
RepMLPNet: Hierarchical Vision MLP with Re-parameterized Locality

Xiaohan Ding 1 * Honghao Chen 2 Xiangyu Zhang 3 Jungong Han 4 Guiguang Ding 1†

1 Beijing National Research Center for Information Science and Technology (BNRist);
School of Software, Tsinghua University, Beijing, China
2 Institute of Automation, Chinese Academy of Sciences

3 MEGVII Technology
4 Computer Science Department, Aberystwyth University, SY23 3FL, UK

dxh17@mails.tsinghua.edu.cn chenhonghao2021@ia.ac.cn zhangxiangyu@megvii.com

jungonghan77@gmail.com dinggg@tsinghua.edu.cn

Abstract

Compared to convolutional layers, fully-connected (FC)
layers are better at modeling the long-range dependencies
but worse at capturing the local patterns, hence usually less
favored for image recognition. In this paper, we propose a
methodology, Locality Injection, to incorporate local priors
into an FC layer via merging the trained parameters of a
parallel conv kernel into the FC kernel. Locality Injection
can be viewed as a novel Structural Re-parameterization
method since it equivalently converts the structures via
transforming the parameters. Based on that, we propose a
multi-layer-perceptron (MLP) block named RepMLP Block,
which uses three FC layers to extract features, and a novel
architecture named RepMLPNet. The hierarchical design
distinguishes RepMLPNet from the other concurrently pro-
posed vision MLPs. As it produces feature maps of differ-
ent levels, it qualifies as a backbone model for downstream
tasks like semantic segmentation. Our results reveal that
1) Locality Injection is a general methodology for MLP
models; 2) RepMLPNet has favorable accuracy-efficiency
trade-off compared to the other MLPs; 3) RepMLPNet is
the first MLP that seamlessly transfer to Cityscapes seman-
tic segmentation. The code and models are available at
https://github.com/DingXiaoH/RepMLP.

1. Introduction

The locality of images (i.e., a pixel is more related to

its neighbors than the distant pixels) makes Convolutional

*This work is supported by the National Natural Science Foundation of

China (Nos.61925107, U1936202, 62021002) and the Beijing Academy

of Artificial Intelligence (BAAI). This work is done during Xiaohan Ding

and Honghao Chen’s internship at MEGVII Technology.
†Corresponding author.

Neural Network (CNN) successful in image recognition, as

a conv layer only processes a local neighborhood. In this

paper, we refer to this inductive bias as the local prior.

Besides, we also desire the ability to build up long-range

dependencies, which is referred to as the global capacity
in this paper. Traditional CNNs model the long-range de-

pendencies by deep stacks of conv layers [40]. However,

repeating local operations may cause optimization difficul-

ties [1, 20, 40]. Some prior works enhance the global ca-

pacity with self-attention-based modules [18,39,40], which

have no local prior. For example, due to the lack of lo-

cal prior, ViT [18] requires an enormous amount of training

data (3 × 108 images in JFT-300M) to converge. On the

other hand, a fully-connected (FC) layer can also directly

model the dependencies between any two input points,

which is as simple as flattening the feature map as a vec-

tor, linearly mapping it into another vector, and reshap-

ing the resultant vector back into a feature map. How-

ever, this process has no locality either. Without such

an important inductive bias, the concurrently proposed

MLPs [26, 36, 37, 43] usually demand a huge amount of

training data (e.g., JFT-300M), more training epochs (300

or 400 ImageNet [8] epochs) or special training techniques

(e.g., a DeiT-style distillation method [37, 38]) to learn the
inductive bias from scratch. Otherwise, they may not reach

a comparable level of performance with traditional CNNs.

We desire an MLP model that is 1) friendly to small-data,

2) trainable with ordinary training methods, and 3) effective

in visual recognition. To this end, we make contributions in

three aspects: methodology, component and architecture.

Methodology We propose a novel methodology, Locality
Injection, to provide an FC layer with what it demands

for effective visual understanding: the locality. Specifi-

cally, we place one or more conv layers parallel to the FC

and add up their outputs. Though the FC simply views

568

2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

978-1-6654-6946-3/22/$31.00 ©2022 IEEE
DOI 10.1109/CVPR52688.2022.00066

20
22

 IE
EE

/C
VF

 C
on

fe
re

nc
e

on
 C

om
pu

te
r V

isi
on

 a
nd

 P
at

te
rn

 R
ec

og
ni

tio
n

(C
VP

R)
 |

 9
78

-1
-6

65
4-

69
46

-3
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
CV

PR
52

68
8.

20
22

.0
00

66

Authorized licensed use limited to: Tsinghua University. Downloaded on April 14,2023 at 07:32:41 UTC from IEEE Xplore. Restrictions apply.

conv
FC1

ReLU

(݊, ܿ, ℎ, (ݓ

FC3

,ݏ) 1,1,1) ,ݏ) 1,3,3) Locality

Injection

Training-time RepMLP Block Inference-time RepMLP Block

Parameterized
layers (FC,
conv, BN)

Feature maps

Features
as vectors

average pool

BN

Global Perceptron

Local Perceptron

ݏܿ݊) , sℎݓ)
,ݓℎݏ) ℎݓ)

݌ = 0 conv݌ = 1

ݏܿ݊) , ,ݏ ℎ, (ݓ
Channel Perceptron

sigmoid

channel-wise multiply

(݊, ܿ, 1,1)

(݊, ܿ, 1,1)
ݏܿ݊) , sℎݓ)
ݏܿ݊) , ,ݏ ℎ, (ݓ BN

BN

(݊, ܿ, ℎ, (ݓ

FC2

add

FC1

ReLU

(݊, ܿ, ℎ, (ݓ

FC3

average pool
Global Perceptron

ݏܿ݊) , sℎݓ)
,ݓℎݏ) ℎݓ)

ݏܿ݊) , ,ݏ ℎ, (ݓ
Channel Perceptron

sigmoid

channel-wise multiply

(݊, ܿ, 1,1)

(݊, ܿ, 1,1)
ݏܿ݊) , sℎݓ)
ݏܿ݊) , ,ݏ ℎ, (ݓ

(݊, ܿ, ℎ, (ݓ

FC2

Figure 1. RepMLP Block, where n, c, h, w are the batch size, number of input channels, height and width of the feature map, s is the

number of share-sets, p is the padding. This example assumes n = 1, c = 4, s = 2. 1) The Global Perceptron aggregates the information

across all the spatial locations and establishes the relations among channels. 2) In parallel, the input feature map is split into s share-sets

and fed into the Channel Perceptron, which simply reshapes the features into vectors, linearly maps it to the output vectors, and reshapes

them back. 3) The Local Perceptron takes the same inputs as the Channel Perceptron but convolve with small kernels to capture the local

patterns. This example uses 1×1 and 3×3 so that the padding should be p = 0 and 1, respectively, to maintain the feature map size.

