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A B S T R A C T

Considering the inherent ill-posed nature, monocular 3D object detection (M3OD) is extremely challenging.
The ground plane prior is a highly informative geometry clue in M3OD. However, it has been neglected by
most mainstream methods. This paper introduces an original M3OD framework that leverages the ground plane
to directly derive the object’s 3D Bounding Box (BBox) and 3D attributes geometrically. We identify and tackle
three key factors that limit the applicability of the ground plane: the projection point localization issue, the
ground plane tilt issue, and the lack of ground plane annotation issue. For the projection point localization
issue, we propose leveraging the car’s explicit and salient wheel pixels, which are easier for the neural network
to detect compared to the bottom vertices or the bottom center of the 3D BBox. To tackle the ground plane tilt
problem, we propose a vertical-edge-enhanced horizon line detection algorithm to precisely deduce the ground
plane equation. Moreover, using only M3OD labels, wheel pixel and horizon line pseudo-labels can be easily
generated to train the network without extra data or annotation cost. Extensive experiments demonstrate the
effectiveness and superiority of our framework over previous methods.
1. Introduction

3D object detection plays a crucial role in autonomous driving
systems [1–3]. Monocular 3D object detection (M3OD) utilizes a single
image captured by a single camera as an input to determine the 3D
bounding box of objects, which is commonly employed in scenarios
involving automated driving [4–9]. However, due to the lack of 3D
spatial information, M3OD faces limitations that result in suboptimal
detection accuracy. To address this issue, it is important to incorporate
the projections and geometrical cues in the scenes [10–14].

In this study, we leverage the ground plane to extract valuable
geometric information. Essentially, each pixel in the image corresponds
to a ray in space. For any pixel, which is the image projection of a
point on the ground, we can ascertain its spatial location through the
intersection of the corresponding ray with the ground plane, as depicted
in Fig. 1.

However, the spatial position obtained directly from the inverse
projection is not accurate enough. We identify three issues in this pro-
cedure: (1) The projection point localization issue. Specifically, when
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performing pixel inverse projection, using the 3D BBox bottom vertices
or the bottom center point as the projection pixels may be a natural
choice. Nevertheless, as illustrated in Fig. 2, these points lack clear
semantics in images and are often too rough to be learned precisely by
neural networks. (2) The ground plane tilt problem. Simply employing
a preset fixed ground plane to inverse projection is a straightforward
approach. However, in autonomous driving scenes, the ground plane
in the camera coordinate system (CCS) is not static and may rotate
due to bumps in the ego car. It can change dramatically when the ego
car or the road fluctuates. Consequently, using an inaccurate ground
plane reference can result in large errors when inferring objects’ spatial
positions (Fig. 3). (3) The lack of ground plane annotation issue. In
general, there are no annotations related to the ground plane in most
M3OD datasets.

In our approach, we propose a novel Ground plane Projection
Mono3D detection framework, namely GPro3D. We tackle the above
three issues in M3OD and fully leverage the ground plane to derive
objects’ 3D BBoxes and 3D attributes geometrically.
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Fig. 1. Illustration of the inverse projection with the ground plane. 𝐻 is the
camera’s height, and 𝐹 is the camera’s focal length. 𝑝 is a pixel in the image, and 𝑃 is
the spatial position after the inverse projection. The blue plane in the figure represents
the ground plane.

Fig. 2. Comparison between the 3D BBox’s bottom vertices (orange dots) and
the wheel pixels (blue dots). Obviously, the wheel pixels have stronger semantic
information than the bottom vertices.

Fig. 3. The ground plane tilt problem in inverse projection. The blue plane is the
preset fixed ground plane, neglecting the ground plane’s tilt. From the bird’s eye view
(BEV), the inferred 3D BBox (blue box) using the fixed ground plane will gradually
drift from the ground truth (red box).

Firstly, for the projection point localization issue, compared to the
implicit 3D BBox bottom vertices or center, we observe that the wheel
pixels of vehicles are explicit and salient pixels in images (Fig. 2). They
are rich in semantics, easy for neural networks to detect, and could
be inversely projected directly with the ground plane. In addition, for
pedestrians and other objects that do not have wheels, we choose the
pixels connected to the ground as projection points, like feet pixels for
pedestrians.

Secondly, to address the problem of ground plane tilt, we pro-
pose a vertical-edge-enhanced horizon line detection method to deduce
the precise ground plane equation. Note that directly inferring the
ground plane equation from the 2D image is considerably difficult
for the neural network. We find that, in principle, to capture such
a dynamic ground plane, we can leverage a point, i.e., the camera’s
optical center, and a line, i.e., the horizon line,3 to deduce such a plane
mathematically. Intuitively, compared to the ground plane, the horizon
line is easier for the neural network to deduce. However, in practical
situations, another problem arises: the horizon is usually occluded
(Fig. 4 c). In this case, the neural network may not be able to detect the
horizon line effectively. To address this problem, we further design a
novel vertical edge mining algorithm that enhances the horizon line
detection by leveraging salient vertical edges in the image (such as
building edges, cement columns, lamp posts, etc.) (Fig. 4). With the

3 The horizon is defined as the line of intersection of the projection plane
and the plane parallel to the ground plane. And it refers to the perceived line
where the sky meets the ground.
2

improved horizon line obtained through this algorithm, we can derive
an accurate and dynamic mathematical equation for the ground plane,
which, in turn, mitigates the deviation arising from ground plane tilt
problems.

Thirdly, most M3OD datasets have no wheel pixels and ground
plane annotations. AVOD [15] uses extra sensor data (including IMU)
to generate plane labels in KITTI datasets, which is not feasible in other
M3OD datasets and practical situations. And the authors of AVOD [15]
also acknowledge that it is a time-consuming procedure, only appli-
cable for beating on the KITTI benchmark. In contrast, we propose a
pseudo-label generation method for ground and wheel pixels, which
is applicable to various M3OD datasets and real-world scenarios. The
pseudo-labels work adequately for training wheel pixels and horizon
line using only M3OD labels, with no other labeling costs incurred.

We notice that MonoGround [16] and MoGDE [17] also use the
ground. But they only use a fixed ground [16] or use external sensor
data to roughly infer camera pose [17]. And the ground serves as
additional auxiliary information for the neural network to infer depth.
Objects’ 3D attributes like 3D size, orientation, and depth are inferred
from neural networks. They do not fully leverage the geometric projec-
tion in the scene. In contrast, we leverage a more accurate ground plane
equation and wheel pixels to directly deduce objects’ 3D BBoxes and
attributes geometrically, which makes more thorough use of the ground
plane equation with better interpretability and controllability. Further-
more, with our vertical-edge-enhanced horizon detection algorithm, the
ground plane equation could be deduced precisely and robustly. At the
same time, pseudo-labels for wheel pixels and ground equation could
be generated without needing any other data or annotation beyond the
M3OD dataset.

In summary, our main contributions are as follows.
(1) We introduce a novel monocular 3D object detection (M3OD)

framework that leverages the ground plane and inverse projection
to derive objects’ 3D BBoxes geometrically accurately. In our intro-
duced M3OD framework, various 3D attributes of the objects, including
spatial location, 3D size, and orientation could be determined geomet-
rically. Our framework resolves three key issues: the projection point
localization issue, the ground plane tilt issue, and the lack of ground
plane annotation issue.

(2) For the projection point localization issue, we propose leverag-
ing the wheel pixels of the objects, which are explicit and salient pixels
in images. Such points are more suitable for neural networks to localize
precisely.

(3) To address the ground plane tilt issue, we propose determining
the ground plane equation based on the vertical-edge-enhanced horizon
detection algorithm. The innovative algorithm extracts vertical edges
in images to enhance the horizon line detection, which could solve the
occlusion problem of the horizon line and accomplish a robust ground
plane equation deduction.

