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Abstract—Thanks to large-scale labeled training data, deep
neural networks (DNNs) have obtained remarkable success in
many vision and multimedia tasks. However, because of the
presence of domain shift, the learned knowledge of the well-
trained DNNs cannot be well generalized to new domains or
datasets that have few labels. Unsupervised domain adaptation
(UDA) studies the problem of transferring models trained on
one labeled source domain to another unlabeled target domain.
In this article, we focus on UDA in visual emotion analysis
for both emotion distribution learning and dominant emotion
classification. Specifically, we design a novel end-to-end cycle-
consistent adversarial model, called CycleEmotionGAN++. First,
we generate an adapted domain to align the source and tar-
get domains on the pixel level by improving CycleGAN with a
multiscale structured cycle-consistency loss. During the image
translation, we propose a dynamic emotional semantic consis-
tency loss to preserve the emotion labels of the source images.
Second, we train a transferable task classifier on the adapted
domain with feature-level alignment between the adapted and
target domains. We conduct extensive UDA experiments on the
Flickr-LDL and Twitter-LDL datasets for distribution learning
and ArtPhoto and Flickr and Instagram datasets for emotion
classification. The results demonstrate the significant improve-
ments yielded by the proposed CycleEmotionGAN++ compared
to state-of-the-art UDA approaches.
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I. INTRODUCTION

IT HAS been revealed that visual content, such as
images and videos, can evoke strong emotions for human

beings [1]. With the popularization of various mobile devices,
cameras, and the Internet, people have become accustomed
to recording their activities, sharing their experiences, and
expressing their opinions by using images and videos appear-
ing alongside text in social networks [2]. The generation
of a large amount of multimedia data has made it conve-
nient for researchers to process and analyze visual content.
Understanding the implied emotions in the data is of great
importance to behavioral sciences and enables various appli-
cations, including blog recommendation, decision making, and
appreciation of art [3].

Recognizing the emotions induced by image content is often
referred to as visual emotion analysis (VEA) [5]. This task
mainly faces two challenges: 1) the affective gap [6] and 2)
perception subjectivity [7], [8]. The former one reveals that
the extracted feature-level information is inconsistent with the
high-level emotions felt by human beings; while the latter indi-
cates that due to different personal and contextual factors, such
as education background, culture, and personality, different
people may produce different emotions after viewing the same
image [9], [10]. In order to bridge the affective gap, a variety
of handcrafted features has been designed, such as color and
texture [11], shape [12], principles-of-art [6], and adjective–
noun pairs [3]. These methods mainly map the image content
to one dominant emotion category (DEC). To deal with the
subjectivity issue, either personalized emotion perception is
predicted for each viewer [8] or an emotion distribution is
learned for each image [13]–[15].

Recently, convolutional neural networks (CNNs) have been
employed to deal with the issue of mapping the image content
to emotions [5], [7], [13], [16], [17]. These CNN-based VEA
methods can perform well on large-scale training datasets
with labels. However, due to the presence of a domain shift
or dataset bias [18], the performance of a model directly
transferred from one labeled domain to another unlabeled
domain drops significantly [19], as shown in Figs. 1 and 2.

2168-2267 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 14,2023 at 07:27:56 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-5843-6411
https://orcid.org/0000-0002-5777-781X
https://orcid.org/0000-0002-6887-2046
https://orcid.org/0000-0003-0219-3443
https://orcid.org/0000-0003-0137-9975
https://orcid.org/0000-0003-1298-8389
https://orcid.org/0000-0003-3868-8501


ZHAO et al.: EMOTIONAL SEMANTICS-PRESERVED AND FEATURE-ALIGNED CycleGAN 10001

Fig. 1. Example of domain shift when performing the emotion distribu-
tion learning task. The classifier trained on Twitter-LDL is tested on the top
image from Twitter-LDL and the bottom image from Flickr-LDL. The objects
displayed, from left to right, are: the original image, the predicted emotion
distribution, and the ground truth distribution. (a) Train on Twitter-LDL and
test on Twitter-LDL. (b) Train on Twitter-LDL and test on Flickr-LDL.