Through batch normalization (BN) [22], the outputs of Local Perceptron and Channel Perceptron and added up. Finally, we combine the

global and channel-wise information by merging the outcomes of the Global Perceptron. After training, the conv layers are absorbed into

the FC3 kernel via Locality Injection, so that the training-time block is equivalently converted into a three-FC block and used for inference.

the feature maps as vectors, completely ignoring the local-

ity, the conv layers can capture the local patterns. How-

ever, though such conv layers bring only negligible parame-

ters and compute, the inference speed may be considerably

slowed down because of the reduction of degree of paral-

lelism on high-power computing devices like GPUs [30].

Therefore, we propose to equivalently merge the conv lay-
ers into the FC kernels after training to speed up the infer-

ence. By doing so, we obtain an FC layer that is structurally

identical to a normally trained FC layer but is parameter-

ized by a special matrix with locality. Since Locality Injec-

tion converts the training-time structure (FC + conv) to the

inference-time (a single FC) via an equivalent transforma-

tion on the parameters, it can be viewed as a novel Struc-

tural Re-parameterization [11, 13–16] technique. In other

words, we equivalently incorporate the inductive bias into
a trained FC layer, instead of letting it learn from scratch.

The key to such an equivalent transformation is converting

an arbitrary conv kernel to an FC kernel (i.e., a Toeplitz ma-

trix). In this paper, we propose a simple, platform-agnostic

and differentiable approach (Sec. 3).

Component Based on Locality Injection, we propose

RepMLP Block as an MLP building block. Fig. 1 shows a

training-time RepMLP Block with FC, conv and batch nor-

malization [22] (BN) layers can be equivalently converted

into an inference-time block with only three FC layers.

Architecture The hierarchical design has been shown to

benefit visual understanding [20,27,34]. Therefore, we pro-

pose a hierarchical MLP architecture composed of RepMLP

Blocks. In other words, as the feature map size reduces, the

number of channels increases. We reckon that the major ob-

stacle for adopting hierarchical design in a ResMLP- [37]

or MLP-Mixer-style [36] model is that the number of pa-

rameters is coupled with the feature map size 1, so that the

number of parameters of the lower-level FC layers would

be several orders of magnitude greater than the higher-level

layers. For example, assume the lowest-level feature maps

are of 56×56, an FC layer requires 564 = 9.8M parame-

ters to map a channel to another, without any cross-channel

correlations (i.e., like depth-wise convolution). We may let

all the channels share the same set of parameters, so that

the layer will have a total of 9.8M parameters. However,

let the highest-level feature maps be of 7×7, the parame-

ter count is only 74 = 2.4K but the number of channels

is large. Predictably, sharing so few parameters among so

many channels restricts the representational capacity hence

results in inferior performance. We solve this problem by

a set-sharing linear mapping (Sec. 4.1) so that we can in-

dependently control the parameter count of each layer by

letting the channels share a configurable number of param-

1In this paper, an MLP refers to a model that mostly uses FC layers

to linearly map features from a vector to another, so that the number of

parameters must be proportional to the input size and output size. By our

definition, another model, CycleMLP [3], is not referred to as an MLP.

569

Authorized licensed use limited to: Tsinghua University. Downloaded on April 14,2023 at 07:32:41 UTC from IEEE Xplore. Restrictions apply.

eter sets s. With a smaller s for the lower-level layers and a

larger s for the higher-level ones, we can balance the model

size and the representational capacity.

Another drawback of the concurrently proposed MLPs

is the difficulty of transferring to the downstream tasks

like semantic segmentation. For example, MLP-Mixer [36]

demonstrates satisfactory performance on ImageNet but

does not qualify as the backbone of a segmentation frame-

work like UperNet [41] as it aggressively embeds (i.e.,

downsamples) the images by 16× and repeatedly trans-

forms the embeddings, so that it cannot produce multi-scale

feature maps with different levels of semantic information.

In contrast, our hierarchical design produces semantic in-

formation on different levels, so that it can be readily used

as the backbone of the common downstream frameworks.

In summary, with Locality Injection, RepMLP Block and

a hierarchical architecture, RepMLPNet achieves favorable

accuracy-efficiency trade-off with only 100 training epochs

on ImageNet, compared to the other MLP models trained in

300 or 400 epochs. We also show the universality of Lo-

cality Injection as it improves the performance of not only

RepMLPNet but also ResMLP [37]. Moreover, RepMLP-

Net shows satisfactory performance as the first attempt to

transfer an MLP-style backbone to semantic segmentation.

2. Related Work
2.1. From Vision Transformer to MLP

Vision Transformers [18, 27, 38] heavily adopt self-

attention modules to capture the spatial patterns. A pri-

mary motivation for using Transformers on vision tasks is

to reduce the inductive bias designed by human and let the

model automatically learn a better bias from big data. Con-

current with our work, MLP-Mixer [36], ResMLP [37] and

gMLP [26] are proposed. For example, MLP-Mixer al-

ternatively mix the information across channels (channel-

mixing, implemented by 1×1 conv) and within channels

(token-mixing). Specifically, the token-mixing component

projects the feature maps along the spatial dimension (i.e.,

transpose the feature map tensor), feed them into a 1×1

conv, and transpose the outcomes back. Therefore, the

token-mixing can be viewed as an FC layer that flattens ev-

ery channel as a vector, linearly maps it into another vec-

tor, and reshapes it back into a channel, completely ignor-

ing the positional information; and all the channels share

the same kernel matrix. In this way, MLP-Mixer realizes

the communications among spatial locations. ResMLP [37]

and gMLP [26] present different architectures which mix

the spatial information with a similar mechanism.