(4) In order to train the wheel pixel and the horizon detection, we
propose a simple but very effective pseudo-label generation scheme,
which only uses M3OD labels and does not need extra annotation.

(5) Extensive experiments demonstrate the effectiveness of our
framework and emphasize the importance of the ground plane, which
could be a promising and potential geometry clue for M3OD. Our
method outperforms previous methods without using extra data,
demonstrating the extraordinary capacity of our framework.

2. Related work

2.1. Keypoints in monocular 3D object detection

Monocular 3D object detection aims to infer the 3D BBoxes of the
objects from an image [18–21]. To obtain the accurate 3D bounding
box, keypoints have been employed as auxiliary information in M3OD,
which can also assist in inferring the shape of occluded and truncated
objects. Points can effectively enhance feature extraction [7,22–24].
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Fig. 4. Horizon line detection. Our vertical edge detection (in green) can be applied as an assistant to the horizon line detection.
F. Chabot et al. [25] use a 3D CAD model with a fixed number of
keypoints. They predict the CAD template similarity and match the
model with the highest similarity to reconstruct the object’s shape and
orientation. CAD models have shown an effect on shape detection. But
other 3D attributes’ results, especially the depth prediction, are still
unsatisfactory.

Some works use the keypoints to conduct projection. For example,
RTM3D [22] uses a feature pyramid network (FPN) as the feature
extraction backbone [26], and a multi-task [27] detection head to pre-
dict different attributes of objects. RTM3D uses nonlinear least square
optimization to minimize the distance between the 3D position projec-
tion and the 2D keypoints predicted by the neural network. KM3D [7]
improves RTM3D by embedding the 2D-3D geometric constraints into
the training process of the neural network, and the matrix calculus
is used for gradient back propagation to minimize the re-projection
loss. MonoFlex [28] uses the keypoints to assist the depth estimation
process and adopts an uncertainty-guided ensemble method to improve
its accuracy.

2.2. Geometry projection in monocular 3D object detection

Recently, many works have attempted to involve geometric priors
in M3OD, achieving encouraging results [29,30]. Deep learning can
handle spatial information very effectively [31,32]. Deep3DBox [33]
uses neural networks to predict an object’s orientation, dimension, and
2D bounding box to provide constraints for the 3D bounding box. Some
works [16,34] use the ground plane to assist M3OD, but they overlook
the ground plane tilt problem and use the rough 3D BBox bottom
center to conduct projection. In addition, MonoRCNN [35] introduces
the geometric information between 2D BBox height and 3D height to
estimate the objects’ depth. GUPNet [11] also estimates objects’ depth
with objects’ 2D and 3D height projection and uses uncertainty loss to
determine objects’ scores more precisely. MonoEF [36] focuses on the
changes of camera external parameters and uses the extra data, i.e., the
odometry datasets to train the network. It designs a feature transfer
network to rectify the feature disorder. Unlike these implicit feature
transfer networks, our method finds a way to calculate the ground plane
equation directly.

3. Approach

3.1. Overview

On the whole, our procedure is shown in Fig. 5. For the projection
point localization issue, we propose the wheel pixels guided 2D object
localization method (Section 3.2). In order to solve the ground plane tilt
problem, we design a novel vertical-edge-enhanced horizon line detec-
tion algorithm and propose estimating the exact ground plane equation
mathematically based on the horizon line (Section 3.3). Furthermore,
we design a 3D attribute deduction method based on dynamic inverse
projection, which can achieve accurate 2D-3D inference and deduce
objects’ 3D BBoxes and 3D attributes geometrically (Section 3.4). Ad-
ditionally, we invent the wheel pixel and horizon line pseudo-label
3

generation method, which enables our framework to operate without
the need for any extra data (Section 3.2.2 and Section 3.3.5).

Note that the horizon refers to the horizon line in the image coor-
dinate by default, and the ground plane refers to the ground plane in
3D coordinates by default. The image coordinate system, the camera
coordinate system (CCS), and their axis’ direction are shown in Fig. 6.

3.2. 2D object localization guided by wheel pixels

3.2.1. Wheel pixel detection
We begin with the localization of objects in the 2D image. Rather

than the 3D BBox bottom vertices or bottom center used by most
previous works [7,22,33], we propose using the wheel pixels of the
vehicles as the projection points, because they have clear semantics
in the image (Fig. 2) and are much easier to be detected by neural
networks. For pedestrians and other objects, we detect the pixels that
connected to the ground. The wheel pixel detection is comprised of
three detection heads [37]. The first head’s output 𝑌 is the heatmap
of all objects’ wheel pixels in the image. The second head outputs the
local offset 𝑌𝑜𝑓 to remedy the downsampling error, and the third head’s
output 𝑌𝑐 represents the indication from the object center. Defining
𝑌 , 𝑌𝑜𝑓 , 𝑌𝑐 as their ground truths, the keypoints loss is as follows:

𝐿𝑘𝑝𝑠 = 𝐿𝑘𝑝𝑠,ℎ𝑚 + 𝐿𝑘𝑝𝑠,𝑜𝑓 + 𝐿𝑘𝑝𝑠,𝐶

= Focal(𝑌 , 𝑌 ) + L1(𝑌𝑜𝑓 , 𝑌𝑜𝑓 ) + L1(𝑌𝑐 , 𝑌𝑐 )
(1)

where 𝐿𝑘𝑝𝑠,ℎ𝑚 is the focal loss [38] of the keypoint heatmaps, 𝐿𝑘𝑝𝑠,𝑜𝑓
is the L1 loss of the points’ local offset and 𝐿𝑘𝑝𝑠,𝐶 is the L1 loss of the
indication from the object center.

The focal loss [38] is as follows:

Focal(𝑇 , 𝑇 )

= −1
𝑈𝑉 𝐶

∑

𝑢𝑣𝑐

{

(1 − 𝑇𝑢𝑣𝑐 )𝛼 log(𝑇𝑢𝑣𝑐 ) if 𝑇𝑢𝑣𝑐 = 1
(1 − 𝑇𝑢𝑣𝑐 )𝛽𝑇 𝛼

𝑢𝑣𝑐 log(1 − 𝑇𝑢𝑣𝑐 ) otherwise

(2)

where 𝑇 is the predicted tensor and 𝑇 is the ground truth. 𝑈, 𝑉 , 𝐶 are
the tensor’s size and 𝑢, 𝑣, 𝑐 are the indexes. We set focal loss parameters
𝛼 = 2, 𝛽 = 4. The L1 loss is as follows:

L1(𝑇 , 𝑇 ) = mean(||
|

𝑇 − 𝑇 ||
|

) (3)

where 𝑇 is the predicted value and 𝑇 is the ground truth.
Benefiting from the well-designed keypoint detection heads, our

method can detect the wheel pixels accurately even when they are
occluded. We use (𝑢𝐶𝑃 , 𝑣𝐶𝑃 )⊤ to denote one of the detected wheel pixels
in the image, and we will inversely project (𝑢𝐶𝑃 , 𝑣𝐶𝑃 )⊤ to the 3D space
in Section 3.4.2.

