per-sample manually annotated AADs, are investigated.
In [174], the samplewise learning and emotionwise
learning strategies are developed to map the semantic-
embedding prototypes, paralinguistic features, and the
given labels, to predict emotional categories. The corre-
sponding experimental results in these two studies vali-
dated the semantic-embedding prototypes from pretrained
models for zero-shot speech emotion recognition.

A recent work [175] studies generalized zero-shot
gesture emotion recognition. A semantically conditioned
adversarial autoencoder is proposed to first produce latent
representations, which model the gesture-based informa-
tion learned from the fully supervised network, and then
align the visual features with the corresponding word-level
semantic features onto a latent space. During inference,

the encoder outputs the corresponding semantic labels,
which are matched with the class labels. To solve zero-shot
stance detection, Liang et al. [154] proposed to distinguish
the types (target-invariant/-specific) of stance features.
The stance features are categorized into target-invariant
and target-specific ones, and a hierarchical contrastive
learning method is designed to characterize the correlation
and differences between these kinds of features and further
among stance labels.

F. Meta-Learning

Few-shot meta-learning, exemplified by model-agnostic
meta-learning (MAML), is targeted at efficiently learning
a model for a new task using only a few data and opti-
mization iterations. In particular, MAML is a task-agnostic
meta-learning algorithm. In MAML, the parameters of
a model’s parameters are optimized during the meta-
learning phase, based on which the new task can be solved
through fast adaptation with a handful of gradient updates
on a small amount of data from that new task [194].
Zhao and Ma [176] used tensor decomposition to learn
the low-rank embedding of sentences and designed an
MAML-like approach for few-shot text emotion intensity
value distribution learning. The study [177] introduces an
MAML-based few-shot AU detection method for efficient
model adaptation to new AUs and subjects using a few
samples (K = 1 or K = 5) from the imbalanced AU
distribution. It designs an MAML model with one general
classifier for all AU detection tasks without task separation,
where an instance is regarded as positive if at least one in
the AU set of interest is detected. Another typical meta-
learning method, namely, the neural process (NP), as a
latent-variable neural network, is applied to personalize
the stress evaluation based on the continuous electrocar-
diogram (ECG) and the galvanic skin responses (GSRs)
for each subject [178]. Guibon et al. [179] studied met-
ric learning-based meta-learning, which uses prototypical
networks for episode training in the meta-learning process
for text emotion recognition. In [180], an aspect-focused
meta-learning (AFML) framework is designed, which can
efficiently adapt the meta-trained model from the support
set to learning the new concept for the aspect-specific
instances in the query set without retraining the model.

G. Discussion

The great potential of the low-shot learning meth-
ods encourages the extension of their application to the
scenario of learning from limited data, not just limited
to the scenarios of few-shot or ZSL. In [195], the FSL
approaches are introduced to microexpression recognition
to bypass the issues caused by the lack of sufficient labeled
data [196]. The feature learning stage is further divided
into two stages, namely, the prior learning for generic
feature extraction and target learning for high-level feature
adjustment. A similar idea can be found in [197]. A deep
residual prototypical network with the episodic training
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scheme is designed to map the input microexpression
sequence into an embedding feature space to alleviate
the data limitation and data bias issue existing in the
microexpression recognition task. In addition, in the appli-
cation of intelligent per-type robots, prototype mixture
models [198] are used to detect new objects via voice
interaction with users and then update the visual model.

One thing we need to mention here is the emerging
issue of learning from (facial expression) data that are
distributed across a varied set of local sites under differ-
ent conditions. In [199], a few-shot federated learning
paradigm is designed, where local models learn from a
few labeled private facial expression data and are then
aggregated in the central site to a global model. The
combination of low-shot learning and federated learning
is likely to spawn new research that will be useful in real-
world scenarios as well.

VII. I N C R E M E N TA L E S A
Though modern deep learning models achieve promis-
ing progress in ESA, they suffer from severe limitations
when adapting to unseen emotion categories/instances.
First, most ESA models only consider a limited number
of emotion categories such as the seven basic expressions,
namely, happiness, sadness, disgust, anger, fear, surprise,
and neutral, defined by Ekman and Friesen [6]. These
models cannot easily adapt to recognize new, fine-grained,
or compound emotion states [12], which are not met
when the models are learned. Second, existing approaches
usually do not generalize well to recognize samples with
distinct variations existing in appearance or with distri-
butions significantly different from the training set, even
when these samples belong to a category ever seen. Third,
as society evolves, the sentiment states of a few words
and phrases change. Thus, the ESA model shall adapt to
these new meanings while preserving the current knowl-
edge about other words and phrases. Fourth, in open-
world environments, data keep constantly appearing and
arriving, a traditional static supervised learning paradigm
cannot handle this dynamic scenario.

To tackle these challenges, there has been an increasing
interest in the study of incremental/continual ESA. The
goal is to adapt the models to these new tasks efficiently,
without catastrophic forgetting of old tasks and model
retraining from scratch.

Incremental learning [200], continual learning [201],
and continuous learning [202], which are also known as
lifelong learning [203] before the deep learning era, are
a long-standing research topic.3 The work [204] proposes
the efficient lifelong learning algorithm (ELLA), which

3The four concepts, namely, incremental learning, continual learning,
lifelong learning, and continuous learning as mentioned, are highly
consistent. They all refer to the machine learning paradigm, which
allows models to learn and adapt to new tasks from new data, without
forgetting how to perform previous tasks (the catastrophic forgetting
phenomenon [201]). Thus, the four concepts are used interchangeably
in this article. Nonetheless, from a more fine-grained perspective, they
may still slightly differ in the specific evaluation protocols.

Table 5 Incremental ESA Approaches According to Three Incremental

Settings. FER and TSA Stand for Facial Expression Recognition and

Sentiment Analysis, Respectively

preserves a shared repository for all task models formed of
latent model components. A linear combination of shared
latent model components from the knowledge repository
is assumed to be able to represent the parameter vec-
tors of models. The knowledge of the repository is then
transferred to assist the new model learning. Afterward,
the basis is updated with knowledge from the new task.
Both linear and logistic regression are implemented in
the provided experiments. Soon after, active curriculum
selection is introduced to choose tasks for improving the
performance of ELLA based on the information maximiza-
tion heuristic [205], [206]. Chen et al. [207] defined and
studied the lifelong sentiment classification problem. They
chose the naive Bayesian text classification as the basis of
the model and used the regularization term to effectively
exploit the knowledge gained from past learning. There is
a free and open tool [sentiment analysis and incremental
learning (SAIL)] developed to update the parameters of
the probabilistic models [208]. Random forest is updated
in an incremental manner for customizing FER [66].

According to different experimental settings, existing
approaches are usually categorized into three types: class-
incremental learning (CIL), domain incremental learning
(DIL), and task incremental learning (TIL) [209].

TIL usually learns a sequence of tasks and uses classifica-
tion heads for individual tasks separately. During inference,
the task identification shall be given in advance so that the
corresponding head can be chosen. CIL approaches focus
on learning new and unseen emotion categories without
forgetting the knowledge about existing classes. The main
focus is to obtain a unified classifier, without the task
identification provided during inference. DIL handles the
cases where new instances of the categories seen before
emerge, with distinct distributions and domain gaps. There
is no need to expand the classification head. A summary of
existing incremental ESA approaches is listed in Table 5.

From the methodology point of view, existing incre-
mental approaches can be grouped into active task selec-
tion, rehearsal-based method, and network-based method,
which are shown in Fig. 6.

A. Active Task Selection

Active task selection assumes that the entire task
sequences are known prior to the incremental learning
process and the order of tasks can be changed during
incremental learning. Algorithms can be designed to select
the next tasks to learn in order to optimize the perfor-
mance for the tasks to learn in the future. Ruvolo and
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Fig. 6. Illustration of three kinds of incremental ESA approaches. (a) Active learning-based approaches select the next task for maximizing

performance. (b) Rehearsal-based approaches store a repository of exemplars from old tasks and design corresponding regularization terms

to consolidate the old tasks during new task learning. (c) Network-based approaches freeze/penalize the shift of network weights and/or

expand the network for learning new tasks.

Eaton [205], [206] introduced active curriculum selection
to determine which task to learn next for improving the
performance of ELLA, based on a series of criteria, includ-
ing the myopic information maximization criterion and
the diversity heuristic. Moreover, according to the exper-
imental findings in [214], the main challenge for contin-
ual sentiment classification is the bidirectional knowledge
transfer between the old and new tasks. Not long after that,
the study points out that continual sentiment classifica-
tion approaches suffer from serious catastrophic forgetting
when there is not much common knowledge shared among
tasks [215]. In line with this understanding, a divide-
and-conquer strategy is further proposed to measure the
similarity between the new task and previous ones. For
similar tasks, the main focus is on efficient knowledge
transfer to improve the new task learning, while for dis-
similar tasks, special attention is paid to forgetting avoid-
ance [218]. A similar solution is also reported in [216] for
continual aspect-based sentiment classification. In [219],
capsules and dynamic routing are used to find out the
similar enough old tasks for knowledge sharing, and a task
mask scheme is developed to protect task-specific knowl-
edge. Furthermore, a parameter-gate (p-gate) mechanism
is designed to judge how useful they are to the new task
for efficient knowledge transfer [217].