Fig. 2. Example of domain shift when performing dominant emotion clas-
sification. The overall accuracy of a state-of-the-art model (He et al. [4])
drops from 43.67% (trained on the target ArtPhoto) to 29.11% (trained only
on the source FI). We propose CycleEmotionGAN++, which achieves sig-
nificant performance improvements (11.40%) over the source-trained model
baselines.

Domain adaptation (DA) is a machine-learning paradigm that
tries to train a model on a source domain that can per-
form well on a different, but related, target domain. To
the best of our knowledge, although DA has been used
in various vision tasks [19], [20], it has rarely been used
for VEA.

In this article, we study the unsupervised DA (UDA)
problem of analyzing visual emotions in one labeled source
domain and adapting it to another unlabeled target domain.
A novel cycle-consistent adversarial UDA model, called
CycleEmotionGAN++, is proposed for dominant emotion
classification and emotion distribution learning. First, we gen-
erate an intermediate domain to align the source and target
domains on the pixel level based on the generative adver-
sarial network (GAN) [21]. Since this mapping from the
source domain to the intermediate domain is highly under-
constrained [22], we couple an inverse mapping and a cycle-
consistency loss to enforce the reconstructed source to be as
similar as possible to the original source. We add a multiscale
structural similarity loss to the original cycle-consistency loss
to better preserve the high-frequency-detailed information, and
this combination is defined as the mixed cycle-consistency

loss. In addition, we complement the mixed CycleGAN loss
with a dynamic emotional semantic consistency (DESC) loss
that penalizes large semantic changes between the adapted
and source images. Two different classifiers are trained on the
source domain and adapted domain, respectively, to dynam-
ically preserve the semantic information. In order to make
the adapted domain and target domain as similar as possible,
we also add feature-level alignment by training a discrim-
inator to maximize the probability of correctly classifying
feature maps from adapted images and target images. In this
way, the CycleEmotionGAN++ model can adapt the source-
domain images to appear as if they were drawn from the target
domain. Eventually, by optimizing the mixed CycleGAN loss,
DESC loss, feature-level alignment loss, and task classification
loss alternately, a transferable CycleEmotionGAN++ model
is learned.

In summary, the contributions of this article are three-fold.
1) We propose to adapt visual emotions from one source

domain to another target domain by using a novel end-
to-end cycle-consistent adversarial model. To the best of
our knowledge, this is the first work on UDA for both
emotion distribution learning and dominant emotion
classification tasks.

2) We develop a novel adversarial model, called
CycleEmotionGAN++, by alternately optimizing
the mixed CycleGAN loss, DESC loss, feature-level
alignment loss, and task classification loss. The adapted
images are indistinguishable from the target images,
thanks to the mixed CycleGAN loss that can preserve
the contrast and detailed information better by adding
the multiscale structural similarity, the DESC loss that
can preserve the annotation information of the source
images, and the feature-level alignment loss that can
align adapted and target images on the feature level.

3) We conduct extensive experiments on four datasets:
a) Twitter-LDL and b) Flickr-LDL for emotion dis-
tribution learning and c) ArtPhoto and Flickr and
d) Instagram (FI) for dominant emotion classification.
The results demonstrate the significant improvements
yielded by CycleEmotionGAN++.

CycleEmotionGAN++ is extended from CycleEmotion-
GAN, which was previously introduced in our AAAI 2019
paper [30]. The improvements include the following three
aspects. First, the image translation is conducted with mixed
CycleGAN by enforcing the multiscale structural similarity
and with DESC; feature-level alignment is added to better
align the source and target domains. Second, we conduct
more UDA experiments for both emotion distribution learn-
ing and dominant emotion classification. Third, we provide a
more comprehensive review to introduce the background and
comparison.

II. RELATED WORK

Emotion Representation: Two models are typically
employed by psychologists to represent emotions: 1) cate-
gorical emotion states (CES) and 2) dimensional emotion
space (DES) [10]. CES models usually consider classifying
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emotions into several basic categories, such as Mikels’ eight
emotions (amusement, anger, awe, contentment, disgust,
excitement, fear, and sadness). DES models usually employ
a Cartesian space to represent emotions, such as the 3-D
valence-arousal-dominance (VAD) space [31]. CES is intuitive
for human beings to understand in labeling emotions for
images, while DES is more abstract and fine grained. In this
article, the classic Mikels’ eight emotions are employed as
our emotion model.