3.2.2. Wheel pixel pseudo-label generation
One non-negligible issue in wheel pixel detection is that the wheel

pixel annotation is inaccessible in M3OD datasets. Thus, we design
a wheel pixel pseudo-label generation scheme to train our network.
Specifically, we first localize the wheel point 3D coordinates guided
by the object’s 3D BBox in the CCS. We determine the spatial position
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Fig. 5. The Dynamic Ground Plane Projection (GPro3D) Framework. Firstly, we predict the 2D BBox, the wheel pixels and the horizon line from the input image. Next, with
our proposed vertical edge and horizon line detection, the ground plane equation PL𝑔𝑝 (Eq. (19)) is derived mathematically. Then with the wheel pixels and the ground plane
equation, dynamic inverse projection is conducted to infer a geometry-based 3D BBox. Moreover, we design the pseudo-label generation scheme using only M3OD labels to train
the wheel pixel and the horizon line detection head without any extra data.
Fig. 6. The image coordinate and the camera coordinate. The left subfigure is the
image coordinate: the origin point is in the upper left corner of the image with the
𝑢-axis right and 𝑣-axis down. The right subfigure is the camera coordinate system (CCS):
the origin point is the camera’s optical center with the 𝑋-axis right, 𝑌 -axis down, and
𝑍-axis forward along the camera’s optical axis.

of 3D BBox’s bottom face and then utilize the wheelbase information to
localize the wheel points. We define 𝑘𝑙 as the ratio of the front and rear
wheels’ distance to the length of the 3D BBox and 𝑘𝑤 as the ratio of the
left and right wheels’ distance to the width of the 3D BBox, as shown in
Fig. 7. We use prior knowledge of vehicle expertise to determine 𝑘𝑙 and
𝑘𝑤. The 𝑘𝑙 and 𝑘𝑤 may slightly differ from the ground truth, but our
experimental results have shown that such pseudo-labels significantly
benefit the 3D BBox derivation.

We define 𝑃 𝑜
𝐿𝐹 , 𝑃

𝑜
𝑅𝐹 , 𝑃

𝑜
𝑅𝑅, 𝑃 𝑜

𝐿𝑅 (The superscript ‘‘o’’ represents the
object’s local 3D coordinate system. 𝐿𝐹 , 𝑅𝐹 , 𝑅𝑅, and 𝐿𝑅 represent
the left-front, right-front, right-rear and left-rear point, respectively) as
the wheel points in the object’s local 3D coordinate system4:

𝑃 𝑜
𝐿𝐹 = [

𝑘𝑙
2
𝑙, 0,

𝑘𝑤
2
𝑤]⊤, 𝑃 𝑜

𝑅𝑅 = [−
𝑘𝑙
2
𝑙, 0,−

𝑘𝑤
2
𝑤]⊤

𝑃 𝑜
𝐿𝑅 = [−

𝑘𝑙
2
𝑙, 0,

𝑘𝑤
2
𝑤]⊤, 𝑃 𝑜

𝑅𝐹 = [
𝑘𝑙
2
𝑙, 0,−

𝑘𝑤
2
𝑤]⊤

(4)

4 We define that object local coordinate’s axis direction is the same as
the camera coordinate, i.e., 𝑋-axis right, 𝑌 -axis down, 𝑍-axis forward along
the optical axis of the camera. The origin of the object’s local coordinate is
the center of the bottom face, and the front of the object faces the positive
direction of the 𝑋-axis.
4

where 𝑙 and 𝑤 are the length and width of the object, respectively.
Given one coordinate 𝑃 𝑜 in the object’s local coordinate system, the

position 𝑃 𝑐 in the CCS can be obtained by using the rotation matrix 𝐑
and the translation vector 𝐓:

𝑃 𝑐 = 𝐑𝑃 𝑜 + 𝐓

𝐑 =
⎡

⎢

⎢

⎣

𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃
0 1 0

𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

⎤

⎥

⎥

⎦

, 𝐓 =
[

𝑥, 𝑦, 𝑧
]𝑇 (5)

where 𝑥, 𝑦, 𝑧 are the position of the object’s bottom center in the camera
coordinate and 𝜃 is the corresponding rotation angle around 𝑌 -axis.
With the camera intrinsic matrix 𝐊, we can derive the wheel pixel
pseudo-label 𝑝 = [𝑢, 𝑣]⊤:

𝑧𝑝[𝑢, 𝑣, 1]⊤ = 𝐊𝑃 𝑐 = 𝐊(𝐑𝑃 𝑜 + 𝐓)

𝐊 =
⎡

⎢

⎢

⎣

𝑓𝑥 0 𝑐𝑢
0 𝑓𝑦 𝑐𝑣
0 0 1

⎤

⎥

⎥

⎦

(6)

where 𝑧𝑝 is the 𝑍-axis coordinate of 𝑃 𝑐 in the CCS and 𝑓𝑥, 𝑓𝑦, 𝑐𝑢, 𝑐𝑣 are
camera intrinsic parameters. When 𝑃 𝑜’s value is set to 𝑃 𝑜

𝐿𝐹 , 𝑃
𝑜
𝑅𝐹 , 𝑃

𝑜
𝑅𝑅 or

𝑃 𝑜
𝐿𝑅, the corresponding wheel pixel pseudo-labels in image 𝑝𝐿𝐹 , 𝑝𝑅𝐹 , 𝑝𝑅𝑅

or 𝑝𝐿𝑅 can be derived.

3.2.3. 2D bounding box detection
In the 2D BBox detection part, we predict the object’s center

heatmap 𝐵, the center offset 𝐵𝑜𝑓 , and the 2D BBox size 𝐵𝑠 [37,39].
We use focal loss [38] for the center heatmap, L1 loss for center offset
and box size. The 2D BBox detection loss 𝐿2𝑑 is as follows:

𝐿2𝑑 = 𝐿𝑐𝑒𝑛𝑡𝑒𝑟 + 𝐿2𝑑_𝑜𝑓 + 𝐿2𝑑_𝑠𝑖𝑧𝑒

= Focal(𝐵,𝐵) + L1(𝐵𝑜𝑓 , 𝐵) + L1(𝐵𝑠, 𝐵)
(7)

where 𝐵, 𝐵𝑜𝑓 , 𝐵𝑠 are the center heatmap, center offset and 2D BBox
size ground truths, respectively.
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Fig. 7. The wheel pixels pseudo-label generation. We design the pseudo-label
generation scheme using 3D BBox labels. Specifically, the position of the wheel pixels
satisfies a proportional relationship with the size of the 3D BBox. The left figure shows
the relationship in BEV, and the right one is the visualization of pseudo-labels.

3.3. Ground plane estimation based on the horizon line

3.3.1. Analysis
For the second issue hindering the use of the ground plane, i.e., the

ground plane tilt issue, we estimate a mathematical formulation of the
ground plane to solve the problem. Note that directly estimating such
tilt from the image is too obscure for neural networks, and we propose
a vertical-edge-enhanced horizon detection algorithm to deduce the
ground plane equation. As shown in Fig. 4, the horizon is the image
projection of the ground plane at infinity. Such horizon information
can reflect the ego pose of the camera relative to the ground. When
the pitch angle of the camera changes, the horizon moves up and
down in the image. When the roll angle of the camera changes, the
horizon rotates in the image. Therefore, we aim to leverage such
horizon information to mathematically derive an accurate ground plane
equation.

Note that naive image horizon detection does not work in an
environment where the horizon is unclear. As shown in Fig. 4(c), the
horizon line in the image is severely occluded owing to the obstacles in
the scene, which makes the horizon implicit and difficult to detect. In
order to estimate the ground plane in the image with many obstacles,
we draw inspiration from human recognition patterns. The pattern is
that humans usually utilize large objects in the scene, like buildings,
cement columns, and lamp poles as guidance to infer the ego posture
and the tilt of the ground plane. We imitate such human capacity and
go deep into the details. Intuitively, the salient edges in images, espe-
cially vertical edges, can reflect the rotation of the scenes. Specifically,
the man-made buildings tend to be upright, so most vertical edges of
these buildings are orthogonal to the horizon line. Therefore, we design
an ingenious unsupervised digital image processing algorithm to extract
salient vertical edges in images and dig out the valuable edges. Then we
deduce the slope of the vertical edges and the horizon line. Finally, we
can complete the horizon line detection and ground plane estimation
whether it is occluded or not.