B. Rehearsal-Based Incremental Learning

Thuseethan et al. [227] used a random selection policy
to build and update the exemplar samples and introduced
a regularized term for the backbone for continual FER.
To learn facial expression categories continuously from
a stream of data, Zhu et al. [212] proposed an incre-
mental facial expression recognition network (IExpress-
Net). IExpressNet keeps a set of exemplars that stands
for the anchor of old classes by the herding exemplar
selection algorithm [228]. The cross-entropy classifica-
tion loss and the center loss are used to learn from
new classes, while the distillation loss is then used to
transfer knowledge from the seen classes to the unseen

classes. An alternative is to use synthesized examples by,
for example, generative adversarial network (GAN), VAE,
and so on to consolidate old knowledge. This kind of
method is usually referred to as pseudo-rehearsal-based
methods. The study [213] aims at mimicking the neu-
rocognitive phenomenon of imagined contact [229] for
continual FER. It uses an autoencoder-based generative
model, namely, the conditional adversarial autoencoder
(CAAE)-based imagination model to perform imagination
for particular subjects and augment learning. The growing
dual memory (GDM) architecture with two growing when
required (GWR) neural networks [230] is then adopted to
perform incremental learning. A similar study can be found
in [231], where a combined replay generative model [232]
named Dreamnet is introduced to generate samples for
exemplar-free continual learning.

C. Network-Based Incremental Learning

Network-based incremental learning methods address
the catastrophic forgetting problem by designing a penalty
term on the network weights to preserve old knowl-
edge or expanding the subnetwork branches to learn new
knowledge. Han et al. [233] focused on continual cross-
cultural emotion recognition. Elastic weight consolidation
(EWC) [201] is introduced to solve the catastrophic for-
getting problem by regularizing the parameters of the
network. Hung et al. [210] studied the continual learn-
ing along the functionalities, i.e., from face recognition
to other tasks such as FER and gender prediction. The
packing-and-expanding scheme is introduced to improve
the PackNet [234] for continual learning. Ke et al. [214]
proposed a dual-network structure consisting of a main
continual learning network and an accessibility network to
share knowledge among sentiment classification tasks. The
main continual learning network maintains a knowledge
base implemented using a GRU to store the knowledge
from all tasks ever seen. The ac network decides which part
of the past knowledge may contribute to learning the new
task. A sister study utilizes two networks as well, which
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Fig. 7. Illustration of domain shift in different ESA tasks (please zoom in to see details). (a) FER: between lab-controlled environment

(CK+ [220]) and in the wild (RAF-DB2.0 [221]). (b) Visual emotion analysis: between artistic paintings (ArtPhoto [9]) and the social images

(FI [222]). (c) Textual sentiment classification: between the books domain and the electronics domain [223]. (d) Speech emotion recognition:

between acted German (BERLIN [224]) and induced English (eNTERFACE [225]).

attempt to balance the challenges of new task learning
and knowledge retention for old tasks [235]. Furthermore,
based on the BERT aspect sentiment classification model, a
BERT adapter serves as a network carrier for DIL. A series
of contrastive learning frameworks is introduced, including
the alleged contrastive ensemble distillation, contrastive
knowledge sharing, and contrastive supervised learning
on the current task, to share knowledge among tasks and
facilitate new task learning [236].

D. Discussion

Research on incremental ESA is still in the early stages.
Somewhat surprisingly, incremental learning approaches
have shown side benefits in bias mitigation. In most
FER datasets, there is an imbalance of the distribution
along with attributes such as age, gender, race, or skin
color [221]. A recent study pioneers the use of a domain-
incremental learning approach to mitigate the bias issue
existing in the FER task to enhance the balance and
fairness [211]. It is demonstrated that regularization-based
continual learning methods contribute to fair and balanced
expression recognition and AU detection. Likewise, pop-
ular incremental approaches, such as Packnet [234] and
the compacting-picking-growing (CPG) method [237], are
evaluated to tackle the long-tailed issues for large-scale
facial expressions recognition.

One stream is to combine incremental learning with
other machine learning paradigms. Dai et al. [238]

considered both the sentiment categories and targets for
(targeted) aspect-based sentiment analysis and incorpo-
rated incremental learning with multitask learning. A mul-
titask network with category name embedding (CNE-net)
is designed to reduce catastrophic forgetting. Incremental
learning is implemented by sharing both encoder layers
and decoder layers of all the tasks and fine-tuning using
sample-target training data.

VIII. D O M A I N - A D A P T I V E E S A
For an unlabeled or sparsely labeled target domain, there
might be another different but related source domain
with sufficient labels. An intuitive idea is to transfer the
learned knowledge from the source domain to the target
domain. As shown in Fig. 7, such cross-domain transfer
widely exists in ESA, such as the transfer between lab-
controlled environments and in the wild application for
FER, between artistic paintings and social images for visual
emotion analysis, between the electronics domain and the
kitchen domain for textual sentiment classification, and
between acted German and induced English for speech
emotion recognition. However, the existence of domain
shift (also known as dataset bias) [55], [316] usually
results in poor performance on the target domain when
directly transferring the model that is learned on the
source domain. Corresponding to the transfer examples in
Fig. 7, the quantitative results of direct transfer (S) and
training on the target (T ) are shown in Table 6. It is clear
that there is a significant accuracy drop between S and

Table 6 Quantitative Illustration of Domain Shift for Different ESA Tasks. The Domains Before and After −→, Respectively, Represent the Source

Domain and the Target Domain. The Learned Model Is Tested on the Target Domain While Training on the Source Domain in “S” and Training on the

Target Domain in “T.” The Performance Is Evaluated by the Classification Accuracy (%) of Seven, Eight, Two, and Five Emotion Categories
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Table 7 Categorization and Representative Methods for Domain-Adaptive ESA Under the Typical Settings: Single-Source, Single-Target, Unsupervised,

Homogeneous, and Closed-Set DA

T , such as 23.9% versus 66.1% when transferring from
ArtPhoto to FI for visual emotion classification.

Domain-adaptive ESA aims to bridge this domain shift
by learning a model with high transferability based on
the labeled source data and unlabeled or sparsely labeled
target data. Three commonly considered domain shifts
between the source and target domains include [55]:

1) covariate shift, i.e., PS(y | x) = PT (y | x) for all x, but
PS(x) ̸= PT (x);

2) label shift, i.e., PS(x | y) = PT (x | y) for all y, but
PS(y) ̸= PT (y);

3) concept drift, i.e., PS(x, y) ̸= PT (x, y).

Based on different criteria, such as the availability of
the target labeled data and source labeled data dur-
ing training, the number of source domains and target
domains, label set correlations, and data modalities, DA
can be classified into multiple settings. Please refer to [55]
for a more detailed DA taxonomy and [51] for general
transfer learning. In this section, we first summarize the
DA methods under the most typical setting: single-source,
strongly supervised, single-target, unsupervised, homoge-
neous, closed-set, and target data available, that is, there is
one source domain fully labeled, which is available during
training; there is one target domain without any labels, but
target data are available, the source and target data belong
to the same modality, and all domains share the same
emotion label set. According to the different levels of the
alignment strategy, we divide existing methods into feature

representation-level alignment, data pixel-level alignment,
and label space-level alignment, as summarized in Table 7.
After that, we introduce some other popular and important
DA settings, as summarized in Table 8, including semisu-
pervised DA where some labeled target data are available,
multisource DA (MDA) where multiple source domains
are available, multimodal DA where the source and target
data are represented by multiple modalities, and cross-
modal (or heterogeneous) DA where the source and target
data belong to different modalities. Finally, we give a brief
quantitative and qualitative comparison of these methods.

A. Feature Representation-Level Alignment

No matter in the shallow learning period or in the deep
learning era, feature representation-level alignment is the
most common strategy in domain-adaptive ESA.

1) Shallow Feature Matching: In the shallow learning
period, the nondeep approaches mainly focus on the dis-
tribution matching of handcrafted features between the
source and target domains, either by sample reweighting
or by feature transformation.

Sample reweighting assigns different weights to the
source samples based on their similarity to the target sam-
ples. The assumption is that the source samples with higher
similarity play more important roles in the adaptation pro-
cess. Xia et al. [71] proposed a principal component anal-
ysis (PCA)-based sample selection method, which can be

Table 8 Categorization and Representative Methods for ESA Based on Semisupervised DA, MDA, Multimodal DA, and Cross-Modal DA
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viewed as a binary reweighting strategy. A subset of source
data that are close to the target domain is selected and
then used in classifier training. First, the latent concepts
are extracted from the target domain by singular value
decomposition. Second, the source samples are projected
onto the latent space and the ones that are far away from
the normal area are removed. Differently, Chu et al. [72]
proposed a selected transfer machine by assigning different
weights to the source samples in the loss function of
the task classifier. Source sample reweighting and target
classifier are simultaneously learned.