2.2. Structural Re-parameterization

The core of Locality Injection is to equivalently merge

a trained conv kernel into a trained FC kernel to inject

the locality, so it can be categorized into Structural Re-

parameterization, which is a methodology of converting

structures via transforming the parameters. A representative

of Structural Re-parameterization is RepVGG [15], which

is a VGG-like architecture that uses only 3×3 conv and

ReLU for inference. Such an inference-time architecture

is equivalently converted from a training-time architecture

with identity and 1×1 branches. Asymmetric Convolution

Block (ACB) [11] and Diverse Branch Block (DBB) [14]

are two replacements for regular conv layers. Via construct-

ing extra training-time paths (e.g., 1×3, 3×1, or 1×1-3×3),

they can improve a regular CNN without extra inference

costs. ResRep [13] uses Structural Re-parameterization for

channel pruning [9, 10, 12, 25, 28] and achieves state-of-

the-art results, which reduces the filters in a conv layer

via constructing and pruning a following 1×1 layer. Re-

pLKNet [16] heavily uses very large (e.g., 31×31) convo-

lutional kernels, where Structural Re-parameterization with

small kernels helps to make up the optimization issue.

Locality Injection is a remarkable attempt to general-

ize Re-parameterization beyond convolution. By merging a

conv into an FC kernel, we bridge conv and FC with a sim-

ple, platform-agnostic and differentiable method (Sec. 3).

3. Locality Injection via Re-parameterization
This section derives the explicit formula (Eq. 12) to con-

vert any given conv kernel into an FC kernel (a Toeplitz

matrix), which is the key to further merging the conv into

the parallel FC. The derivation can be safely skipped.

3.1. Formulation

In this paper, a feature map is denoted by a tensor M ∈
R

n×c×h×w, where n, c, h, w are the batch size, number of

channels, height and width, respectively. We use F and W
for the kernel of conv and FC, respectively. For the ease

of re-implementation, we formulate the computation in a

PyTorch-like [32] pseudo-code style. For example, the data

flow through a k × k conv is formulated as

M(out) = CONV(M(in),F, p) , (1)

where M(out) ∈ R
n×o×h′×w′

is the output, o is the number

of output channels, p is the number of pixels to pad, F ∈
R

o×c×k×k is the conv kernel (we temporarily assume the

conv is dense, i.e., the number of groups is 1). From now

on, we assume h′ = h,w′ = w for the simplicity.

For an FC, let p and q be the input and output dimen-

sions, V(in) ∈ R
n×p and V(out) ∈ R

n×q be the input and

output, respectively, the kernel is W ∈ R
q×p and the matrix

multiplication (MMUL) is formulated as

V(out) = MMUL(V(in),W) = V(in) ·Wᵀ . (2)

We now focus on an FC that takes M(in) as input and

outputs M(out) and assume the output shape is the same as

570

Authorized licensed use limited to: Tsinghua University. Downloaded on April 14,2023 at 07:32:41 UTC from IEEE Xplore. Restrictions apply.

the input. We use RS (short for “reshape”) as the function

that only changes the shape specification of tensors but not

the order of data in memory, which is cost-free. The in-

put is first flattened into n vectors of length chw, which

is V(in) = RS(M(in), (n, chw)), multiplied by the kernel

W(ohw, chw), then the output V(out)(n, ohw) is reshaped

back into M(out)(n, o, h, w). For the better readability, we

omit the RS if there is no ambiguity,

M(out) = MMUL(M(in),W) . (3)

Obviously, such an FC cannot take advantage of the local-

ity of images as it computes each output point according to

every input point, unaware of the positional information.

3.2. Locality Injection

Assume there is a conv layer parallel to the FC (like the

Channel Perceptron and Local Perceptron shown in Fig. 1),

which takes M(in) as input, we describe how to equiva-

lently merge it into the FC. In the following, we assume

the FC kernel is W(ohw, chw), conv kernel is F(o, c, k, k),
padding is p. Formally, we desire to construct W′ so that

MMUL(M(in),W′)

= MMUL(M(in),W) + CONV(M(in),F, p) .
(4)

We note that for any kernel W(2) of the same shape as

W(1), the additivity of MMUL ensures that

MMUL(M(in),W(1)) + MMUL(M(in),W(2))

= MMUL(M(in),W(1) +W(2)) .
(5)

Therefore, we can merge F into W if we can construct

W(F,p) of the same shape as W which satisfies

MMUL(M(in),W(F,p)) = CONV(M(in),F, p) . (6)

Obviously, for any M(in),F, p, the corresponding W(F,p)

must exist, since a conv can be viewed as a sparse FC that

shares parameters among spatial positions (i.e., a Toeplitz

matrix), but it is nontrivial to construct it with a given F.

Then we seek for the explicit formula of W(F,p). With

the formulation used before (Eq. 2), we have

V(out) = V(in) ·W(F,p)ᵀ . (7)

We insert an identity matrix I (chw, chw) and use the asso-

ciative law

V(out) = V(in) · (I ·W(F,p)ᵀ) . (8)

With explicit RS, we rewrite Eq. 8 as

V(out) = V(in) · RS(I ·W(F,p)ᵀ, (chw, ohw)) . (9)

We note that W(F,p) is constructed with an existing conv

kernel F, so that I ·W(F,p)ᵀ is exactly a convolution with F
on a feature map M(I) which is reshaped from I. That is

I ·W(F,p)ᵀ = CONV(M(I),F, p) , (10)

where M(I) is reshaped from a constructed identity matrix

M(I) = RS(I, (chw, c, h, w)) . (11)

Comparing Eq. 7 with Eq. 9, Eq. 10, we have

W(F,p) = RS(CONV(M(I),F, p), (chw, ohw))ᵀ , (12)

which is exactly the formula to construct W(F,p) with F, p.

In brief, the equivalent FC kernel of a conv kernel is the

result of convolution on an identity matrix with proper re-
shaping. Better still, the conversion is efficient and differ-
entiable, so one may derive the FC kernel during training

and use it in the objective function (e.g., for penalty-based

pruning [17, 19]). The formulas for the group-wise case are

derived similarly and the code is released on GitHub.