Table 1 shows the meaning of symbols in the derivation of the
following formula.

3.3.2. Image horizon line detection
To accomplish the task of 2D horizon line detection, we introduce

a horizon line heatmap head into the neural network. This heatmap
represents the probability, ranging from 0 to 1, of a pixel belonging to
the horizon line. During training, we adopt the focal loss [38] for each
pixel.

̂ (8)
5

𝐿ℎ𝑜𝑟 = Focal(𝑀,𝑀)
Table 1
The meanings of some symbols.
Symbol Meaning

CCS camera coordinate system
HL2𝑑

𝑛𝑛 2D horizon line predicted by neural network

HL2𝑑
𝑣 vertical-edge enhanced 2D horizon line

𝑘ℎ , 𝑏ℎ slope and intercept of the
vertical-edge enhanced 2D horizon line

𝑢, 𝑣 2D pixel coordinates in images
𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 3D point coordinates in camera coordinate system
𝑓𝑥 , 𝑓𝑦 focal length of the camera
𝑐𝑢 , 𝑐𝑣 principal point of the camera
𝐻 the camera’s height to the ground

where 𝑀 is the predicted horizon heatmap and 𝑀 is the ground truth.
The focal loss is defined as follows:
Focal(𝑀,𝑀)

= −1
𝑈𝑉

∑

𝑢𝑣

{

(1 −𝑀𝑢𝑣)𝛼 log(𝑀𝑢𝑣) if 𝑀𝑢𝑣 = 1
(1 −𝑀𝑢𝑣)𝛽𝑀𝛼

𝑢𝑣 log(1 −𝑀𝑢𝑣) otherwise

(9)

where 𝑈, 𝑉 denote the size of the horizon heatmap, and 𝑢, 𝑣 indicates
the coordinates of individual pixels within the heatmap. We set the
focal loss parameters as 𝛼 = 2, 𝛽 = 4.

In the post-processing stage, we extract the points with the maxi-
mum activation value from each column and utilize the Least Squares
Method to fit a horizon line. If we can obtain the slope of the horizon
line, denoted as 𝑘ℎ, from the vertical edge detection in Section 3.3.3
(i.e., when the output of Algorithm 1 is not None), we only need to
calculate the bias 𝑏ℎ of the horizon line. Otherwise, both the slope 𝑘ℎ
and the bias 𝑏ℎ of the horizon line need to be calculated using the Least
Squares Method.

The detected 2D horizon line generated by the neural network can
be represented as follows:

HL2𝑑
𝑛𝑛 ∶ 𝑣 = 𝑘𝑛𝑛ℎ 𝑢 + 𝑏𝑛𝑛ℎ (10)

where 𝑢 and 𝑣 denote the pixel coordinates in the image, and 𝑘𝑛𝑛ℎ and
𝑏𝑛𝑛ℎ represent the slope and intercept of the horizon line detected by the
neural network, respectively.

3.3.3. Image vertical edge detection
In real scenes, the horizon line may be occluded by buildings or

other obstacles, which makes it very hard for neural networks to detect.
Though the vertical edges could greatly assist the horizon line detection
and ground plane estimation, there are no annotations of vertical
edges in M3OD datasets. Considering that the vertical edges are low-
level features, we adopt an unsupervised vertical edge slope mining
algorithm based on the traditional digital image processing technique
to implement vertical line detection.

Our vertical edge slope mining algorithm can be summarized in
Algorithm 1. The input is the original image and the output is the slope
of the largest cluster 𝑘𝑣 or None. Firstly, we conduct a GaussianBlur al-
gorithm on the input image, which can exclude tiny textures while not
affecting the large color patches. Secondly, a Canny algorithm extracts
edge points from blurred images. Next, a probabilistic Hough transform
algorithm is utilized to detect lines. The GaussianBlur, Canny, and
HoughLinesP functions are implemented with OpenCV [40,41]. After-
ward, we filter the vertical edges with the inclination angle between
70◦ and 110◦. Then we employ the Birch [42] algorithm to angles of all
vertical edges and find the largest cluster. In this process, noise vertical
edges in the image can be eliminated, and the vertical edge slope,
denoted as 𝑘𝑣, can be derived from the centroid slope of the largest
cluster. 𝑇ℎ𝑟𝑁 and 𝑇ℎ𝑟𝑆 are the threshold that can be set manually. If
the number of the vertical edges 𝑁𝑉 > 𝑇ℎ𝑟𝑁 and the standard deviation
of the slopes 𝑆𝑉 < 𝑇ℎ𝑟𝑆 , we can trust the slope result of the vertical
edges. Then the horizon line is perpendicular to these vertical lines and
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Algorithm 1 Vertical Edge Slope Mining
Input: an RGB image, denoted as 𝑖𝑚𝑔
Output: the slope of the largest cluster, denoted as 𝑘𝑣, or None
1: BlurImg = GaussianBlur(𝑖𝑚𝑔, ksize = (13, 13), 𝜎𝑋 = 4, 𝜎𝑌 = 4)
2: CannyEdges = Canny(BlurImg, threshold1 = 50, threshold2 = 100,

apertureSize=3)
3: HoughEdges = HoughLinesP(CannyEdges, 𝜌 = 1, 𝜃 = 𝜋 / 180,

threshold = 5, minLineLength=40, maxLineGap=10)
4: VerticalEdgesSlopes = FilterVertical(HoughEdges)
5: 𝑁𝑉 = VerticalEdgesSlopes.number
6: 𝑆𝑉 = VerticalEdgesSlopes.StandardDeviation
7: LargestCluster = Birch(VerticalEdgesSlopes)
8: 𝑘𝑣 = LargestCluster.slope
9: if 𝑁𝑉 > 𝑇ℎ𝑟𝑁 and 𝑆𝑉 < 𝑇ℎ𝑟𝑆 then
0: return 𝑘𝑣
1: else
2: return None
3: end if

its slope: 𝑘ℎ = − 1
𝑘𝑣

. If the vertical edges are too few or the standard
eviation of their slope is too large, the output of the Algorithm 1 would
e nothing. In this case, we give up the vertical edge detection and
redict the horizon directly. In summary, the vertical-edge-enhanced
mage horizon line HL2𝑑

𝑣 is as follows5:

ℎ =

{

− 1
𝑘𝑣

if 𝑁𝑉 > 𝑇ℎ𝑟𝑁 and 𝑆𝑉 < 𝑇ℎ𝑟𝑆
𝑘𝑛𝑛ℎ otherwise

, (11)

𝑏ℎ = 𝑏𝑛𝑛ℎ (12)

L2𝑑
𝑣 ∶ 𝑣 = 𝑘ℎ𝑢 + 𝑏ℎ (13)

here 𝑢 and 𝑣 are pixel coordinates in images. 𝑘𝑛𝑛ℎ and 𝑏𝑛𝑛ℎ are the slope
nd intercept of the horizon line detected by the neural network, from
q. (10). Note that the slope 𝑘ℎ is derived from the vertical edges in
he case 𝑁𝑉 > 𝑇ℎ𝑟𝑁 and 𝑆𝑉 < 𝑇ℎ𝑟𝑆 and the intercept 𝑏ℎ = 𝑏𝑛𝑛ℎ comes

from the horizon line detection network.