Visual Emotion Analysis: Similar to other machine learning
and computer vision tasks, VEA also involves feature extrac-
tion and classifier training [10], [32]. While classifier training
is mainly based on the existing machine-learning algorithms,
the main focus in VEA is extracting discriminative features.
In the early stage, researchers mainly handcrafted features
on different levels [33], including low-level features, such as
color and texture [11], shape [12]; mid-level features, such
as principles-of-art [6], composition [11], and attributes [34];
and high-level features, such as skins [11] and adjective–noun
pairs [3], [35]. Some other methods try to combine various
features on different levels [14], [36]. A learning-based visual
affective filtering framework has been proposed to synthe-
size user-specified emotions onto arbitrary input images or
videos [37].

In recent years, CNNs have had great success on many
machine-learning tasks including VEA. You et al. [38]
built a large dataset for VEA and designed a progres-
sive CNN architecture to make use of noisily labeled data
for sentiment polarity classification. Various methods have
been proposed to predict the probability distributions of
image emotions [9], [13]–[15], [29], [39]. In order to predict
emotion distributions more rapidly and accurately, some meth-
ods [7], [29] fine tune CNN models pretrained on ImageNet.
You et al. [40] and Zhou et al. [30] also fine tuned a pre-
trained CNN to classify visual emotions on a new large-scale
FI dataset [38], respectively. Yang et al. [17] proposed weakly
supervised coupled networks (WSCNet) with two branches:
1) sentiment map detection and 2) coupled sentiment classifica-
tion to improve the classification accuracy. Local information
is also considered in [5] and [41]. Rao et al. [42] learned
multilevel deep representations (MldrNet), including aesthet-
ics CNN, AlexNet, and texture CNN. Yang et al. [43] optimized
both retrieval and classification losses by using the sentiment
constraints adapted from the triplet constraints, which is able
to explore the hierarchical relation of emotion labels.

The above mapping methods between image content and
emotions are all performed in a supervised manner. Refer
to [10] for a comprehensive survey on VEA. In this article,
we study how to adapt the models trained from one labeled
source domain to another unlabeled target domain for VEA.

Unsupervised Domain Adaptation: In the early years, DA
was introduced in a transform-based adaptation technique
for object recognition [44]. Torralba and Efros [18] con-
ducted a comparison study using a set of popular datasets
and conducted a deep discussion regarding dataset bias.
For UDA, it has been explored in [20] for the image
classification task with extensive reviews of some nondeep
approaches. These methods mainly focused on feature space

alignment through minimizing the distance between the source
domain and target domain, either by sample reweighting
techniques [45], [46] or by constructing intermediate subspace
representations [47], [48].

Recent efforts have shifted to employing deep models. In
order to represent the source and target domains, Zhou et al. [49]
proposed a conjoined architecture with two streams for UDA.
Labeled source data are used for the supervised task loss and
deep UDA models are usually trained jointly with another loss,
such as a discrepancy loss, adversarial loss, or self-supervision
loss, to deal with domain shift.

Discrepancy-based methods mainly measure the discrep-
ancy directly between the source and target domains on
corresponding activation layers, such as the multiple kernel
variant of maximum mean discrepancies on the fully con-
nected (FC) layers [50], correlation alignment (CORAL) [51],
and geodesic CORAL [52] on the last FC layer, CORAL
on both the last conv layer and FC layer [49], and con-
trastive domain discrepancy on multiple FC layers [53].
Adversarial discriminative models usually employ an adver-
sarial objective with respect to a domain discriminator to
encourage domain confusion. Representation discriminators
include the feature discriminator [26], [54], output discrim-
inator [26], [55], conditional discriminator [56], joint dis-
criminator [57], prototypical discriminator [58], and gra-
dient reversal layers [59]. Adversarial generative models
combine the domain discriminative model with a gener-
ative component based on GAN [21] and its invariants,
such as coupled GANs (CoGAN) [60], SimGAN [27],
and CycleGAN [22], [28], [61]. Self-supervision-based meth-
ods incorporate auxiliary self-supervised learning tasks into
the original task network to bring the source and target
domains closer. The commonly employed self-supervision
visual tasks include reconstruction [62]–[64], image rotation
prediction [65], [66], and jigsaw prediction [67].