Why is this solution nontrivial? Given F, p, there is

no existing generic method to construct the correspond-

ing Toeplitz matrix W(F,p) as the existing conv implemen-

tations do not require such a step. As discussed above,

though W(F,p) must exist, it is nontrivial to construct it in

a platform-agnostic way. Modern platforms use different

algorithms of conv, e.g., based on iGEMM [16] (for very

large kernel), Winograd [24] (for 3×3), im2col [2] (con-

verting the feature map, rather than the kernel, to a matrix),

FFT [31], MEC [4] and sliding-window). Moreover, the

memory allocation of data and implementations of padding

may be different. Therefore, given F, p and the FC kernel

W(F,p), the equivalency (Eq. 6) may hold on a platform but

break on another platform (e.g., the simplest case is the two

platforms arrange the kernels in memory differently). Our

method (Eq. 12) is platform-agnostic because its derivation

does not rely on the concrete form of CONV. On any plat-

form, the W(F,p) constructed with its specific CONV im-

plementation must ensure Eq. 6 with the same CONV.

4. RepMLPNet
RepMLPNet is a hierarchical MLP-style architecture

composed of RepMLP Blocks. We first introduce RepMLP

Block (Fig. 1) in Sec. 4.1 and then describe the overall ar-

chitecture (Fig. 2) in Sec. 4.2.

4.1. Components of RepMLP Block

A training-time RepMLP Block is composed of three

parts termed as Global Perceptron, Channel Perceptron and

Local Perceptron (Fig. 1), which are designed to model the

information on different levels. Global Perceptron mod-

els the coarse global dependencies across spatial locations

571

Authorized licensed use limited to: Tsinghua University. Downloaded on April 14,2023 at 07:32:41 UTC from IEEE Xplore. Restrictions apply.

(݊, 3, 256, 256)
(݊, ,ܥ 64, 64)

Stage1

Embed 2×

Stage2

Embed 2×

(݊, ,ܥ2 32, 32)

Stage3

Embed 2×

Stage4

(݊, ,ܥ4 16, 16)
(݊, ,ܥ8 8, 8)

RepMLP Block ×B1

RepMLP Block × B2

RepMLP Block × B3

RepMLP Block × B4

RepMLP
Block

BN

conv 1x1
BN

Embed 4×
a stage

conv 1x1
GELU

input

RepMLP
Block

BN

conv 1x1
BN

conv 1x1
GELU

Figure 2. Architecture of RepMLPNet. Apart from RepMLP

Blocks, we also use a FFN-style block (1×1-GELU [21]-1×1) to

increase the depth, which has been widely used in Vision Trans-

formers [18, 27], MLPs [36, 37] and CNN (RepLKNet [16]).

among all the channels; Channel Perceptron is designed for

modeling the long-range spatial dependencies within each

channel; Local Perceptron captures the local patterns. The

outputs of the three components are combined to obtain a

comprehensive transformation of the input features.

Global Perceptron average-pools the inputs (n, c, h, w)
into vectors (n, c, 1, 1) and feed them into two FC layers

to obtain a vector that encodes the global information.

Channel Perceptron contains an FC layer that directly per-

forms the feature transformation, where the key is the set-
sharing mechanism. We follow the formulation in Sec. 3

and assume o = c for the convenience. We note that a

normal FC layer has (chw)2 parameters. Taking a 64×64

feature map with 128 channels for example, the parameter

count of a normal dense FC will be 2.1B, which is unac-

ceptable. A natural solution is to make the FC “depth-wise”

just like depth-wise conv, which will not be able to model

cross-channel dependencies but has only 1/c parameters

and FLOPs. However, even a parameter count of c(hw)2 is

too large. Our solution is to make multiple channels share

a set of spatial-mapping parameters, so that the parameters

are reduced to s(hw)2, where s is the number of share-sets
of parameters. In other words, every c

s channels share the

same set of parameters, and there are s such share-sets in

total. Specifically, we first evenly split the c channels into

c/s groups, which means (n, c, h, w) → (ncs , s, h, w), and

then flatten them into nc
s vectors each of length shw, feed

the vectors into a “depth-wise” FC, and reshape the out-

put back. Compared to “depth-wise” FC, set-sharing FC

not only breaks the correlation between channels ((chw)2

parameters → c(hw)2)), but reduces the parameters even

further (c(hw)2) → s(hw)2); but it does not reduce the

computations compared to a “depth-wise” FC. It should be

noted that the spatial mappings in ResMLP and MLP-Mixer

are implemented in a different way (transpose, 1×1 conv

and transpose back) but are mathematically equivalent to a

special case of set-sharing FC with s = 1, which means

all the channels share the same (hw)2 parameters. We will

show increasing s can improve the performance with more

parameters but no extra FLOPs, which is useful in scenarios

where the model size is not a major concern (Table 4).

In practice, though set-sharing FC is not directly sup-

ported by some computing frameworks like PyTorch, it

can be implemented by a group-wise 1×1 conv. Formally,

let V(in)(ncs , shw) be the vectors split in share-sets, the

implementation is composed of three steps: 1) reshaping

V(in) as a “feature map” with spatial size of 1×1, which is

(ncs , shw, 1, 1); 2) performing 1×1 conv with s groups (so

that the parameters are (shw)2/s = s(hw)2); 3) reshaping

the output into (ncs , s, h, w), then (n, c, h, w).
Local Perceptron takes the same inputs as Channel Per-

ceptron. Each conv (with a following BN [22] as a common

practice) is depth-wise and has the same number of share-

sets s on the s-channel inputs, so the kernel is (s, 1, k, k).
Merging the Local Perceptron into Channel Perceptron via

Locality Injection requires fusing the BN into the preceding

conv layers or FC3. Note the conv layers are depth-wise

and the number of channels is s. Let F ∈ R
s×1×k×k be

the conv kernel, μ,σ,γ,β ∈ R
s be the accumulated mean,

standard deviation and learned scaling factor and bias of the

following BN, we construct the kernel F′ and bias b′ as

F′
i,:,:,: =

γi

σi
Fi,:,:,: , b′

i = −μiγi

σi
+ βi . (13)

Then it is easy to verify the equivalence:

γi

σi
(CONV(M,F, p):,i,:,: − μi) + βi

= CONV(M,F′, p):,i,:,: + b′
i , ∀1 ≤ i ≤ s ,

(14)

where the left side is the original computation flow of a

conv-BN, and the right is the constructed conv with bias.

The FC3 and BN in Channel Perceptron are fused in a

similar way into Ŵ ∈ R
shw×hw, b̂ ∈ R

shw. Then we

convert every conv via Eq. 12 and add the resultant matrix

onto Ŵ. The biases of conv are simply replicated by hw
times (because all the points on the same channel share a

bias value) and added onto b̂. Finally, we obtain a single

FC kernel and a single bias vector, which will be used to

parameterize the inference-time FC3.