Feature transformation transforms the original features
into a new embedding space where the knowledge learned
from the source domain can be better transferred to the
target domain. Existing transformation operations for ESA
can be categorized into three groups: feature reduction
and selection, feature alignment, and feature generation.

1) Feature Reduction and Selection: In [239], kernelized-
PCA (KPCA) [317] is employed as a feature mapping
method to minimize the marginal distribution differ-
ence between domains while making the variance of
the instances as large as possible; another kernel-
based feature mapping method is transfer compo-
nent analysis (TCA) [318], which aims to reduce the
marginal distribution discrepancy by minimizing the
MMD (see the following discrepancy-based alignment
for more details) and enforcing the scatter matrix as
the constraint; feature clustering is also considered
with information-theoretical learning [240] by opti-
mizing two information-theoretical quantities. KPCA
and TCA are also employed in [241]. Besides using
MMD as a joint feature distribution regularization
for measuring and alleviating the difference between
different domains, another constraint is enforced to
select the few but discriminative salient facial regions,
either by sparse regularization [242] or by nonnega-
tive weighting [243].

2) Feature Alignment: Besides the explicit features in
a feature space, we can also align some implicit
features, such as spectral features, statistic features,
and subspace features. The domain-specific features
and domain-independent features (pivots) are identi-
fied in spectral feature alignment [244]. A bipartite
graph is constructed between the two groups and
spectral clustering is performed to construct a low-
dimensional representation. A similar framework is
followed in [245], which also considers the labels
when creating the representation. It is shown that
this enables to learn customized representations with
better sentiment classification performance.
Statistic feature alignment is also investigated as a
feature alignment method. A representative example
is correlation alignment (CORAL) [246], in which
the transformation matrix of the source features is
constructed by the alignment of the second-order
statistic covariance features.

Subspace learning is another popular feature align-
ment strategy. In [239], a geodesic flow is constructed
based on a geodesic flow kernel (GFK) [319] to
link the subspaces of different domains on a Grass-
mann manifold. The source and target data are
projected into each of the infinite subspaces and
a resultant infinite-dimensional space is obtained.
Subspace alignment [247] aims to align the PCA-
generated bases of the subspace of different domains.
Maximum independence DA [248] seeks to learn
a domain-invariant subspace by maximizing the
Hilbert–Schmidt independence between the projected
samples and their respective domain features.
Instead of directly applying existing subspace learning
algorithms to the ESA task, some specific improve-
ments are also designed. Based on labeled source
samples and an unlabeled auxiliary set of target sam-
ples, transductive transfer regularized least-squares
regression [249] is proposed to jointly learn a discrim-
inative subspace and predict the emotion labels for
the target samples. This method is further improved
with an auxiliary set selection model [320]. Trans-
fer linear subspace learning [250] is proposed to
learn a common feature subspace between the source
and target domains, where high transferable features
are preserved, while low transferable ones are sup-
pressed. Later, some improvements are incorporated,
including feature selection and geometric structure
regularization [251] as well as interclass and intra-
class scatters [252].

3) Feature Generation: A sample regenerator is learned
to generate new features for target samples that share
the same or similar source feature distributions [253].
Being enforced to generate themselves for source
features, the generator is decomposed of a kernel
mapping and a linear projection. The minimization
of MMD between the source and target features in
the kernel space is regularized to align the feature
distributions.

2) Domain-Invariant Deep Feature Learning: In the deep
learning era, a two-stream conjoined architecture that
enables end-to-end training of domain-invariant deep fea-
ture learning has dominated the UDA methods. One stream
corresponds to the ESA task on the labeled source domain,
while the other aims to bridge the domain shift by aligning
the source and target feature representations. Based on the
alignment component, we can categorize existing domain-
invariant deep feature learning methods into different
types, such as discrepancy-based alignment, adversar-
ial discriminative alignment, self-supervision-based align-
ment, and so on. Moreover, the weight-sharing strategy,
such as shared, partially shared, and unshared, is also
different among these methods. The joint optimization of
the task loss and alignment loss enables to learn domain-
invariant features and a generalizable classifier that can
also perform well on the target domain. The inference is
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Fig. 8. Illustration of a general training and inference framework

for learning domain-invariant deep features. (a) Difference between

existing methods mainly lies in the alignment component with

corresponding alignment loss and the weight-sharing strategy

between the two domains. (b) During inference, the emotions of the

target affective signals can be predicted by the target feature

extractor and the source task classifier.

simple and direct by combining the target feature extractor
and source task classifier to obtain the predicted emotion
labels. The illustration of a general training and inference
framework of these methods is shown in Fig. 8. Please note
that some methods might employ more than one alignment
strategy. In such cases, we separately introduce them in
each corresponding part.

The objective loss function of the two-stream conjoined
architecture for domain-invariant feature learning can be
summarized as

LDIFL = Ltask + Lalignment (3)

where Ltask and Lalignment, respectively, correspond to the
shared ESA task loss and the specific alignment loss
between different methods. Let fS and hS denote the
source feature extractor and source task classifier, respec-
tively; the commonly employed cross-entropy loss, mean-
squared error loss, and Kullback–Leibler (KL) divergence
loss for emotion classification, emotion regression, and
emotion distribution learning tasks are defined as

LCES = E(xS ,yS)∼PS

C∑
c=1

1[c=yS ] log
(
σ
(
h

(c)
S (fS (xS))

))
(4)

where C is the number of emotion categories, σ is the
softmax function, and 1 is an indicator function

LMSE = E(xS ,yS)∼PS

NE∑
k=1

(
hS (fS (xS))k − (yS)k

)2 (5)

where NE is the number of dimensions of the employed
DES model (NE = 3 for the VAD model), and (yS)k

represents the emotion label of the kth dimension

LKL = E(xS ,yS)∼PS
KL (yS ∥ hS (fS (xS))) (6)

where KL(p ∥ q) =
∑L

l=1(pl ln pl−pl ln ql) is the function
to compute the KL divergence.

Discrepancy-based alignment aims to align the feature
representations between the source and target domains
by minimizing the discrepancy that measures the distance
between two feature distributions. The used explicit dis-
crepancy metrics in domain-adaptive ESA include MMD
and its variants [254], [255], [256], [257], CORAL [246],
KL divergence [259], [260], and central moment discrep-
ancy [261]. Some implicit discrepancy methods, such as
adaptive batch normalization (AdaBN) [262], are also
considered.

MMD that aims to compute the difference between the
mean values of a smooth function on the two feature
distributions [321] are widely investigated as a discrep-
ancy metric. It has been proven that in the reproducing
kernel Hilbert spaces, the MMD is zero if and only if the
two distributions are equal [321]. The ordinary MMD is
directly used in [254] and [256]. Three MMD values are
combined to align the spatial-stream features, temporal-
stream features, and concatenated features [255]. To over-
come the sensitivity of kernel choice in MMD computation,
Li et al. [258] employed multiple kernel variants of MMD
(MK-MMD) to further reduce the domain discrepancy by
selecting optimal multiple kernels. Both MMD and MK-
MMD only consider marginal distribution alignment, He
and Ding [257] combined joint MMD with ordinary MMD
to simultaneously reduce the joint distribution discrepancy.
CORAL [246] measures the discrepancy of second-order
statistics of the source and target features, which is sim-
ilar to the polynomial-kernel MMD. KL divergence [260]
and its symmetric version [259] that measure the first-
order statistics are adopted to explicitly minimize the
distance between the two domains’ embedding features.
Central moment discrepancy is employed in [261] to
align the central moment of each order instead of the
weighted sum of all orders. A mixture of different dis-
crepancy metrics, including L2, cosine, MMD, Fisher linear
discriminant, and CORAL, is designed [263]. Unsuper-
vised criteria are employed to select an optimal subset of
these metrics by estimating the “informativeness” of each
metric.

Instead of measuring the discrepancy with detailed
explicit metrics, Jiménez-Guarneros and Gómez-Gil [262]
employed AdaBN to implicitly minimize the discrepancy
between the source and target domains. Specifically, the
batch normalization (BN) statistics, such as the moving
average mean and variance of all BN layers, between
different domains are aligned.

The source and target feature extractors in the above-
mentioned methods usually share the same parameters to
reduce complexity. As demonstrated in [322], the domain
invariance may significantly weaken the discriminative
power. How to relax the weight-sharing constraint to pre-
serve the discriminative power with a balanced tradeoff
is yet to be investigated. These methods also differ in
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the layers that the discrepancy works on, such as fully
connected (FL) layers [246], [254], [255], [257], [258]
and BN layers [262].