All these methods focus on objective tasks (i.e., with objec-
tive labels), such as digit recognition, gaze estimation, object
classification, and scene segmentation. Zhao et al. [29] adapted
a subjective variable image emotion to learn discrete distri-
butions. Later, Zhao et al. [30] studied the UDA problem in
image emotion classification. In this article, we study the UDA
problem in both image emotion classification and emotion dis-
tribution learning tasks. The comparison between the proposed
CycleEmotionGAN++ and the existing UDA methods is sum-
marized in Table I, from which we can see the advantages of
CycleEmotionGAN++ relative to other approaches.

Image Style Transfer: Image style transfer that aims
to transfer visual appearance between images is closely
related to DA and has achieved remarkable success
recently [22]–[25], [68]–[71]. Reinhard et al. [68] proposed
a method by using the lαβ space to minimize correla-
tion between channels to simplify the transfer process.
Hwang et al. [70] proposed a scattered point interpolation
scheme using moving least squares to deal with misalignments.
Rabin et al. [71] proposed an image color transfer method
based on the relaxed discrete optimal transport techniques.
Zhu et al. [22] proposed CycleGAN by adding a constraint
generator and corresponding loss to assure the transfer learning
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Fig. 3. Framework of the proposed CycleEmotionGAN++ model for visual emotion adaptation from one labeled source domain to another unlabeled target
domain. The black solid lines with arrows indicate the operations in the training stage. The dashed lines with arrows correspond to different losses. For clarity,
the target cycle is omitted.

TABLE I
COMPARISON OF THE PROPOSED CYCLEEMOTIONGAN++ MODEL WITH

SEVERAL STATE-OF-THE-ART DA METHODS. THE FULL NAMES OF

EACH ATTRIBUTE FROM THE SECOND TO THE LAST COLUMN ARE

PIXEL-LEVEL ALIGNMENT, FEATURE-LEVEL ALIGNMENT, ESC, CYCLE

CONSISTENCY, MULTISCALE STRUCTURAL SIMILARITY, EMOTION

DISTRIBUTION LEARNING TASK, AND DOMINANT EMOTION

CLASSIFICATION TASK, RESPECTIVELY

process. Yan et al. [23] introduced an image descriptor to
achieve semantics-aware photo enhancement (SAPE). Some
methods specifically designed for emotion color transfer have
emerged. Liu et al. [24] investigated emotional image color
transfer (EICT) in a network with four modules to make the
enhancement results meet the user’s emotions. Liu and Pei [25]
studied texture-aware emotional color transfer (TAECT) to
adjust an image to a reference one by considering the tex-
ture information. These image style transfer methods might
not perform well for DA since they do not explicitly align the
distributions between different domains.

III. PROPOSED CYCLEEMOTIONGAN++MODEL

In this article, we focus on UDA for VEA from one source
domain with emotion labels to another target domain without
any labels. Suppose the source images and corresponding emo-
tion labels drawn from the source-domain distribution PS(x, y)

are xS and yS, respectively, and target images drawn from the
target-domain distribution PT(x) are xT . Our objective is to

train a model that can map an image from the target domain
to L (8 in our setting) classes of emotion categories.

The framework of the proposed CycleEmotionGAN++
model is shown in Fig. 3. The main idea is to train a mapping
network GST : xS → xT , which is used to generate adapted
images x′S from source images, with the requirement that the
adapted images x′S are indistinguishable from the target images
xT by the discriminator DT . Because the generator mapping
GST is underconstrained and unstable [22], we impose some
constraints. That is, an inverse mapping GTS is employed to
reconstruct the source images from the adapted images. A
cycle-consistency loss is used to enforce that the reconstructed
images x′′S and the source images xS are as close as possible.
In order to overcome the drawbacks of a traditional cycle-
consistency loss, the multiscale structural similarity is added to
the loss. There is a similar cycle from the target to the source.
In order to make the adapted images and target images simi-
lar, we should ensure that they are similar not only on a pixel
level but also on a feature level. So, we train another discrim-
inator Dfeat to perform a feature-level alignment. To preserve
the emotion labels of the source images, we propose DESC
loss with two different classifiers to penalize large semantic
differences between the adapted and source images. In this
way, the CycleEmotionGAN++ model can adapt the source-
domain images to be indistinguishable from the target domain,
while preserving the annotation information. Finally, we train
the task classifier F′S on the adapted dataset {x′S, yS} by con-
sidering that the adapted images x′S and target images xT are
from the same distribution.