3.3.4. Ground plane estimation
We aim to acquire the ground plane equation in the camera coor-

dinate from the horizon line in the image. Given the camera intrinsic
matrix 𝐊, we get the relationship between pixel coordinates (𝑢, 𝑣)⊤ and
he camera coordinates (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 )⊤ as follows:

𝑐 [𝑢, 𝑣, 1]⊤ = 𝐊[𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ]⊤

𝐊 =
⎡

⎢

⎢

⎣

𝑓𝑥 0 𝑐𝑢
0 𝑓𝑦 𝑐𝑣
0 0 1

⎤

⎥

⎥

⎦

(14)

rom Eq. (14), we can obtain:

=
𝑓𝑥
𝑧𝑐

𝑥𝑐 + 𝑐𝑢, 𝑣 =
𝑓𝑦
𝑧𝑐

𝑦𝑐 + 𝑐𝑣 (15)

Considering a pixel (𝑢, 𝑣)⊤ in the horizon line HL2𝑑
𝑣 , we insert

q. (15) into Eq. (13):
𝑓𝑦
𝑧𝑐

𝑦𝑐 + 𝑐𝑣 = 𝑘ℎ(
𝑓𝑥
𝑧𝑐

𝑥𝑐 + 𝑐𝑢) + 𝑏ℎ (16)

In the image, the horizon line’s depth value 𝑧𝑐 in the CCS is equal to
the focal length 𝑓 of the camera. Therefore, with Eq. (16) and 𝑧𝑐 = 𝑓 ,

5 The vertical edges have been filtered, and their inclination angles are
etween 70◦ and 110◦, so 𝑘 cannot be 0, and 𝑘 is assigned 0 if 𝑘 is infinity.
6

𝑣 ℎ 𝑣
he horizon line equation in the CCS HL3𝑑 can be derived as:

HL3𝑑 ∶ 𝑦𝑐 =
𝑘ℎ𝑓𝑥
𝑓𝑦

𝑥𝑐 +
𝑘ℎ𝑐𝑢 + 𝑏ℎ − 𝑐𝑣

𝑓𝑦
𝑧𝑐 , 𝑧𝑐 = 𝑓 (17)

which represents the image projection of the ground plane when the
depth approaches infinity. Based on HL3𝑑 , we discover an ingenious
corollary: the plane (denoted as PL𝑜ℎ) passing through the horizon
line HL3𝑑 and the camera’s optical center is parallel to the ground
plane (denoted as PL𝑔𝑝). In the CCS, the intercept between two planes
along the 𝑌 -axis is the camera’s height to the ground, denoted as 𝐻
(𝐻 = 1.65𝑚 in KITTI [43]).

Considering that a plane can be uniquely determined by a line and
a point in 3D space, we can derive the equation of plane PL𝑜ℎ from the
horizon line HL3𝑑 (Eq. (17)) and the camera’s optical center (the origin
point of the CCS) as followings:

PL𝑜ℎ ∶ 𝑦 =
𝑘ℎ𝑓𝑥
𝑓𝑦

𝑥 +
𝑘ℎ𝑐𝑢 + 𝑏ℎ − 𝑐𝑣

𝑓𝑦
𝑧 (18)

By translating the plane PL𝑜ℎ along the 𝑌 -axis for 𝐻 , the real-world
round plane PL𝑔𝑝 can be derived as:

L𝑔𝑝 ∶ 𝑦 =
𝑘ℎ𝑓𝑥
𝑓𝑦

𝑥 +
𝑘ℎ𝑐𝑢 + 𝑏ℎ − 𝑐𝑣

𝑓𝑦
𝑧 +𝐻 (19)

Additionally, the roll angle 𝜃𝑟𝑜𝑙𝑙 and pitch angle 𝜃𝑝𝑖𝑡𝑐ℎ of the ground
plane in the CCS can be derived as:

𝜃𝑟𝑜𝑙𝑙 = arctan(
𝑘ℎ𝑓𝑥
𝑓𝑦

)

𝜃𝑝𝑖𝑡𝑐ℎ = arctan(
𝑘ℎ𝑐𝑢 + 𝑏ℎ − 𝑐𝑣

𝑓𝑦
)

(20)

The previous works [16,34] preset a fixed ground plane equation.
In contrast, we propose estimating a dynamic ground plane. Our main
focus is on the ground plane tilt issue, and the experimental results
prove that correcting the tilt issue is critical for inverse projection.
In theory, solving more problems, for example, modeling the ground
plane as a curved surface, could lead to further improvements and could
become a promising future research direction.

3.3.5. Horizon line pseudo-label generation
The horizon line ground truth is indispensable for training the

horizon line detection network. However, the wide-used dataset for
M3OD, e.g., KITTI [43] and nuSences [44], does not have the horizon
line label annotations. Here, we use M3OD dataset annotations to
generate pseudo-labels for horizon line detection, which is cost-efficient
and easy to operate.

We derive the ground plane pseudo-label from the object’s 3D
bounding box ground truth. Specifically, we use the bottom centers of
the objects’ 3D bounding boxes to fit a plane, which can be regarded
as the ground plane in the scene. The horizon line pseudo-label in the
image can be obtained by projecting the infinite position of the ground
plane onto the image, which is the inverse process of Ground Plane
Estimation, seeing Section 3.3.4.

Vertical edge and horizon line detection techniques are utilized
during both the training and inference stages. The horizon line pseudo-
label generation method is employed specifically during the training
stage, which aims to provide supervision for the neural networks.

3.4. 3D bounding box deduction based on dynamic inverse projection

3.4.1. Analysis
Each pixel in the image can be mapped to a ray in space. If we know

a point along the ray is on the specific ground, we can determine its
spatial position. Therefore, we design the following dynamic inverse
projection algorithm with our estimated precise wheel pixels in Sec-
tion 3.2 and dynamic ground plane equation in Section 3.3, then we

derive objects’ 3D BBoxes and 3D attributes geometrically.
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3.4.2. Dynamic inverse projection of wheel pixels with ground plane equa-
tion

Given the detected wheel pixel (𝑢𝐶𝑃 , 𝑣𝐶𝑃 )⊤ in the image (from Sec-
tion 3.2.1) and the camera intrinsic parameter matrix, we can inversely
project the wheel pixel to the spatial position in the CCS:

𝑧𝑐𝐶𝑃 [𝑢𝐶𝑃 , 𝑣𝐶𝑃 , 1]⊤ =
⎡

⎢

⎢

⎣

𝑓𝑥 0 𝑐𝑢
0 𝑓𝑦 𝑐𝑣
0 0 1

⎤

⎥

⎥

⎦

[𝑥𝑐𝐶𝑃 , 𝑦
𝑐
𝐶𝑃 , 𝑧

𝑐
𝐶𝑃 ]

⊤ (21)

Since the wheel point (𝑥𝑐𝐶𝑃 , 𝑦
𝑐
𝐶𝑃 , 𝑧

𝑐
𝐶𝑃 )

⊤ in the CCS is located on the
ground plane, we can conveniently re-formulate Eq. (19) as follows:

𝑦𝑐𝐶𝑃 =
𝑘ℎ𝑓𝑥
𝑓𝑦

𝑥𝑐𝐶𝑃 +
𝑘ℎ𝑐𝑢 + 𝑏ℎ − 𝑐𝑣

𝑓𝑦
𝑧𝑐𝐶𝑃 +𝐻 (22)

By solving Eqs. (21) and (22), the wheel point coordinate (𝑥𝑐𝐶𝑃 ,
𝑐
𝐶𝑃 , 𝑧

𝑐
𝐶𝑃 )

⊤ in the CCS can be derived using the image coordinate
𝑢𝐶𝑃 , 𝑣𝐶𝑃 )⊤, the horizon line parameters 𝑘ℎ, 𝑏ℎ, the camera’s height 𝐻

and the camera’s intrinsic parameters as follows:

𝑥𝑐𝐶𝑃 =
𝑢𝐶𝑃 − 𝑐𝑢

𝜆
⋅
𝑓𝑦
𝑓𝑥

𝑦𝑐𝐶𝑃 =
𝑣𝐶𝑃 − 𝑐𝑣

𝜆

𝑧𝑐𝐶𝑃 =
𝑓𝑦
𝜆

(23)

where 𝜆 = (𝑣𝐶𝑃 − 𝑘ℎ𝑢𝐶𝑃 − 𝑏ℎ)∕𝐻 .