Adversarial discriminative alignment usually employs a
domain discriminator to confuse different domains in an
adversarial manner. It assumes that the domain labels of
domain-invariant features cannot be easily distinguished
by a discriminator. One milestone is domain-adversarial
neural network (DANN) [323], where the domain clas-
sifier plays the role of a discriminator, trying to classify
whether the features come from the source domain or
the target domain. Cross-entropy loss is employed as the
discriminator’s objective. A gradient reversal layer (GRL)
is designed to enable adversarial training. DANN-based
adversarial discriminative alignment has been widely used
in ESA, either directly used [264], [265] or with specific
improvements [266], [267], [268], [269], [270], [271],
[272], [273], [274], [275], [276], [277]. The first group of
improvement is the input features to the domain classifier,
such as the features with word attention [266], hierarchi-
cal attention [267], and sentence-aspect interactive atten-
tion [268]. In [269], BERT is encouraged to be domain
aware and the domain-specific features are distilled by
a specifically designed posttraining procedure in a self-
supervised way. The posttrained BERT features are input
to the DANN. Based on the emotion lateralization in neuro-
science, Li et al. [270] employed four directed RNNs to tra-
verse electrode signals for the left and right brain regions
from both horizontal and vertical orientations, which aim
to keep the intrinsic spatial dependence. The second group
of improvement is the specific design of domain classifiers.
Typically, multiple-domain classifiers are included, such as
one for each aspect [271], one for each EEG channel [272],
and one for the domain level plus the other for the
subject level [273]. Li et al. [274] employed one global
domain classifier to constrain the entire data distribution
similarly and two local domain classifiers to narrow the left
and right hemispheric data distributions separately. This
method is further improved with a subject classifier [275].
Together with local and global attention, multiple local and
one global domain classifiers are employed to highlight
the transferable EEG brain regions and samples [276]. The
third group of improvement is over GRL. For example, inte-
grated adaptive strategy [277] is proposed to replace GRL
to better explore the impact of syntactic graph structure
transfer.

Apart from using a domain classifier with GRL
and cross-entropy loss, another strategy is to employ
a feature discriminator with GAN loss [278], [279]
or its invariants [280], [281], [282]. Let fT and
dF denote the target feature extractor and discrimi-
nator, respectively, and the feature-level GAN loss is
defined as

LGANF
= ExS∼PS log dF (fS (xS))

+ ExT∼PT log [1− dF (fT (xT ))] . (7)

Wasserstein GAN is employed to overcome the gradients
vanish and instability problems of traditional GAN [280].
Adversarial graph representation adaptation [281] is pro-
posed for holistic-local feature co-adaptation. Specifically,
the holistic-local features within each domain and across
different domains are, respectively, propagated for explor-
ing their interaction and feature co-adaptation. Instead of
directly aligning the features, Latif et al. [282] proposed
to adversarially align the reconstructed data from the
encoded features in one domain and the raw data in the
other domain.

Differently from the abovementioned methods, mutual
information minimization (MIM) [283] is employed for
domain-level adaptation by distilling the domain-invariant
common knowledge and eliminating the domain-sensitive
one in different domains.

Self-supervision-based alignment tries to learn domain-
invariant features typically by combining some auxil-
iary self-supervised learning tasks with the ESA task.
Glorot et al. [284] employed stacked denoising autoen-
coders to reconstruct the original affective signal from
the corrupted version (e.g., adding a masking noise) by
minimizing the denoising reconstruction error. The stacked
features from the encoding output of intermediate layers
are used as the domain-invariant features to train the
task classifier. Instead of directly taking the combined
source and target data into autoencoders, Deng et al. [67]
proposed an adaptive denoising autoencoder, where the
prior knowledge from the target domain is first learned
and then regularized on the source domain. Feature learn-
ing and classifier learning are separated into two stages
in the previous two methods. Furthermore, the feature
learning is fully unsupervised, which does not consider
the ESA task. Later, Deng et al. [285] designed an end-to-
end learning paradigm based on Universum autoencoder,
which simultaneously enables to discover the intrinsic
structures in the input via reconstruction and exploit the
prior knowledge from unlabeled data to regulate the task
classifier through Universum learning. Yu and Jiang [286]
designed two auxiliary binary prediction tasks in textual
sentiment classification to classify whether a given sen-
tence contains a positive or negative domain-independent
sentiment word. Feature learning and sentiment classifica-
tion are also jointly optimized. In [287], a self-supervised
patch localization framework is designed to emphasize
the local information by learning the differences between
patches. Contrastive learning is investigated to extract
domain-invariant and task-discriminative features [288].
Specifically, similar features are learned for the query and
its positive pair, while discriminative features are learned
by utilizing the negative samples in the pretext tasks.

B. Data Pixel-Level Alignment

Data pixel-level alignment usually combines the domain
discriminator with a generator, which is used to gener-
ate fake source or target affective signals that cannot
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Fig. 9. Illustration of a common adversarial generative framework

with data pixel-level alignment for domain-adaptive ESA.

be distinguished by the discriminator from the real data.
Different from the feature representation-level alignment
that aligns the source and target domains on the feature
level, data pixel-level alignment tries to align the raw
data of the two domains. Typically, such alignment is
implemented through the GAN [324] and its variants, such
as CycleGAN [325]. The adversarial learning is performed
in a min–max game: the discriminator tries to correctly
classify the real and generated affective signals, while the
generator tries to confuse the discriminator by making the
generated signals as real as possible. Let g and d denote
the generator and discriminator, respectively, and the pixel-
level GAN loss is defined as

LGAN = ExS∼PS log d (g (xS)) + ExT∼PT log [1− d (xT )] .

(8)

Zhao et al. [289] employed GAN with the source images
as the generator’s input to generate target-style adapted
images. To overcome the underconstrained nature of GAN,
a cycle-consistency constraint is employed in CycleEmo-
tionGAN [278], [290]. After the adversarial learning, these
GAN-based models can adapt source domain images such
that they appear as if they were drawn from the target
domain. To preserve the emotional information before and
after image translation, some regularization constraints
are often enforced, such as the emotional semantic con-
sistency constraint [278], [289], [290]. The illustration of
a common adversarial generative framework is shown in
Fig. 9. The difference between different methods mainly
lies in the input to the generator and discriminator, the
weight-sharing strategy, and the regularization constraints.

C. Label Space-Level Alignment

Feature representation-level alignment and data pixel-
level alignment mainly aim to address the covariant shift
issue. Even if the source and target domains are aligned on
the feature level or pixel level, the domain gap might still
exist in the label space. For example, the class distribution
is imbalanced [221], [291]; the classifier’s decision bound-
ary learned on the source might fall into the margin on
the target domain [288]. Label space-level alignment aims
to address such label shift challenges. Existing methods of
this strategy can be divided into four categories: pseudo-
label-based classifier training, classifier decision boundary

refinement, category-level discrepancy-based alignment,
and category-level adversarial discriminative alignment.

Pseudo label-based classifier training directly employs
the target pseudo labels for classifier training. The pseudo
target labels are obtained from the source classifier and
then used to retrain the source classifier [291], [292].
In [249], the target pseudo labels are jointly optimized
with the subspace learning. Then, a task classifier is trained
on the target data and corresponding pseudo labels.

Classifier decision boundary refinement tries to refine
the decision boundary of the classifier trained on the
labeled source domain so that it can adapt better to
the target domain. Since no target data are involved in
the task classifier training, the predictions on the tar-
get data might be unreasonably biased to one class and
some target instances might be distributed closely to the
decision boundary. Methods to address this issue include
entropy minimization [259], [277], mutual information
maximization [288], self-ensemble bootstrapping [259],
and variation of information minimization [262]. Through
such optimizations, the unlabeled target data influence the
training of the source classifier, which generally maximizes
the margins between the target examples and the decision
boundary and thus increases the confidence on the target
predictions [259].

Category-level discrepancy-based alignment incorpo-
rates the class distribution prior information when com-
puting the discrepancy between different domains. Class
reweighted MMD discrepancy [221], [291] is proposed
by resampling the class distribution in the source domain,
which enables the source domain to share the same class
distribution with the target domain. The weighting ratio is
obtained by the class marginal distributions based on the
source ground truth and target pseudo labels. Classwise
MMD discrepancy [221], [256] first computes the MMD
of different classes and then combines them together. The
difference lies in how to obtain the target pseudo labels,
either directly from the source classifier [221] or learned
by semisupervised graph label propagation [256]. Differ-
ently, Li et al. [283] proposed semantic metric learning
to minimize intraclass variations and maximize interclass
variations to make different class centers better separated.

Category-level adversarial discriminative alignment per-
forms adversarial alignment of the source and target
domains for each category. One direct method is to employ
a discriminator that is adversarially trained within each
domain [292]. Another group of methods is based on
maximum classifier discrepancy [260], [265], [287]. Two
classifiers are adversarially trained with the feature extrac-
tor to consider the relationship between class boundaries
and target samples. In this way, more discriminative fea-
tures can be generated in the high-density region near the
decision boundaries [260].