4.2. Hierarchical Architectural Design

Some recent vision MLP models [36, 37] show a similar

design pattern: downsampling the inputs aggressively (e.g.,

by 16×) at the very beginning, and stacking multiple blocks

to process the small-sized features. In contrast, we adopt a

572

Authorized licensed use limited to: Tsinghua University. Downloaded on April 14,2023 at 07:32:41 UTC from IEEE Xplore. Restrictions apply.

Table 1. Architectural hyper-parameters of RepMLPNet models

(T for tiny, B for base, D for deep, L for large). Of note is that

RepMLP-D256 is deeper than RepMLP-B256 but narrower so that

they have comparable FLOPs and number of parameters.

Name Input B C S

RepMLP-T224 224×224 [2, 2, 6, 2] 64 [1, 4, 16, 128]
RepMLP-B224 224×224 [2, 2, 12, 2] 96 [1, 4, 32, 128]

RepMLP-T256 256×256 [2, 2, 6, 2] 64 [1, 4, 16, 128]
RepMLP-B256 256×256 [2, 2, 12, 2] 96 [1, 4, 32, 128]
RepMLP-D256 256×256 [2, 2, 18, 2] 80 [1, 4, 16, 128]
RepMLP-L256 256×256 [2, 2, 18, 2] 96 [1, 4, 32, 256]

hierarchical design, which has proven effective by previous

studies on CNNs [20, 33, 35, 42] and Transformers [27].

Specifically, we arrange RepMLP Blocks in four stages,

and the blocks in a stage share the same structural hyper-

parameters. The input images are downsampled by 4×
with an embedding layer, which is implemented by a conv

layer with a kernel size of 4×4 and stride of 4. From a

stage to the next, we use an embedding layer to halve the

width and height of feature maps and double the channels.

Therefore, a RepMLPNet can be instantiated with the fol-

lowing hyper-parameters: the number of RepMLP Blocks

in each stage [B1, B2, B3, B4], the number of channels of

the first stage C (the four stages will have C, 2C, 4C, 8C
channels, respectively), the input resolution H×W (so that

h1 = H/4, w1 = W/4, ..., h4 = H/32, w4 = W/32), and

the number of share-sets of each stage ([S1, S2, S3, S4]).
Considering the number of parameters in FC3 is s(hw)2,

we use a smaller s at an earlier stage.

An advantage of our hierarchical architecture is that the

feature maps produced by any stage can be readily used by

a downstream framework. For example, UperNet [41] re-

quires four levels of feature maps with different sizes, so it

cannot use MLP-Mixer or ResMLP as backbone.

5. Experiments

5.1. ImageNet Classification

We first instantiate a series of RepMLPNets with differ-

ent architectural hyper-parameters, as shown in Table 1.

We evaluate RepMLPNets on ImageNet [8]. All the

RepMLPNets are trained with identical settings: a global

batch size of 256 distributed on 8 GPUs, AdamW [29] op-

timizer with initial learning rate of 0.002, weight decay of

0.1 and momentum of 0.9. We train for only 100 epochs
in total with cosine learning rate annealing, including a 10-

epoch warm-up at the beginning. We use label smoothing of

0.1, mixup [45] with α = 0.4, CutMix [44] with α = 1.0,

and RandAugment [7]. As a series of strong baselines, we

present ResNet-101 [20], ResNeXt-101 [42] and RegNetX-

6.4GF [33] trained with a strong scheme with RandAug-

ment, mixup and label smoothing. We would like the com-

parison to be slightly biased towards the traditional CNNs,

so we train them for 120 epochs. All the models are evalu-

ated with single crop and the throughput (samples/second)

is tested on 2080Ti GPU with a batch size of 128. The BN

layers in CNNs are also fused for the fair comparison.

It should be noted that most of the results reported by

[26, 36, 37, 43] are produced with a long training schedule

of 300 or 400 epochs, or an advanced distillation method

(the DeiT-style training [38]). Therefore, except for the re-

sults cited from the corresponding papers, we train an MLP-

Mixer and a ResMLP-S12 with simple training settings for

a fair comparison (labeled as “our impl” in Table 2). Specif-

ically, the MLP-Mixer is trained with the settings identical

to RepMLPNets; the ResMLP-S12 is trained with the of-

ficial code and the same hyper-parameters as its reported

120-epoch result [37] except that we use a smaller batch

size due to limited resources (but our reproduced accuracy

is 2.7% higher than its reported result [37]).

Compared to the other CNNs and MLPs, we make the

following observations. 1) With fair settings, RepMLPNet

shows superiority over the other MLPs, e.g., RepMLPNet-

T256 outperforms MLP-Mixer (our impl, 256×256 in-

puts) by 0.5% in the accuracy while the FLOPs of the

former is only 1/4 of the latter. 2) With simple training

methods, ResMLP and MLP-Mixer significantly degrade,

e.g., the accuracy of ResMLP-S12 drops by 8.9% (76.6%

→ 67.7%) without the 300-epoch DeiT-style training. 3)
RepMLPNet with 100-epoch training delivers a favorable

accuracy-efficiency trade-off: RepMLPNet-B256 matches

the accuracy of ResMLP-B24 without DeiT-style distilla-

tion, consumes 1/4 training epochs, has only 40% FLOPs

and fewer parameters. 4) With the comparable FLOPs,

MLPs are faster than CNNs, e.g., RepMLPNet-D256 has

higher FLOPs than ResNeXt-101 but runs 1.6× as fast as

the latter. This discovery suggests that MLPs are promising

as high-throughput inference models.

To further demonstrate that FLOPs may not reflect the

throughput [15], we train EfficientNet-B1/B2 [35] with the

aforementioned 120-epoch strong scheme and report the re-

sults in Table 3. Interestingly, though EfficientNets have

very low FLOPs, the actual performance on GPU is infe-

rior: RepMLPNet-T224 has 4× FLOPs as EfficientNet-B1

but runs 1.9× as fast as the latter; with comparable through-

put, the accuracy of RepMLPNet-B256 is 3.6% higher

than EfficientNet-B2. We reckon the high throughput of

RepMLPNet on GPU can be attributed to not only the ef-

ficiency of matrix multiplication but also the simplicity of

architecture hence high degree of parallelism [30].