3.4.3. 3D attribute derivation
In this section, we will introduce the process of deriving all 3D

attributes of an object, i.e., depth, dimension, and rotation. Taking the
car category as an example, a car has four wheel pixels with spatial
coordinates 𝑃𝐿𝐹 , 𝑃𝑅𝐹 , 𝑃𝑅𝑅, and 𝑃𝐿𝑅, derived by Eq. (23) (𝐿𝐹 , 𝑅𝐹 ,
𝑅𝑅 and 𝐿𝑅 represent the left-front, right-front, right-rear and left-rear
point, respectively.). Then the estimated bottom center coordinate can
be calculated as:

𝑃𝐵𝐶 = 1
4
(𝑃𝐿𝐹 + 𝑃𝑅𝐹 + 𝑃𝐿𝑅 + 𝑃𝑅𝑅) (24)

he depth of the car 𝑑𝑔 from the ground plane prior can be derived as:

𝑔 = 𝑧𝐵𝐶 = 1
4
(𝑧𝐿𝐹 + 𝑧𝑅𝐹 + 𝑧𝐿𝑅 + 𝑧𝑅𝑅) (25)

where 𝑧𝐵𝐶 , 𝑧𝐿𝐹 , 𝑧𝑅𝐹 , 𝑧𝐿𝑅, 𝑧𝑅𝑅 are the 𝑍-axis coordinates of 𝑃𝐵𝐶 , 𝑃𝐿𝐹 ,
𝑃𝑅𝐹 , 𝑃𝐿𝑅, 𝑃𝑅𝑅 in the CCS, respectively.

In the process of wheel pixel pseudo-label generation (Section 3.2.2),
we have defined 𝑘𝑙 as the ratio of the front and rear wheels’ distance
to the 3D BBox’s length and 𝑘𝑤 as the ratio of the left and right wheels’
distance to the 3D BBox’s width. Then the length 𝑙3𝐷 and the width
𝑤3𝐷 of the 3D BBox can be derived from the wheels’ distance:

𝑙3𝐷 =
‖(𝑃𝐿𝐹 + 𝑃𝑅𝐹 ) − (𝑃𝐿𝑅 + 𝑃𝑅𝑅)‖2

2𝑘𝑙

3𝐷 =
‖(𝑃𝑅𝐹 + 𝑃𝑅𝑅) − (𝑃𝐿𝐹 + 𝑃𝐿𝑅)‖2

2𝑘𝑤

(26)

he height of the 3D BBox is ℎ3𝐷 = 𝑑𝑔 ⋅ ℎ2𝐷∕𝑓𝑦, where 𝑓𝑦 is one of
amera intrinsic parameters, 𝑑𝑔 is the depth of the object from Eq. (25)
nd ℎ2𝐷 is the predicted object’s 2D BBox height by neural network.6

The rotation angle of the object in the BEV (X-Z plane) from the
𝑋-axis is as follows:

𝑟𝑜 = arctan(
𝑧𝐿𝐹 + 𝑧𝑅𝐹 − 2𝑧𝐵𝐶
𝑥𝐿𝐹 + 𝑥𝑅𝐹 − 2𝑥𝐵𝐶

), 𝑟𝑜 ∈ [−𝜋
2
, 𝜋
2
] (27)

6 For other categories which have less than four wheel pixels , we use the
verage width and length to estimate the geometry based 𝑤3𝐷 and 𝑙3𝐷. Apart

from that, the process of acquiring 3D attributes is similar to that of the Car
category.
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The final rotation result 𝑟𝑔 is 𝑟0 after simple adjustments according to
the car’s orientation, i.e., 𝑟𝑔 = 𝑟0, 𝑟𝑔 = 𝑟0 + 𝜋 or 𝑟𝑔 = 𝑟0 − 𝜋, where
𝑟0 ∈ [− 𝜋

2 ,
𝜋
2 ] and 𝑟𝑔 ∈ [−𝜋, 𝜋].

From the above procedure, we can derive all required 3D attributes
for M3OD, i.e., depth, dimension (𝑙3𝐷, 𝑤3𝐷 and ℎ3𝐷) and rotation. Note
that in most M3OD works, the 3D attributes of the object are usually
predicted by neural networks. By contrast, we could determine the 3D
BBox more accurately through the geometry derivation.

Additionally, we also design a 3D BBox refinement head. Following
previous works [11,29], we use RoIAlign [45] to extract the single
object’s RoI feature. Then we use several layers of convolution to obtain
3D bias. The refined 3D attribute could be obtained by adding the
geometry estimation and the 3D bias.

4. Experiments

4.1. Setup and implementation details

We conduct experiments on the KITTI [43] and nuScenes [44]
datasets to verify the effectiveness and generalization of the proposed
method. The KITTI 3D dataset is the most popular benchmark in M3OD.
Following [56,58], we split the training images into training and vali-
dation sets and use the standard AP40 and AP11 [43,46] to evaluate our
method. Following KITTI’s official metrics [43] and previous works, the
IoU threshold for cars is set to 0.7, while the thresholds for pedestrians
and cyclists are set to 0.5. In addition, we also conduct experiments on
the nuScenes [44] to demonstrate the generalization capacity of our
approach.

Our code is implemented with PyTorch 1.7.1 [59] and CUDA 11.0.
The input images are resized to 1280 × 384. We utilize the popular
DLA34 [60] as the backbone with a downsampling ratio of 4. We
use two 3 × 3 convolution layers with batch normalization and ReLU
for all detection heads. We train our network with the batch size 16
and Adam [61] optimizer for 200 epochs. The initial learning rate is
1.25 × 10−3, and we use the cosine learning rate warmup schedule of 5
epochs and learning rate decay of 0.1 in the training process.

4.2. Main results

As indicated in Table 2, we use the KITTI official metrics AP40 [43]
to evaluate GPro3D’s performance [56]. Our method achieves the best
performance in all twelve metrics of the 3D and BEV detection without
any extra data. As we can see, our approach outperforms previous state-
of-the-art methods in both 3D and BEV metrics. Moreover, Table 3
shows the AP11 results of 3D and BEV detection. Our method ranks
top in various metrics, demonstrating that our approach does work and
yields better results.

Table 4 is 3D and BEV results for the Car category at IoU 0.7 on the
KITTI test set. Table 5 shows our results of all three categories on the
KITTI test set with official metrics [11,28,43]. Our method has achieved
excellent performance.

Note that some other works [62–65] use extra data during the
training stage or the inference stage, such as LiDAR points, depth maps,
and external data, which requires much higher annotation costs and
makes neural networks even more complex.

4.3. The depth and dimensions 𝐿1 errors on the KITTI validation set

We evaluate the L1 errors of the most important 3D attributes in
M3OD, including object depth, 3D height, 3D length, and 3D width
on the KITTI validation set, as shown in Table 6. The improvement
over our baseline method [11] demonstrates the effectiveness of our

approach.
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Table 2
AP40 scores on the KITTI 3D object detection validation set for Car category. We highlight the best results in bold.