D. Semisupervised DA

In semisupervised DA, there are some target samples
with labels, but the number is much smaller than the
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labeled source samples. One straightforward way is task
classifier training, i.e., employing the target labels to train
the task classifier together with the source labels after
feature- or pixel-level alignment [259], [293]. A similar
idea is adopted in [294] and [295], but the target labels
are assigned higher weights during classifier training.
Some other adaptation techniques are also incorporated
in [294], such as soft parameter sharing and class refine-
ment MMD, which also considers the target labels. Besides
the source and target data, the source and target labels
are jointly exploited in the supervised shared subspace
learning process, either with graph topology [296] or by
dictionary learning and metric learning [297], both of
which use the pairwise constrained knowledge between
the labeled source and target data. Another group of
adaptation methods that require labeled target data is
parameter adaptation. Duan et al. [298] applied meta-
learning to accelerate the transfer process. Specifically, the
MAML algorithm includes three steps: feature extractor
pretraining on the labeled source data, meta training of
meta-learner and base learner on sampled meta tasks, and
adaptation onto target subject during meta test.

E. Multisource DA

In MDA, there are multiple source domains, which are
essential for personalized ESA. We may consider simply
combining the different sources into one domain and then
directly employing the single-source DA methods. How-
ever, such source-combined DA does not guarantee better
performance than just using the single best one [308]. This
is probably caused by the interference between different
sources during training, because of the domain shift among
different sources. Existing MDA methods mainly focus on
working on the following aspects.

1) Domain Alignment and Domain Pairing Strategy: The
alignment between the source domains and the target
domain as well as among different source domains plays
a key role in successful MDA. Similar domain alignment
strategies to single-source DA have been employed in
MDA, such as shallow subspace learning [303], [304],
discrepancy-based feature-level alignment [263], [294],
[302], [305], [306], adversarial discriminative feature-
level alignment [300], [301], [306], [309], adversarial
generative feature-level alignment [307], reconstruction-
based feature-level alignment [308], [310], adversarial
generative pixel-level alignment [308], and classifier deci-
sion boundary refinement [299]. The main difference lies
in the domain pairing strategy, i.e., how to select pair-
wise or groupwise domains for the alignment component.
Some popular means include: each source and the tar-
get pair [294], [299], [300], [301], [302], [303], the
combined source and the target pair [304], [305], [306],
[307], [308], selected sources and the target pair [263],
[309], [310], and multisource discrimination [306].

2) Domain/Sample Weighting and Selection Strategy:
Different source domains have different discrepancies with

the target domain and different samples in the same source
domain have different similarities with the target samples.
Assigning them different weights could generate better
alignment and transferability. The weights of the source
samples are first learned to reduce the marginal probability
differences based on MMD and the weights of different
sources are learned to reduce the conditional probability
differences based on the smoothness assumption [311].
A multiarmed bandit controller is designed to learn an
optimal trajectory and mixture of domains for transfer to
the target based on upper confidence bound [263]. With-
out requiring the domain label, all labeled source samples
are combined and a curriculum is learned dynamically to
assign weights to different source samples based on their
proximity to the target domain distribution [307]. Based
on the few labeled target samples and pretrained source
classifiers, the domains with top similarities are selected
for alignment [309].

3) Task Classifier Training and Fusion Strategy: After
different domains are aligned and the weights of different
domains and samples are learned, we can train classifiers
based on the labeled source domain and transfer them to
the target domain.

1) Single Classifier Training: Some methods combine
all the labeled source samples and train a single clas-
sifier [300], [301], [302], [303], [304], [306], [307],
[308]. Instead of dealing with different source domains
and source samples equally, the losses of corresponding
sources and samples are weighted [311]. At each round
during alignment, only the samples in the selected source
domain based on a multiarmed bandit controller involve in
the classifier training [263].

2) Multiple Classifier Training: Considering that each
domain has specific class boundaries, some methods train
a classifier for each source domain [241], [294], [299],
[302], [305], [310], [312]. However, this might yield
different or even conflicting target distributions. Based
on the fact that some sources might be aligned bet-
ter with the target, some weighting-based solutions are
proposed to combine the predictions of different clas-
sifiers, such as point-to-set metric using Mahalanobis
distance [305]. In [299], a domain-agnostic (shared) clas-
sifier and multiple-domain-specific (private) classifiers are
first optimized with multitask learning; during adaptation,
a target-specific classifier is learned by considering the
similarity between the source and target domains; the final
target prediction is the combination of domain-agnostic
classifier and target-specific classifier. In [310], the target
prediction is obtained by fusing the shared classifier with
different source-private classifiers weighted by similarities
between source- and target-private encoders. Transduc-
tive parameter transfer [241], [312] employs a different
pipeline, which tries to transfer the classifier parameters
from the source domain to the target: first, the classifier
is pretrained for each source domain; second, a regression
model is trained between the source features and classifier
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parameters; and finally, we can predict the parameters of
the target classifier based on the regression model and
target features.

F. Multimodal and Cross-Modal DA

Multimodal DA focuses on the DA problem for multi-
modal emotion recognition, where more than one affec-
tive signal is available. The main challenges include: how
to fuse different modalities and how to align different
modalities together with different domains. One straight-
forward trial is to extract features for each modality sep-
arately and then fuse them on the feature level (early
fusion) [313], which can be followed by different single-
modal adaptation strategies, such as adversarial discrim-
inative alignment. After early fusion, another FC layer
is appended [293]. To diminish the heterogeneity gap,
covariant multimodal attention is designed to learn a com-
mon feature representation for multiple modalities [326].
The attended features are then adaptively fused. Domain-
invariant features are learned by jointly aligning single-
modal features, fused features, and attention scores. In
the disentangled sentiment representation adversarial net-
work [327], multiple modalities are first aligned through
a cross-modality attention layer to obtain the joint repre-
sentation. The sentiment information from the joint rep-
resentation is disentangled without domain-specific style
information via adversarial training. To encourage the
disentangled representation to keep useful information
as much as possible, a reconstruction loss is constrained
during the sentiment embedding learning. To deal with
specific modality missing issues, a product of experts
is employed [295]. Together with VAE reconstruction
constraint and cycle-consistency constraint, discriminator-
based adversarial alignment is performed on the recon-
structed data between the source and target domains for
each modality.

Different from multimodal adaptation, cross-modal DA
tries to transfer the knowledge learned from the source
modality to another different target modality. Based on
the assumption that the emotional content of speech
correlates with the facial expression of the speaker,
Albanie et al. [314] employed cross-modal distillation to
transfer the annotations from the facial domain to the
speech domain. A strong teacher network is first learned
for FER, and then, a student network is trained to repro-
duce the features of the teacher model. A similar cross-
modal adaptation is adopted in [315]. A GAN conditioned
on the source faces and noise is proposed to generate
intermediate spectrograms that are adversarially aligned
with the target spectrograms. Then, the classifier trained
on the intermediate domain can be better transferred to
the target domain.

G. Discussion

1) Quantitative Comparison: In order to give a gen-
eral understanding on how existing domain-adaptive ESA

Fig. 10. Performance comparison of representative single-source

UDA methods for textual sentiment classification on Amazon

benchmark, measured by classification accuracy (%).

methods perform, we conduct experiments to evaluate
some representative methods for textual sentiment classi-
fication and FER.

a) Datasets: The Amazon benchmark dataset [223]
that is widely used for textual sentiment binary clas-
sification contains four domains of product reviews on
Amazon: books (B), DVD (D), electronics (E), and
kitchen (K). We perform 12 adaptation tasks between
every two of the four domains. Following [283], the
employed datasets for FER include: RAF-DB2.0 [221],
AffectNet [328], FER2013 [329], CK+ [220], MMI [330],
Oulu-CASIA [331], and JAFFE [332]. The former three
datasets contain unconstrained facial images, while the
rest are mainly composed of laboratory-controlled ones.
RAF-DB2.0 is selected as the source domain to transfer the
learned knowledge to other datasets.

b) Compared methods: The compared UDA meth-
ods for textual sentiment classification include LSTM-
based source only (direct transfer without adaptation),
SFA [244], mSDA [223], DANN [323], AMN [266],
HATN [267], PBLM [333], ACAN [260], IATN [268],
BERT-based source-only, HATN-BERT, DAAT-BERT [269],
SENTIX-BERT [334], and Adspt-BERT [301]. The com-
pared methods for FER include ResNet-50-based source
only [226], MMD [221], ECAN [221], AGRA [281], and
JDMAN [283].

c) Results and analysis: The radar maps for perfor-
mance comparison of different methods are shown in
Figs. 10 and 11. From the results, we have the following
brief observations.

1) The source-only method that does not take any adap-
tation actions achieves the worst performance in almost
all adaptation settings. The existence of domain shift leads
to the model’s low transferability from the source to the
target domain. This observation motivates the necessity of
DA.

2) Better feature representation significantly matters
in domain-adaptive ESA. The source-only-BERT method
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Fig. 11. Performance comparison of representative single-source

UDA methods for FER from RAF-DB2.0 to different target

benchmarks, measured by classification accuracy (%).

outperforms the best non-BERT DA methods (i.e., 85.9 of
LATN versus 88.3 of source-only-BERT).