We then study the effects of two key designs in RepMLP

Block: the Global Perceptron and the set-sharing linear

mapping of FC3. We increase the number of share-sets S or

ablate the Global Perceptron and observe the performance

as well as the model size. Fig. 4 shows that Global Percep-

tron only adds negligible parameters and FLOPs (0.5M) but

573

Authorized licensed use limited to: Tsinghua University. Downloaded on April 14,2023 at 07:32:41 UTC from IEEE Xplore. Restrictions apply.

Table 2. ImageNet Results. The throughput (samples/second) is tested on the same 2080Ti GPU with a batch size of 128.

Model Input resolution Train epochs Top-1 acc FLOPs (B) Params (M) Throughput

RepMLPNet-T224 224 100 76.4 2.8 38.3 1709

ResMLP-S12 (our impl) 224 120 70.4 3.0 15.4 1895

ResMLP-S12 [37] 224 120 67.7 3.0 15.4 -

ResMLP-S12 + DeiT-train [37] 224 400 76.6 3.0 15.4 -

RepMLPNet-T256 256 100 77.5 4.2 58.7 1374

ResMLP-S24 + DeiT-train [37] 224 400 79.4 6.0 30.0 961

RegNetX-6.4GF [33] 224 120 79.6 6.4 26.2 589

RepMLPNet-B224 224 100 80.1 6.7 68.2 816

ResNeXt-101 [42] 224 120 80.2 8.0 44.1 450

ResNet-101 [20] 224 120 79.4 8.1 44.4 606

RepMLPNet-D256 256 100 80.8 8.6 86.9 715

RepMLPNet-B256 256 100 81.0 9.6 96.5 708

S2-MLP-deep [43] 224 300 80.7 10.5 51 -

RepMLPNet-L256 256 100 81.7 11.5 117.7 588

MLP-Mixer-B/16 [36] 224 300 76.4 12.6 59 -

S2-MLP-wide [43] 224 300 80.0 14.0 71 -

MLP-Mixer-B/16 (our impl) 224 100 76.7 12.6 59.8 632

gMLP-B [26] 224 300 81.6 15.8 73 -

MLP-Mixer-B/16 (our impl) 256 100 77.0 16.4 60.4 578

ResMLP-B24 + DeiT-train [37] 224 400 81.0 23.0 115.7 -

Table 3. Comparisons with EfficientNets. The throughput (sam-

ples/second) is tested on 2080Ti GPU with a batch size of 128.

Model Input Top-1 acc FLOPs (B) Throughput

RepMLPNet-T224 224 76.4 2.8 1709
EfficientNet-B1 240 76.3 0.7 912

RepMLPNet-B256 256 81.0 9.6 708
EfficientNet-B2 260 77.4 1.0 707

Table 4. Ablation studies on RepMLP-T224.

S Global Perceptron Top-1 acc FLOPs Params

[1, 4, 16, 128] 75.78 2.7B 37.8M

[1, 4, 16, 128] � 76.48 +0.5M 38.3M

[2, 8, 32, 256] 75.94 2.7B 66.7M

[2, 8, 32, 256] � 77.19 +0.5M 67.2M

improves the accuracy by around 1%. This is expected as

the Local Perceptron and Channel Perceptron do not com-

municate information across channels, which is compen-

sated by Global Perceptron. By increasing S, fewer chan-

nels will be sharing the same set of mapping parameters, re-

sulting in a significant performance gain without any extra

FLOPs. Therefore, for the application scenarios where the

speed-accuracy trade-off is the primary concern while the

model size is not (e.g., in high-power computing centers),

we may increase S for higher accuracy.

5.2. Locality Injection Matters

We conduct ablation studies on CIFAR-100 [23] and

ImageNet to evaluate Locality Injection. Specifically, we

build a small RepMLPNet with two stages, B = [6, 6],
S = [8, 32], C = 128. As another benchmark model,

we scale down ResMLP-12 by reducing the channel dimen-

sions. Besides, we change the downsampling ratio at the

very beginning of all the models to 2×, so that the embed-

ding dimension becomes 16×16, which is close to the case

of ResMLP designed for ImageNet (14×14).

For the ResMLP, we add 1×1 and 3×3 branches parallel

to the spatial aggregation layer. Note that the spatial aggre-

gation in ResMLP and MLP-Mixer is equivalent to our set-

sharing FC with only one share-set (i.e., all the channels use

the same set of (hw)2 parameters). In this case, all the conv

layers should have s = 1 accordingly, which means a depth-

wise conv with one input channel and one output channel.

Consequently, adding a 1×1 conv introduces only five pa-
rameters (one for the 1×1×1×1 kernel and four for the

single-channel BN layer including μ, σ, γ, β), so the whole

model has only 5 × 12 = 60 extra parameters. Similarly,

adding a 3×3 layer brings only (3 × 3 + 4) × 12 = 156
parameters. Though the extra parameters and FLOPs are

negligible, the speed is observably slowed down (e.g., with

1×1 and 3×3 conv, the training-time ResMLP-12 has only

0.4% higher FLOPs but runs 37% slower) due to the re-

duction of degree of parallelism [30], which highlights the

significance of merging the conv layers into the FC. For the

RepMLPNet, the extra parameters brought by adding a 3×3

conv is (3× 3 + 4)s due to the set-sharing mechanism.

All the ResMLPs and RepMLPNets on CIFAR-100 are

trained with the same learning rate schedule and weight

decay as described before, a batch size of 128 on a sin-

gle GPU, and the standard data augmentation: padding to

40×40, randomly cropping to 32×32 and left-right random

flipping. Predictably, the performance is not satisfactory

since CIFAR-100 is too small for the FC layer to learn

the inductive bias from the data. This discovery is con-

sistent with the concurrent works [36, 37] which highlight

574

Authorized licensed use limited to: Tsinghua University. Downloaded on April 14,2023 at 07:32:41 UTC from IEEE Xplore. Restrictions apply.

Table 5. Studies on the effect of Locality Injection. The throughput is tested on the same 2080Ti GPU with a batch size of 128 and

measured in samples/second. Note the throughput is observably reduced by adding the conv layers with negligible FLOPs.