Method 3D@IoU=0.7 BEV@IoU=0.7 3D@IoU=0.5 BEV@IoU=0.5

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

MonoGRNet [29] 11.90 7.56 5.76 19.72 12.81 10.15 47.59 32.28 25.50 48.53 35.94 28.59
MonoDIS [46] 11.06 7.60 6.37 18.45 12.58 10.66 – – – – – –
M3D-RPN [47] 14.53 11.07 8.65 20.85 15.62 11.88 48.53 35.94 28.59 53.35 39.60 31.76
MoVi-3D [48] 14.28 11.13 9.68 22.36 17.87 15.73 – – – – – –
MonoPair [49] 16.28 12.30 10.42 24.12 18.17 15.76 55.38 42.39 37.99 61.06 47.63 41.92
MonoDLE [50] 17.45 13.66 11.68 24.97 19.33 17.01 55.41 43.42 37.81 60.73 46.87 41.89
MonoFENet [50] 17.54 11.16 9.74 30.21 20.47 17.58 59.93 42.67 37.50 66.43 47.96 43.73
GrooMeD-NMS [51] 19.67 14.32 11.27 27.38 19.75 15.92 55.62 41.07 32.89 61.83 44.98 36.29
MonoFlex [52] 23.64 17.51 14.83 – – – – – – – – –
GUPNet [11] 22.76 16.46 13.72 31.07 22.94 19.75 57.62 42.33 37.59 61.78 47.06 40.88
DDCDC [4] 23.83 16.00 12.04 – – – 60.04 42.75 33.85 – – –
VoPoints [5] 20.81 16.92 16.79 25.83 23.41 21.24 56.12 42.75 37.03 58.65 45.72 43.31
DID-M3D [53] 22.98 16.12 14.03 31.10 22.76 19.50 – – – – – –
MoGDE [17] 23.35 20.35 17.71 – – – – – – – – –
DEVIANT [54] 24.63 16.54 14.52 32.60 23.04 19.99 61.00 46.00 40.18 65.28 49.63 43.50
MonoDTR [55] 24.52 18.57 15.51 33.33 25.35 21.68 64.03 47.32 42.20 69.04 52.47 45.90
MonoGround [16] 25.24 18.69 15.58 32.68 24.79 20.56 62.60 47.85 41.97 67.36 51.83 45.65

GPro3D (Ours) 26.93 20.41 17.74 34.62 25.18 22.71 64.97 49.02 44.12 69.84 54.14 49.01
Table 3
AP11 scores on the KITTI 3D object detection validation set for Car category. We highlight the best results in bold.

Method 3D@IoU=0.7 BEV@IoU=0.7 3D@IoU=0.5 BEV@IoU=0.5

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Mono3D [56] 2.53 2.31 2.31 5.22 5.19 4.13 – – – – – –
Deep3DBox [33] 5.85 4.19 3.84 9.99 7.71 5.30 27.04 20.55 15.88 30.02 23.77 18.83
Mono3D++ [19] 10.60 7.90 5.70 16.70 11.50 10.10 42.00 29.80 24.20 46.70 34.30 28.10
M3D-RPN [47] 20.27 17.06 15.21 25.94 21.18 21.18 48.96 39.57 33.01 53.35 39.60 31.76
RTM3D [22] 20.77 20.77 16.63 25.56 22.12 20.91 54.36 41.90 35.84 57.47 44.16 42.31
RARNet [57]+M3D-RPN [47] 23.12 19.82 16.19 29.16 22.14 18.78 51.20 44.12 32.12 57.12 44.41 37.12
GUPNet [11] 25.76 20.48 17.24 34.00 24.81 22.96 59.36 45.03 38.14 62.58 46.82 44.81

GPro3D (Ours) 29.91 24.84 21.37 38.13 28.95 27.11 65.84 49.78 46.79 69.98 56.04 49.51
Table 4
3D and BEV AP40 scores on the KITTI 3D object detection test set for Car category at IoU 0.7. We highlight the best results in bold and underline the second best results.

Method Extra data AP3D APBEV

Easy Moderate Hard Easy Moderate Hard

MonoPSR [62] LiDAR 10.76 7.25 5.85 18.33 12.58 9.91
AM3D [63] Depth 16.50 10.74 9.52 25.03 17.32 14.91
Decoupled-3D [64] Depth 11.08 7.02 5.63 23.16 14.82 11.25
PatchNet [30] Depth 15.68 11.12 10.17 22.97 16.86 14.97
D4LCN [18] Depth 16.65 11.72 9.51 22.51 16.02 12.55
Kinem3D [65] Multi-frames 19.07 12.72 9.17 26.69 17.52 13.10
CaDDN [66] LiDAR 19.17 13.41 11.46 27.94 18.91 17.19
DFR-Net (I+D) [67] Depth 19.40 13.63 10.35 28.17 19.17 14.84
MonoEF [36] External 21.29 13.87 11.71 29.03 19.70 17.26

MonoDIS [46] None 10.37 7.94 6.40 17.23 13.19 11.12
M3D-RPN [47] None 14.76 9.71 7.42 21.02 13.67 10.23
SMOKE [68] None 14.03 9.76 7.84 20.83 14.49 12.75
MonoPair [49] None 13.04 9.99 8.65 19.28 14.83 12.89
MonoRCNN [35] None 18.36 12.65 10.03 25.48 18.11 14.10
DDMP-3D [69] None 19.71 12.78 9.80 28.08 17.89 13.44
MonoFlex [52] None 19.94 13.89 12.07 28.23 19.75 16.89
Fine-Grained [20] None 20.28 13.12 9.56 – – –
MonoGround [16] None 21.37 14.36 12.62 30.07 20.47 17.74
MonoDTR [55] None 21.99 15.39 12.73 28.59 20.38 17.14

GPro3D (Ours) None 22.41 15.44 12.84 30.31 20.79 18.21
4.4. Ablation study

To verify the effectiveness of our approach’s architecture, we con-
duct a detailed ablation study on the KITTI validation set, as shown in
Tables 7 and 8.

4.4.1. Effectiveness of the ground plane estimation
In Table 7, Exp (a) is the baseline in which the object’s 3D attributes

are predicted directly. Exp (b) uses the preset fixed ground plane to in-
versely project the wheel pixels and deduce the 3D BBox. By comparing
8

the experimental results (a → b), we discover that introducing the in-
verse projection with the ground plane improves accuracy marginally.
This observation proves our motivation that directly using the preset
fixed ground plane is likely to encounter the problem of ground plane
tilt, thus resulting in non-negligible errors. Exp (c) accomplishes ground
plane estimation by directly predicting the horizon line through the
network without the vertical edges’ assistance. From Exp (b) to Exp
(c), the 3D AP40 increases by 1.26% on the moderate level. Exp (d)
uses vertical edge detection in the image to calculate the roll angle
of the ground plane and assumes that the pitch angle of the ground
plane is zero. After the vertical edge detection is equipped, the 3D AP
40
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b

Table 5
AP40 scores on the KITTI 3D object detection test set for Car, Pedestrian and Cyclist category. We highlight the best results in bold and underline the second-best results.

Method Extra data Car@IoU=0.7 Pedestrian@IoU=0.5 Cyclist@IoU=0.5

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

D4LCN [18] Depth 16.65 11.72 9.51 4.55 3.42 2.83 2.45 1.67 1.36
Kinematic [65] Multi-frames 19.07 12.72 9.17 – – – – – –
MonoEF [36] External 21.29 13.87 11.71 4.27 2.79 2.21 1.80 0.92 0.71

MonoPair [49] None 13.04 9.99 8.65 10.02 6.68 5.53 3.79 2.12 1.83
M3DSSD [70] None 17.51 11.46 8.98 5.16 3.87 3.08 2.10 1.51 1.58
DFR-Net (I) [67] None 17.30 11.89 9.32 6.62 4.58 4.17 1.63 1.01 1.02
MonoDLE [50] None 17.23 12.26 10.29 5.34 3.28 2.83 4.59 2.66 2.45
GrooMeD-NMS [51] None 18.10 12.32 9.65 – – – – – –
MonoFlex [52] None 19.94 13.89 12.07 9.43 6.31 5.26 4.17 2.35 2.04
GUPNet [11] None 20.11 14.20 11.77 14.72 9.53 7.87 4.18 2.65 2.09
MonoGround [16] None 21.37 14.36 12.62 12.37 7.89 7.13 4.62 2.68 2.53

GPro3D (Ours) None 22.41 15.44 12.84 14.61 9.36 7.91 5.45 3.05 2.56
Table 6
The depth and dimensions L1 errors for KITTI validation set (meters). The lower the
etter.