3) The compared deep methods generally perform bet-
ter than the shallow methods (e.g., IATN versus SFA).

4) If one source is more similar to the target than the
other source (D−→B versus K−→B), the adaptation results
will be better, which is consistent across different methods.

2) Qualitative Comparison: We compare the abovemen-
tioned domain-adaptive ESA methods from the following
three perspectives.

a) On Different Levels of Alignment Strategies: Fea-
ture representation-level alignment is the most widely
employed strategy and can be used in various types of
ESA tasks. Data pixel-level alignment is often used for
images since the generated intermediate domain for other
modalities often makes no sense. For example, the gen-
erated text might be able to fool a discriminator, but its
conveyed meanings are probably confused. Label space-
level alignment highly depends on the accuracy of pseudo
labels. If the pseudo labels can be well assigned, the
adaptation performance can be boosted to a large extent
by taking the label shift into consideration.

b) On Different Domain-Invariant Learning Strategies:
Discrepancy-based alignment methods usually have good
theoretical guarantees, add few or no parameters to the
backbone, have higher computation efficiency, and can
be easily optimized; they are not so applicable to large
and complex domains with diversified affective signals.
Adversarial discriminative alignment approaches can be
supported by specific generalization bound and risk analy-
sis, require a large amount of data to train, are relatively
difficult to optimize, and do not always work well on small
datasets. Self-supervision-based alignment methods do not
have a strong theoretical guarantee and have competitive
computation efficiency, data scalability, optimizability, and

performance in-between discrepancy-based and adversar-
ial strategies.

c) On Typical DA Setting and Other Settings: With some
target labels, semisupervised domain adaption can be
expected to outperform unsupervised adaptation. How-
ever, in practice, the target labels, even a small num-
ber, might be difficult to obtain. Multisource and mul-
timodal DA can enrich the learned knowledge from
more source domains and modalities, which might also
bring conflict. How to effectively exploit the complemen-
tary information is worth investigating. As summarized
in [4], multimodal affective signals have the advantages
of data complementarity, model robustness, and per-
formance superiority. Therefore, domain-adaptive multi-
modal ESA is an inspiring research topic but has been
rarely investigated. On the one hand, compared to domain-
adaptive single-modal ESA, multimodal DA encounters
more challenges, such as cross-modality inconsistency and
cross-modality imbalance [4]. There are also much fewer
publicly available datasets to evaluate domain-adaptive
multimodal ESA methods. On the other hand, unlike
traditional cross-domain multimodal objective semantic
understanding tasks, such as event recognition [343],
cross-domain multimodal ESA needs to deal with the
specific characteristics of emotions, e.g., subjectivity and
complexity, as introduced in Section I. Because of the
presence of affective gap, the intraclass variation for mul-
timodal ESA is much larger. To better deal with such
challenges, we might consider the following brave new
ideas: 1) pretraining on large-scale unlabeled multimodal
affective signals via self-supervised learning to enhance the
features’ representation ability; 2) incorporating emotion
correlations, such as emotion hierarchy and emotion simi-
larity, to design effective cross-domain alignment methods
(e.g., emotion-aware domain-invariant disentanglement);
and 3) exploring novel attention-based fusion strategies
to combine different modalities with an optimal balance.
Cross-modal DA has much potential in real applications,
but it is more challenging to learn the correspondence and
matching between different modalities.

IX. D O M A I N - G E N E R A L I Z A B L E E S A
Domain-adaptive ESA requires that though without labels,
the target data are accessible during adaptation training.
In real-world ESA applications, such an assumption might
not hold, i.e., the target data are unavailable before the
deployment of the adaptation model. DG aims to address
this issue by learning a model from one or more source
domains that can generalize well to an unseen target
domain. The difference between DA and DG is shown in
Fig. 12.

Similar to DA, we can classify existing DG methods
into three categories based on the different generalization
levels: feature representation-level generalization, data
pixel-level generalization, and label/classifier-level gener-
alization. Table 9 categorizes the existing representative
methods for domain-generalizable ESA.
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Fig. 12. Comparison between domain-adaptive and domain-generalizable ESA taking speech emotion recognition as an example. The main

difference lies in whether unlabeled target data are available during training. (a) Domain-adaptive ESA. (b) Domain-generalizable ESA.

A. Feature Representation-Level Generalization

Learning generalizable feature representations is the
most widely employed strategy for DG, especially for
multisource DG. When multiple source domains are avail-
able, similar pipelines to DA can be employed to conduct
feature-level generalization. The assumption is that if gen-
eralizable feature representation can be learned for the
different sources, it is also generalizable to the unseen
target domain. Typically, two categories of techniques have
been used: domain-invariant feature learning and feature
disentanglement.

The former category usually performs feature-level
alignment among the source domains to learn domain-
invariant features, such as discrepancy-based align-
ment [335], adversarial discriminative alignment [335],
[336], [337], and self-supervised alignment [338].
Li et al. [335] tested two discrepancy-based align-
ments, i.e., MMD and CORAL. DANN-based alignment is
employed in [335], [336], [337]. Besides the domain
classifier, another subject classifier is designed [337]. Shen
et al [338] assumed that the neural activities of different
subjects are similar when receiving the same emotional
stimuli. Based on this assumption, they employed con-
trastive learning to minimize the intersubject differences

by maximizing the similarity in feature representations
across subjects. The latter category tries to disentangle
the features into domain-agnostic (shared) features and
domain-specific (private) features, and then, the shared
features can be used for generalization [339].

B. Data Pixel-Level Generalization

This kind of generalization method focuses on the
manipulation of pixel-level data to assist generalizable
feature learning. Existing methods can be classified into
two categories: data augmentation and data generation.

Data augmentation is often used to regularize the train-
ing of deep learning models to avoid overfitting. The
basic idea is to augment the original data with newly
transformed data while preserving the labels. Popular aug-
mentation operations include randomization and transfor-
mation. For example, standard Gaussian noise is added to
perturb the training data [340]. Roy and Cambria [341]
employed adversarial data augmentation [344] in an iter-
ative procedure to augment the source data with examples
from a fictitious target domain that is “hard” under the
current model.

Data generation tries to generate new samples with
diverse styles to boost the performance of generalization.

Table 9 Categorization and Representative Methods for Domain-Generalizable ESA
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In [335], Mixup [345] and group distributionally robust
optimization (GroupDRO) [346] are used. Without the
requirement to train generative models, Mixup generates
new data by linear interpolation between two samples
and between their corresponding labels. The weight of
interpolation is sampled from a β distribution. Group-
DRO leverages prior knowledge of spurious correlations to
define groups over the training data.

C. Label/Classifier-Level Generalization

Specific learning strategies are also exploited to promote
the generalization ability. A curriculum-guided coarse-to-
fine learning [140] is employed to explore large-scale
web images with diverse concepts. MetaReg is proposed
to meta-learn the regularization parameters [342]. Repre-
sentation self-challenging [347] is employed in [335] to
discard the representation associated with the higher gra-
dients at each epoch and focus the model to perform pre-
diction with the remaining information during training. A
triplet loss-based metric learning is designed [340]. Specif-
ically, by adding a constraint to reduce the positive distance
within the same emotion class, an improved version of
the triplet loss is proposed to learn more generalizable
features. A soft labeling formulation is proposed by consid-
ering the shift in label distributions across domains [341].

D. Discussion

According to the number of available source domains,
existing methods can also be divided into multisource
DG [335], [336], [337], [338], [339], [340], [342] and
single-source DG [140], [341]. DG originates from the
multisource setting with the motivation of leveraging MDA
to learn domain-invariant feature representations that are
believed to be able to generalize well to the unseen tar-
get domain. Single-source DG is more challenging and
is related to the investigation of model robustness under
image corruption. Generally, single-source DG methods are
mainly based on data manipulation and specific learning
strategies, while domain-invariant feature learning domi-
nates the research on multisource DG.

X. A P P L I C AT I O N S
In this section, we will elaborate on several applications of
ESA with label-efficient methods to alleviate the challenge
of limited resources.

A. Emotional Comfort Assistant for the Elderly

According to the United Nations World Census, many
countries in the world have entered an aging society. With
the rapid development of economy and society in the 21st
century, the problem of population aging in the world is
becoming more and more prominent. With the decline
of physical function and changes in lifestyle and family
structure, the elderly are faced with both physical and
mental challenges. Among them, the problem of mental

health is particularly prominent and has become a social
phenomenon that cannot be underestimated. This requires
us to pay attention to the mental health of the elderly,
offering them more companionship and care. Thus, it
is necessary to develop service platforms and emotional
comfort assistants for the elderly to improve their quality
of life [348].

By using the ESA technology, the emotional comfort
assistant collects information such as language, facial
expressions, and voice during the dialog and interaction
with the elderly, analyzes the current emotional state of the
elderly [349], and generates appropriate reply utterances
that can achieve the effect of emotional soothing, just
like their children or close friends accompanying them.
Hopefully, it becomes an important way for the elderly to
vent their emotions and seek comfort. Also, there is a shard
task [350] aiming to predict both valence and arousal
scores in the speech of elderly individuals as three-class
problems, motivating more research efforts in this field.