Dataset Model 1× 1 conv 3× 3 conv Top-1 acc FLOPs Params Throughput

CIFAR-100

ResMLP-12 55.58 1812M 7.1M 2561

ResMLP-12 � 57.96 +786K +60 2093

ResMLP-12 � 63.76 +7077K +156 1858

ResMLP-12 � � 65.09 +7864K +216 1619

CIFAR-100

RepMLPNet 59.07 468M 8.3M 6273

RepMLPNet � 60.73 +294K +720 5872

RepMLPNet � 65.36 +2654K +2640 5721

RepMLPNet � � 67.43 +2949K +3360 5328

ImageNet

RepMLPNet-T224 74.33 2.79B 38.3M 1709

RepMLPNet-T224 � � 76.48 +10M +20K 1354

RepMLPNet-D256 78.58 8.61B 86.94M 715

RepMLPNet-D256 � � 80.88 +26M +60k 570

that MLPs show inferior performance on small datasets.

Adding the conv branches only during training significantly

boost the accuracy even though they are eventually elimi-

nated. Impressively, though the ResMLP has only 216 ex-
tra training-time parameters, the accuracy raises by 9.51%,

and we observe a similar phenomenon on RepMLPNet. We

then experiment with RepMLP-T224/D256 on ImageNet.

With the Local Perceptron removed, the accuracy decreases

by 2.15% and 2.30%, respectively. The gap is narrower

compared to the results on CIFAR, which is expected be-

cause ImageNet is significantly larger, allowing the model

to learn some inductive bias from data [36]). In summary, as

Locality Injection works on different models and datasets,

we conclude that it is a universal tool for vision MLPs.

5.3. Semantic Segmentation

The hierarchical design of RepMLPNet qualifies it as a

backbone for the off-the-shelf downstream frameworks that

require feature maps of different levels, e.g., UperNet [41].

However, transferring an ImageNet-pretrained MLP to the

downstream task is challenging. Taking Cityscapes [6]

semantic segmentation as the example, we reckon there

are two primary obstacles for using an MLP backbone.

1) The backbone is usually trained with low resolution

(e.g., 256×256 on ImageNet) then transferred to the high-

resolution task (e.g., 1024×2048 of Cityscapes). However,

the parameter count of MLP is coupled with the input res-

olution (by our specific definition of “MLP”), making the

transfer difficult. 2) The resolution for training (512×1024

on Cityscapes) and testing (1024×2048) may not be the

same, so the backbone has to adapt to a variable resolution.

In brief, our solution is to split the inputs into non-

overlapping patches, feed the patches into the backbone,

restore the output patches to form the feature maps, which

are then fed into the downstream frameworks. For exam-

ple, the first RepMLP Block of RepMLPNet-D256 works

with 64×64 inputs because the FC kernel is (642, 642). On

Cityscapes, we can split the feature map into several 64×64

patches and feed the patches into the RepMLP Block. How-

Table 6. Results on Cityscapes val set. By replacing the 3×3

downsampling layers with 5×5, the mIoU further increases.

Backbone FLOPs mIoU

ResNet-101 2049.82G 79.03

RepMLPNet-D256 1960.01G 76.27

RepMLPNet-D256 (conv5) 1960.16G 77.12

ever, doing so breaks the correlations among patches hence

hinders a global understanding of the semantic information.

Accordingly, we propose to replace the embedding (2×2

conv) layers by regular conv (3×3 conv) layers to commu-

nicate information across the patch borders. Interestingly,

one may worry such a strategy would yield poor results at

the edges of patches, but we observe that the predictions at
the edges are as good as the other parts (see the Appendix).

As the first attempt to use an MLP as the backbone for

Cityscapes semantic segmentation, RepMLPNet delivers

promising results (Table 6). By further replacing the 3×3

downsampling layers by 5×5, the mIoU improves with neg-

ligible extra FLOPs, which is expected as a larger convolu-

tion enables better communications among patches. Specif-

ically, we use the implementation of UperNet [41] in MM-

Segmentation [5] and the 80K-iteration training schedule.

We present the details and analysis in the Appendix.

6. Limitations and Conclusions
This paper proposes a re-parameterization method to in-

ject locality into FC layers, a novel MLP-style block, and

a hierarchical MLP architecture. RepMLPNet is favorable

compared to several concurrently proposed MLPs in terms

of the accuracy-efficiency trade-off and the training costs.

However, as an MLP, RepMLPNet has several noticeable

common weaknesses. 1) Similar to the Vision Transform-

ers, MLPs are easy to overfit, requiring strong data augmen-

tation and regularization techniques. 2) On the low-power

devices like mobile phones, the model size of MLPs may be

an obstacle. 3) Though the results of our first attempt to use

MLP backbone for semantic segmentation are promising,

we observe no superiority over the traditional CNNs.

575

Authorized licensed use limited to: Tsinghua University. Downloaded on April 14,2023 at 07:32:41 UTC from IEEE Xplore. Restrictions apply.

References
[1] Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, and Han

Hu. Gcnet: Non-local networks meet squeeze-excitation net-

works and beyond. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision Workshops, pages

0–0, 2019. 1

[2] Kumar Chellapilla, Sidd Puri, and Patrice Simard. High per-

formance convolutional neural networks for document pro-

cessing. In Tenth International Workshop on Frontiers in
Handwriting Recognition. Suvisoft, 2006. 4

[3] Shoufa Chen, Enze Xie, Chongjian Ge, Ding Liang, and Ping

Luo. Cyclemlp: A mlp-like architecture for dense prediction.

arXiv preprint arXiv:2107.10224, 2021. 2

[4] Minsik Cho and Daniel Brand. Mec: memory-efficient con-

volution for deep neural network. In International Confer-
ence on Machine Learning, pages 815–824. PMLR, 2017.

4

[5] MMSegmentation Contributors. MMSegmentation:

Openmmlab semantic segmentation toolbox and

benchmark. https : / / github . com / open -
mmlab/mmsegmentation, 2020. 8

[6] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In 2016
IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016,

pages 3213–3223. IEEE Computer Society, 2016. 8

[7] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V

Le. Randaugment: Practical automated data augmenta-

tion with a reduced search space. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 702–703, 2020. 6

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical im-

age database. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 248–255.