Method Depth 3D height 3D length 3D width

Baseline [11] 1.362 0.084 0.324 0.087
Ours 0.991 0.073 0.288 0.075

Table 7
Influence of ground plane estimation on M3OD AP40 results for Car category.
Exp (a) is the baseline in which the object’s 3D attributes are predicted directly. IP
here represents the inverse projection with the ground plane prior. The horizon here
represents the ground plane estimation by directly predicting the horizon through the
network. VerE means vertical edge detection.

Exp IP Horizon VerE 3D@IoU=0.7 BEV@IoU=0.7

Easy Mod. Hard Easy Mod. Hard

(a) – – – 17.36 12.97 10.74 24.80 18.38 16.33
(b) ✓ – – 17.62 14.04 11.88 24.74 19.12 17.15
(c) ✓ ✓ – 20.33 15.30 13.24 28.52 21.69 18.33
(d) ✓ – ✓ 22.71 15.64 13.51 29.52 21.45 18.40
(e) ✓ ✓ ✓ 26.93 20.41 17.74 34.62 25.18 22.71

Table 8
Influence of projection points on M3OD AP40 results. We compare objects’ wheel
pixels and the bottom vertices of the BBoxes.

Keypoint Car@IoU=0.7 AP3D/APBEV
Easy Mod. Hard

bottom vertices 18.43/25.91 14.84/21.51 11.53/18.36
wheel pixels 26.93/34.62 20.41/25.18 17.74/22.71

Keypoint Cyclist@IoU=0.5 AP3D/APBEV
Easy Mod. Hard

bottom vertices 7.84/7.07 2.44/3.84 1.95/3.56
wheel pixels 7.85/9.09 4.48/5.53 3.97/4.74

on the moderate setting increases by 1.60% (b → d). Exp (e) is our
complete GPro3D. It uses vertical-edge-enhanced horizon line detection
to estimate the ground plane equation, which achieves the best result.

4.4.2. Influence of the projection point
As shown in Table 8, we conduct experiments using objects’ wheel

pixels and the bottom vertices. We use our estimated accurate ground
plane equation in dynamic inverse projection for both wheel pixels and
9

Table 9
Influence of wheel pixel pseudo-labels selection on M3OD AP40 results. We
compare the location selection of wheel pixel pseudo-labels.

wheel pixel pseudo label Car@IoU=0.7 AP3D/APBEV

Easy Mod. Hard

0.6 length 23.81/30.52 16.94/22.07 13.55/18.71
0.7 length 26.93/34.62 20.41/25.18 17.74/22.71
0.8 length 25.37/32.88 18.54/23.61 15.29/19.05

Table 10
Cross-dataset evaluation on the KITTI and nuScenes frontal validation dataset.

Dataset Method Depth prediction mean error ↓

[0, 20) [20, 40) [40,+∞)

KITTI

M3D-RPN [47] 0.56 1.33 2.73
MonoRCNN [35] 0.46 1.27 2.59
GUPNet [11] 0.54 1.21 2.49
GPro3D (Ours) 0.46 1.12 2.22

nuScenes

M3D-RPN [47] 1.04 3.29 10.73
MonoRCNN [35] 0.94 2.84 8.65
GUPNet [11] 0.83 2.14 5.98
GPro3D (Ours) 0.72 2.11 5.79

bottom vertices. From the results, the AP40 increases dramatically when
using wheel pixels as the projection points.

Moreover, we analyzed the position selection for wheel pixel pseudo-
labels. Specifically, we experimented with 𝑘𝑙, i.e., the ratio of the front
and rear wheels’ distance to the length of the 3D bounding box. For 𝑘𝑙,
we took values of 0.6, 0.7, and 0.8 to generate wheel pixel pseudo-
labels. The experimental results, presented in Table 9, demonstrate
that the optimal performance was achieved when 𝑘𝑙 was set to 0.7.
Consequently, we employ 0.7 as 𝑘𝑙 ’s value.

4.5. Cross-dataset evaluation

To demonstrate the generalization capacity of our approach, we
conduct cross-dataset evaluation. As shown in Table 10, all models are
trained on the KITTI train set. We evaluate the models on the KITTI
validation set and the nuScenes frontal set. Since depth prediction is
the most important metric in M3OD, we follow [35,47] and evaluate
the depth errors in different ranges. We introduce more ground plane
geometrical clues in the scenes, which are robust and generalize better
across different datasets and domains.

4.6. Visualization analysis

We visualize some examples to further demonstrate the effectiveness

of the proposed GPro3D. As shown in Fig. 8, GPro3D tends to predict
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Fig. 8. Visualization results. From top to bottom, we show examples generated by using 3D boxes’ bottom vertices as projection points, by using a preset fixed ground plane,
and by our GPro3D, respectively.
Fig. 9. Examples of the vertical edge and horizon line detection. The green lines are detected vertical edges, and the red lines represent the detected horizon lines in the
image. The proposed vertical-edge-enhanced horizon line detection method can work effectively even if the horizon line is heavily occluded by obstacles.
Fig. 10. The 2D BBox, wheel pixel and 3D BBox detection results. They are represented by yellow, green, and blue, respectively. Although some wheel pixels are blocked in
the image, our model can still work well.
a more accurate spatial position compared with two competitors. For
example, in the example on the right, the car circled by the bigger
orange ellipse has the best-fitting 3D boxes generated by our GPro3D,
which reveals a more accurate 3D size estimation. Meanwhile, as shown
in the bird’s-eye view, the distance between the prediction result and
the ground truth is apparently closer, especially for distant objects (cir-
cled by the smaller orange ellipse). This observation indicates that the
proposed GPro3D can produce higher quality 3D bounding boxes. Fig. 9
is our vertical edge and horizon line detection result. As we can see,
the proposed vertical-edge-enhanced horizon line detection method can
work effectively even if the horizon is heavily occluded by obstacles.
Fig. 10 shows the 2D BBox, wheel pixels , and 3D BBox detection
results. Note that our model can still work when some wheel pixels
are occluded in the image, demonstrating our approach’s robustness.
10
5. Conclusions

In this paper, we identify three key issues that highly hinder the
application of the ground plane prior in monocular 3D object detec-
tion, i.e., the projection point localization issue, the ground plane tilt
problem, and the lack of ground plane annotation issue. To tackle the
issues, we propose a GPro3D framework. Specifically, for the projection
point localization issue, we adopt the objects’ wheel pixels as explicit
and salient signals. Such wheel pixels can be well projected into the
3D space with the ground plane equation, resulting in a more accurate
geometry estimation. To deal with the ground plane tilt problem, we
leverage the horizon line in the image to estimate the ground plane
equation. We also propose a vertical-edge-enhanced method for the
horizon line detection when the horizon is highly occluded. Pseudo-
labels for wheel pixels and horizon lines are generated using only
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M3OD labels. With the wheel pixels and the accurate ground plane
equation, we could fully use the ground plane and directly derive ob-
jects’ 3D BBoxes and 3D attributes geometrically. Extensive experiment
results show that the proposed GPro3D can significantly outperforms
baseline methods, demonstrating the proposed framework’s effective-
ness and superiority. In the future, we will explore object detection
tasks in more challenging scenarios, such as long-tail distribution,
category imbalance scenarios [71], etc.
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