However, in order to achieve the above emotional com-
fort function, the label-efficient approach is needed to
address some of the current challenges in resources to train
the model. For example, although there are relevant public
datasets for emotional support dialog systems [351], the
content of the data is too general and not specific to the
elderly. Therefore, it is challenging to successfully transfer
the models trained on the existing data to the elderly
conversation domain to generate responses that better
match the expressions and language habits of the elderly.
In addition, the current data are limited to the English lan-
guage scenario, and how to meet the multilingual scenario
of emotional comfort for the elderly in various countries
around the world still needs to be addressed. Finally, it
might be difficult to capture the facial expressions of the
elderly, and how to transfer the FER model of young people
to the elderly requires label-efficient approaches to solve
the problem.

B. Emotional Assistant for Car Driving

With the rapid development of society and economics
and the continuous improvement of people’s living stan-
dards, vehicles have generally entered thousands of house-
holds. With this, road congestion and traffic accidents are
becoming more and more obvious. In first-tier cities, traffic
congestion has become a “nightmare” in the mind of every
car owner, leading to a common phenomenon that many
car owners will become “road rage” and suffer from a
terrible experience in the driving process. Thus, the design
of an emotional assistant to comfort the emotional states
of the drivers is vital to improving driving safety, comfort,
and acceptance of intelligent vehicles.

To this end, the emotional assistant for car driving
can collect the owner’s voice and expression information
and provide positive guidance for the owner’s angry emo-
tions, such as telling jokes, introducing topics of interest
to the owner, and talking about the owner’s next plan.
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In addition, when the owner is in a state of fatigue
or sadness, he/she is often reluctant to show emotions
through words, which greatly relies on the system’s recog-
nition of the owner’s facial expressions to provide pos-
itive emotional guidance. In recent decades, emotional
assistance for car driving has attracted increasing atten-
tion [352]. Researchers exploit various signals to provide
emotion analysis in automatic contexts, such as facial
expression [353], [354], physiological reaction [355],
[356], pose [357], [358], speech [359], [360], and behav-
ior [361], [362]. Furthermore, some methods combine
multimodal signals to obtain superior performance [363],
[364]. However, it is difficult to obtain accurate physio-
logical signals during driving, and speech may be missing
for an extended period of time [365], [366]. Therefore,
many researchers focus on FER to provide more reliable
emotional assistance.

C. Caring for Mental Health

According to research studies, the number of people
suffering from mental illness has increased dramatically
worldwide after the 2019-nCoV epidemic. However, the
current global mental health system is very weak. In low-
and middle-income countries, even 76%–85% of people
with mental disorders do not receive treatment. Against
this backdrop, researchers hope to use artificial intelligence
(AI) technology to alleviate such resource shortages.

The mental health care system provides patients with
mental illnesses (such as depression and dryness) with a
convenient and efficient outlet for their emotions, acting as
a good listener and simply trying to detoxify the patients’
negative emotions by means of empathy, or psychological
strategies. Many researchers have begun to study how to
use deep learning models to detect users’ psychological
disorders. Gui et al. [367] proposed to use reinforcement
learning to screen depression-related posts and aggregated
all representations with an RNN to diagnose depression in
users. Also, Zogan et al. [368] identified users’ depression
by using hierarchical neural networks to model users’
textual and social media behaviors. Delahunty et al. [369]
chose to use user interview records and combined psy-
chological questionnaires with user interview content to
detect depression. As for treatment, it provides patients
with comprehensive information about professional med-
ical institutions when necessary, to facilitate their timely
access to medical care.

However, due to patient privacy and possible patient
resistance to discussing illness-related content, high-
quality data collection on patients with mental illness is
difficult, requiring our model to acquire as many patient
interaction skills as possible under the setting of low data
resources. To address such a data scarcity problem, some
researchers have attempted to use semisupervised meth-
ods to obtain large-scale annotated data from a number
of small, specialized datasets of high annotation quality.
For depression research on social media, some previous

methods [369], [370] attempt to use a small dataset of
symptoms to train models to label the symptoms embed-
ded in posts on social media. Also, Wang et al. [371] lever-
aged a small but professionally labeled cognitive distortion
dataset to annotate cognitive errors on social media.

D. Intelligent Customer Service

For companies, customer service is very important. It
brings great value to companies in terms of enhanc-
ing brand reputation, improving customer experience,
identifying problems, and improving competitiveness.
Chung et al. [372] proposed metrics of accuracy, credibil-
ity, and communication ability as dimensions to measure
the quality of communication between customers and sales
and investigate the impact of communication quality on
customer satisfaction in the luxury retail environment.
To achieve excellent customer service, the key is to fully
understand customer needs and keep users in a good
emotional state while solving their problems.

According to [373], customers expect AI to be consider-
ate and have good communication skills similar to humans.
Thus, in response to customers’ various negative emo-
tions, intelligent customer service systems should promptly
switch to different tactics such as human politeness strat-
egy [374] or combine different psychological strategies to
stabilize customers’ emotions. Through this, it makes users
feel respected, understood, and valued, and enhances their
experience through “warm” customer service.

However, there are some challenges related to data
resources to realize intelligent customer service. For exam-
ple, customer service data are naturally domain-related,
and different domains have their specific monikers and
after-sales issues. It is crucial to train a model with suffi-
cient generalization capability on limited data resources. In
addition, since the network and online signals of customer
service platforms may fluctuate, the data collected from
them may be missing, and our model should also be robust
to the problem of missing data.

E. Online Education

Under the general environment of the 2019-nCoV epi-
demic prevention and control, online education has grad-
ually come into the lives of students and teachers. In the
learning environment of distance education, the separation
of teachers and students in time and space results in a lack
of effective communication between them, which becomes
a problem that plagues the majority of educators.

Online education systems could provide support and
guidance to students (with special attention to students’
attitudes, feelings, beliefs, and emotions). Furthermore,
they link emotions to cognitive development, i.e., how
students feel as learners and how they feel about the
subject they are studying. Also, they collect students’
listening status through cameras during class or collect
students’ feedback comments after class to keep track
of students’ learning status and help teachers to more
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rationally arrange the teaching content. Using content
analysis, lag sequential analysis, logistic regression, and
grouped regression approaches, Liu et al. [375] attempted
to uncover the relationship between discussion pacings,
learners’ cognitive presence, and learning achievements of
participants on a Chinese online course platform.

In order to achieve this function, there is also the
problem of DA. As a unique group, students have their
own emotional expressions and communication styles, and
students of different ages should be treated differently to
achieve a comfortable and efficient emotional communica-
tion effect.

XI. F U T U R E D I R E C T I O N S
As stated in the previous sections, significant progress
has been made to improve the performance of LeESA.
However, there are still several unsolved open issues and
future directions that deserve more effort to investigate.

A. More Practical Settings

1) Combination of Different LeESA Paradigms: Existing
methods of LeESA mainly focus on one specific label-
efficient setting, which might fail to meet the complicated
requirements in practice. For example, current domain-
generalizable ESA methods usually assume that the source
domains are fixed, the labeled data from different sources
are provided once, and the emotion categories are prede-
fined. The practical case might be that we have incremental
source domains, labeled data, and emotion categories. In
such cases, the combination of DG and incremental learn-
ing should be considered. On the other hand, more source
domains and more labeled source data do not guarantee
better generalization performances. Some theoretical anal-
ysis on the generalization upper bound would be helpful to
determine whether the new source domain is beneficial or
detrimental to the generalization performance. Combining
incremental learning with other label-efficient learning
paradigms, such as SSL and weakly supervised learning,
is also unexplored.

Even in the same LeESA paradigm, the combinations
of different settings might also be necessary. For example,
in domain-adaptive ESA, there might be multiple source
domains, multiple modalities, and different ESA tasks,
and the source and target label sets are different [55].
Designing a general and universal framework that can
deal with different settings would make it easily deployed
in practice. When settings are changed, just a “ON–OFF”
switch would work.

2) More Practical Learning and More Flexible Inference:
Compared to the traditional machine learning paradigm,
LeESA we focused on in this article has greatly relaxed the
stringent requirements in data acquisition. Nonetheless, it
is still far away from practical use. In the case of incremen-
tal learning, for example, although it is no longer required
to acquire training data at once, there is still an assumption
that data are provided in an organized manner according

to different concepts. In concrete, the CIL setting organizes
training data by classes, wherein each learning phase
model learns only samples of the classes belonging to the
respective phase. In the DIL setting, the classes of data are
known and fixed. As for the TIL setting, sequential learning
tasks are isolated from each other and the task IDs are
provided during testing. Such a learning scenario is still an
unattainable ideal in practice. Therefore, there is a strong
need to investigate more practical learning settings. One
potential direction is data incremental learning, where the
data stream to learn is provided without any requirements
related to the notion of task, class, or domain [376].