IEEE, 2009. 1, 6

[9] Xiaohan Ding, Guiguang Ding, Yuchen Guo, and Jungong

Han. Centripetal sgd for pruning very deep convolutional

networks with complicated structure. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 4943–4953, 2019. 3

[10] Xiaohan Ding, Guiguang Ding, Yuchen Guo, Jungong Han,

and Chenggang Yan. Approximated oracle filter pruning for

destructive cnn width optimization. In International Confer-
ence on Machine Learning, pages 1607–1616, 2019. 3

[11] Xiaohan Ding, Yuchen Guo, Guiguang Ding, and Jungong

Han. Acnet: Strengthening the kernel skeletons for power-

ful cnn via asymmetric convolution blocks. In Proceedings
of the IEEE International Conference on Computer Vision,

pages 1911–1920, 2019. 2, 3

[12] Xiaohan Ding, Tianxiang Hao, Jungong Han, Yuchen Guo,

and Guiguang Ding. Manipulating identical filter redun-

dancy for efficient pruning on deep and complicated cnn.

arXiv preprint arXiv:2107.14444, 2021. 3

[13] Xiaohan Ding, Tianxiang Hao, Jianchao Tan, Ji Liu, Jungong

Han, Yuchen Guo, and Guiguang Ding. Resrep: Lossless

cnn pruning via decoupling remembering and forgetting. In

Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 4510–4520, 2021. 2, 3

[14] Xiaohan Ding, Xiangyu Zhang, Jungong Han, and Guiguang

Ding. Diverse branch block: Building a convolution as an

inception-like unit. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages

10886–10895, 2021. 2, 3

[15] Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han,

Guiguang Ding, and Jian Sun. Repvgg: Making vgg-style

convnets great again. arXiv preprint arXiv:2101.03697,

2021. 2, 3, 6

[16] Xiaohan Ding, Xiangyu Zhang, Yizhuang Zhou, Jungong

Han, Guiguang Ding, and Jian Sun. Scaling up your ker-

nels to 31x31: Revisiting large kernel design in cnns. arXiv
preprint arXiv:2203.06717, 2022. 2, 3, 4, 5

[17] Xiaohan Ding, Xiangxin Zhou, Yuchen Guo, Jungong Han,

Ji Liu, et al. Global sparse momentum sgd for pruning very

deep neural networks. Advances in Neural Information Pro-
cessing Systems, 32, 2019. 4

[18] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 1, 3, 5

[19] Song Han, Jeff Pool, John Tran, and William Dally. Learning

both weights and connections for efficient neural network. In

Advances in Neural Information Processing Systems, pages

1135–1143, 2015. 4

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 2, 6, 7

[21] Dan Hendrycks and Kevin Gimpel. Gaussian error linear

units (gelus). arXiv preprint arXiv:1606.08415, 2016. 5

[22] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In International Conference on Machine Learn-
ing, pages 448–456, 2015. 2, 5

[23] Alex Krizhevsky and Geoffrey Hinton. Learning multiple

layers of features from tiny images. 2009. 7

[24] Andrew Lavin and Scott Gray. Fast algorithms for convo-

lutional neural networks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages

4013–4021, 2016. 4

[25] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets. arXiv
preprint arXiv:1608.08710, 2016. 3

[26] Hanxiao Liu, Zihang Dai, David R So, and Quoc V Le. Pay

attention to mlps. arXiv preprint arXiv:2105.08050, 2021. 1,

3, 6, 7

[27] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng

Zhang, Stephen Lin, and Baining Guo. Swin transformer:

Hierarchical vision transformer using shifted windows. In

576

Authorized licensed use limited to: Tsinghua University. Downloaded on April 14,2023 at 07:32:41 UTC from IEEE Xplore. Restrictions apply.

Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10012–10022, 2021. 2, 3, 5, 6

[28] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and

Trevor Darrell. Rethinking the value of network pruning. In

Yoshua Bengio and Yann LeCun, editors, 7th International
Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. 3

[29] Ilya Loshchilov and Frank Hutter. Decoupled weight decay

regularization. arXiv preprint arXiv:1711.05101, 2017. 6

[30] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.

Shufflenet v2: Practical guidelines for efficient cnn architec-

ture design. In Proceedings of the European conference on
computer vision (ECCV), pages 116–131, 2018. 2, 6, 7

[31] Michael Mathieu, Mikael Henaff, and Yann LeCun. Fast

training of convolutional networks through ffts. arXiv
preprint arXiv:1312.5851, 2013. 4

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-

perative style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703, 2019. 3

[33] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick,

Kaiming He, and Piotr Dollár. Designing network design

spaces. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10428–

10436, 2020. 6, 7

[34] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 2

[35] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking

model scaling for convolutional neural networks. arXiv
preprint arXiv:1905.11946, 2019. 6

[36] Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lu-

cas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung,

Daniel Keysers, Jakob Uszkoreit, Mario Lucic, et al. Mlp-

mixer: An all-mlp architecture for vision. arXiv preprint
arXiv:2105.01601, 2021. 1, 2, 3, 5, 6, 7, 8

[37] Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu

Cord, Alaaeldin El-Nouby, Edouard Grave, Gautier Izac-

ard, Armand Joulin, Gabriel Synnaeve, Jakob Verbeek, et al.

Resmlp: Feedforward networks for image classification with

data-efficient training. arXiv preprint arXiv:2105.03404,

2021. 1, 2, 3, 5, 6, 7

[38] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco

Massa, Alexandre Sablayrolles, and Hervé Jégou. Training

data-efficient image transformers & distillation through at-

tention. In International Conference on Machine Learning,

pages 10347–10357. PMLR, 2021. 1, 3, 6

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Il-

lia Polosukhin. Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017. 1

[40] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 7794–7803, 2018. 1

[41] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and

Jian Sun. Unified perceptual parsing for scene understand-

ing. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 418–434, 2018. 3, 6, 8

[42] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1492–1500,

2017. 6, 7

[43] Tan Yu, Xu Li, Yunfeng Cai, Mingming Sun, and Ping Li.

S2-mlp: Spatial-shift mlp architecture for vision. arXiv
preprint arXiv:2106.07477, 2021. 1, 6, 7

[44] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk

Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regular-

ization strategy to train strong classifiers with localizable fea-

tures. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 6023–6032, 2019. 6

[45] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and

David Lopez-Paz. mixup: Beyond empirical risk minimiza-

tion. arXiv preprint arXiv:1710.09412, 2017. 6

577

Authorized licensed use limited to: Tsinghua University. Downloaded on April 14,2023 at 07:32:41 UTC from IEEE Xplore. Restrictions apply.