On the other hand, existing LeESA methods are typically
based on the assumption that the testing data have the
same format as the training data. As we know, multimodal
ESA with effective fusion strategies performs better than
single modality [4]. However, during inference, it might
be difficult to collect the testing data from different modal-
ities. Therefore, designing LeESA algorithms with multi-
modal data during training that enables flexible inference
is a promising direction. In such cases, no matter which
modalities are available during inference, the emotion and
sentiment can be predicted. In this regard, one encour-
aging study about multimodal learning and single-modal
prediction (MLSP) can be found in [377], which engages
multimodal cues jointly during learning and enables mak-
ing predictions using only one of these cues.

3) Model-Efficient, Hardware-Efficient, and Design-
Efficient ESA: Besides the label efficiency, the model
complexity and compute capacity are another two
factors that we need to consider when deploying ESA
applications on edge devices, such as mobile phones
and autonomous vehicles. How to design deep neural
networks for ESA to obtain compact models with balanced
performance, how to codesign deep neural networks
and hardware processors to accelerate the training and
inference, and how to design optimal neural networks
under constraints of given processors to improve the ESA
performance are still open and have not been deeply
touched. Based on recent progress in machine learning
and multimedia computing, designing model-, hardware-,
and design-efficient ESA models is an inspiring topic to
explore. For example, Amiriparian et al. [378] designed
an open-source, lightweight transfer learning framework,
termed DeepSpectrumLite, for real-time speech and audio
recognition on embedded devices.

4) Groupwise ESA: Recognizing the dominant emotion
and sentiment for given stimuli is direct but ignores emo-
tion’s subjectivity, while personalized emotion analysis is
ideal but impractical in real-world applications. Groupwise
ESA, a tradeoff between dominant ESA and personalized
ESA, would make more sense to balance the accuracy and
practicability [379]. Groupwise ESA plays essential roles
in advertisement and recommender systems. The main
challenge is how to classify users into different groups.
Various factors, such as interests, education background,
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and personality, might matter in the emotion percep-
tion process. Exploiting effective data mining strategies
based on social network connections is probably a feasible
solution.

To facilitate the development of the abovementioned
practical settings, we need to build corresponding bench-
mark datasets with high quality and large scale. Some
feasible channels include employing a hierarchical emo-
tion model, exploiting crowdsourcing platforms, collecting
multimodal data, and improving the reality of synthetic
data.

B. New Methodologies for LeESA

1) Exploring Large-Scale Pretraining and Self-Learning for
LeESA: The rapid development of large-scale pretraining
and self-learning has been witnessed recently, such as
BERT [84], GPT3 [81] in NLP and DINO [380], and
MAE [58] in CV. First pretraining on an existing large-
scale dataset to learn general representation and then
fine-tuning the pretrained model to downstream tasks to
explore task-specific representation is believed to perform
well. This pipeline still requires a relatively large amount
of labeled data in the downstream task (ESA in our case),
which does not always hold in LeESA. Combining such pre-
training and self-learning techniques with label-efficient
learning methods is a promising direction. On the other
hand, pseudo labels are widely used in LeESA, such as FSL
and DA. However, how to generate high-quality pseudo
labels is still challenging. It has been proven that the self-
attention maps of pretrained large models contain rich
semantic information, which has the potential in generat-
ing reliable pseudo labels without supervision. How to link
such objective semantics with subjective emotions during
pseudo-label generation is interesting.

2) Incorporating Knowledge From Multidisciplinary Stud-
ies: ESA is an interdisciplinary task that involves psychol-
ogy, neuroscience, cognitive science, machine learning,
and so on. Simply employing advanced machine learning
techniques might be able to improve the performance to
some extent, but it is difficult to reach humans’ general-
ization capability. Exploring the studies in neuroscience
and cognitive science on brain mechanisms that explain
how emotion is evoked would significantly boost the per-
formance in LeESA. Some simple mechanisms have been
used, such as emotion lateralization [270] and bihemi-
sphere structure [274], [275], which have been demon-
strated to be effective. Breakthroughs would be made
conditioned on how deep investigation of learning “com-
mon sense” mechanisms can go.

In psychology, different emotion theories, such as evo-
lutionary theory, have been proposed to understand the
how and why behind emotions. Some basic emotion cor-
relations have been explored in ESA, such as emotion
hierarchy (e.g., polarity-emotion hierarchy) [381], [382]
and emotion similarity [383]. However, these emotion

theories and correlations have not been deeply explored
in LeESA.

3) Theoretical and Interpretable Analysis: Existing LeESA
methods mainly focus on designing effective learning
algorithms to improve performance but lack theoretical
and interpretable analysis. Theoretical analysis can guide
the design of learning algorithms [55]. For example, in
semisupervised ESA, how much labeled data is required
with the help of unlabeled data to reach the performance
of traditional supervised methods? In class-incremental
ESA, how to preserve the discriminative power for existing
classes and meanwhile increase the ability to distinguish
new classes? In domain-adaptive and generalizable ESA,
what is the upper bound and does every source domain
contribute?

Interpretable analysis can provide us with novel insights
to understand how LeESA models work and why they
fail [384]. For example, in weakly supervised ESA, we
can display the filtered noise labels and analyze their
characteristics; in domain-adaptive ESA, we can visualize
the learned domain-invariant features to see whether dif-
ferent classes can be correctly classified, compare the gen-
erated intermediate domain for pixel data-level alignment
methods to see whether they look more familiar with the
target domain, and visualize the attention map before and
after adaptation to test whether more discriminative local
regions are paid more attention.

4) Unified Label-Efficient Framework for Different ESA
Tasks: Existing LeESA methods mainly focus on one spe-
cific modality, such as facial expression, speech, or text.
When developing new LeESA algorithms, it is difficult to
compare with the latest and state-of-the-art techniques
in different modalities [385]. This restriction also causes
practical deployment challenging. What are the common
and private properties among different ESA tasks? Can we
explore those properties for a unified label-efficient frame-
work that works for different modalities? Recent advance
on large-scale pretraining makes this unified framework
possible, which we believe will appear in the near future.

C. Ethical and Legal Restriction

1) Ethics: The data collection of explicit affective cues
involves personal information, such as face and voice,
which can reflect human identity. To obtain accurate emo-
tion and sentiment labels, humans are also employed to
annotate the collected data for both explicit affective cues
and implicit affective stimuli. The collection and annota-
tion protocols must be carefully designed to protect the
involved humans. All the participants should be notified
in advance about the target of the data collection and
annotation to make sure that they join the process vol-
untarily. The dataset organizer is expected to filter all
obscene languages or bad expressions, avoiding generating
offensive speech, hate speech, and so on that are harmful
to the users. During data distribution, some specifically
designed consent forms are usually required for applicants
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and only necessary information can be shared based on
the consent forms. When deploying the ESA models in
applications, users should be notified about the purpose
of such settings (e.g., security). Beneficial experiences on
ethics can be learned from psychology [386].

2) Privacy: The ethics above mainly focuses on data
collection, data distribution, and application deployment.
Here, we discuss how to protect privacy during model
training. Personal private and sensitive information in
users’ profiles is easy to leak out if storing them in a
centralized way to train the ESA model. Currently, it is
preferable to store them on individual devices and train
a private model for each node without sharing the data.
Federated learning provides such a mechanism for privacy
protection [387]. Combining federated learning with label-
efficient learning techniques is a reasonable solution. For
example, in federated adversarial DA [388], models are
trained separately on each source domain and a dynamic
attention mechanism is employed to aggregate their gra-
dients and thus update the target model. The limitation
is that federated adversarial DA is vulnerable to privacy
leakage attacks. Source data-free DA can better deal with
the privacy issue without access to the source data and
has been increasingly studied in several CV and NLP
tasks [389]. However, source-free DA for ESA has still been
rarely explored and calls for more attention.

3) Avoidance of Misuse: The rapid development of deep
learning helps to improve the LeESA performance but
meanwhile increases the risk of misuse. For example, fake
faces and voices that are synthesized by deep generative

models can be used to fool machines even humans, result-
ing in possible fraud. On the one hand, techniques to detect
fake versus real identities should be better developed to
minimize detection errors [390], [391]. From a technical
point of view, we make it difficult and even impossible
to use ESA techniques in an unauthorized way. On the
other hand, the corresponding laws should be established
internationally regarding the possible misuse [392]. From
a legal perspective, we increase the severity of punishment
to lower the misuse rate.

XII. C O N C L U S I O N
In this article, we attempted to provide a comprehensive
introduction to LeESA with a focus on representative and
the latest methods. Based on different settings of train-
ing sample labels, emotion categories, and available data
domains, we classified existing methods into seven label-
efficient paradigms. We summarized and compared each
paradigm with our own views included. Some promis-
ing applications and potential future directions are also
discussed. Because of the multidisciplinary nature of the
topic, we encourage interested readers to follow cited rele-
vant surveys for a wider overview and detailed research
papers for a deeper understanding. Although significant
progress has been made, there is still a long way to go to
enable machines to realize AEI with label efficiency.
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