A. Mixed CycleGAN Loss

CycleGAN [22] aims to learn two mappings GST : xS → xT

and GTS : xT → xS between two domains S and T , given
training samples xS and xT . Meanwhile, two discriminators DT
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and DS are trained, where DT tries to maximize the probability
of correctly classifying target images xT and adapted images
x′S, while the generator GST tries to generate images to fool
DT . DS and GTS perform similar operations. As in [22], the
CycleGAN loss contains two terms. One is the adversarial
loss [21] that matches the distribution of generated images to
the data distribution in the target domain

LGAN(GST , DT , xS, xT) = ExT∼PT

[
log DT(xT)

]

+ ExS∼PS

[
log(1− DT(GST(xS)))

]

(1)

LGAN(GTS, DS, xT , xS) = ExS∼PS

[
log DS(xS)

]

+ ExT∼PT

[
log(1− DS(GTS(xT)))

]
.

(2)

The other is a cycle-consistency loss that ensures the learned
mappings GST and GTS are cycle consistent, preventing them
from contradicting each other so that the reconstructed image
is close to the original image, which means GTS(GST(xS)) ≈
xS and GST(GTS(xT)) ≈ xT . The difference is penalized by
using the L1 norm and according to [22], the cycle-consistency
loss is defined as

Lcyc(GST , GTS) = ExS∼PS‖GTS(GST(xS))− xS‖1
+ ExT∼PT‖GST(GTS(xT))− xT‖1. (3)

According to [72], the L1 norm loss can preserve the lumi-
nance and color of the images. But it does not perform well
in preserving the high-frequency-detailed information. Based
on a top-down assumption [72] that the human visual system
(HVS) is highly adapted for extracting structural information
from the scene, a measure of structural similarity (SSIM) that
considers luminance, contrast, and structure information is a
good approximation of the perceived image quality. By con-
sidering HVS, SSIM can obtain more high-frequency-detailed
information that preserves the contrast better. In addition,
multiscale structural similarity (MS-SSIM) can overcome the
drawback of SSIM in facing different viewing conditions and
scales. However, MS-SSIM is not particularly sensitive to uni-
form biases, which can cause changes in brightness or shifts
of colors. So, we can use MS-SSIM combined with the L1
norm as the mixed cycle-consistency loss to preserve both the
detailed information and brightness of images

Lmixed−cyc(GST , GTS) = α · (LMS(GTS(GST(xS)), xS)

+ LMS(GST(GTS(xT)), xT))

+ (1− α) · Lcyc. (4)

According to [73], MS-SSIM is defined as

LMS(x, y) = [
lM(x, y)

]αM ·
M∏

j=1

[
cj(x, y)

]βj
[
sj(x, y)

]γj (5)

where the exponents αM , βj, and γj are used to adjust the
relative importance of different components and M is the
scale number [73]. Several parameters in this equation are
preserved: luminance, contrast, and structure comparison that
are defined as

l(x, y) = 2μxμy + C1

μ2
x + μ2

y + C1
(6)

c(x, y) = 2σxσy + C2

σ 2
x + σ 2

y + C2
(7)

s(x, y) = σxy + C3

σxσy + C3
(8)

where μx and μy are the means of x and y, σ 2
x and σ 2

y are
the variance of x and y, σxy is the covariance of x and y, and
C1, C2, and C3 are small constants given by C1 = (K1L)2,
C2 = (K2L)2, and C3 = C2/2, respectively. L is the dynamic
range of the pixel values, and K1 � 1 and K2 � 1 are two
scalar constants.

Therefore, the objective of the mixed CycleGAN loss is

LmCycleGAN = LGAN(GST , DT , xS, xT)

+ LGAN(GTS, DS, xT , xS)

+ βLmixed−cyc(GST , GTS) (9)

where β controls the relative importance of the GAN loss with
respect to the mixed cycle-consistency loss.

B. Dynamic Emotional Semantic Consistency Loss

The classifier F′S is trained based on the adapted images
and the emotion labels of corresponding source images with
the assumption that the emotion labels do not change dur-
ing the adaptation process. However, this assumption is not
always valid. In order to preserve the emotion labels of the
source images, we add a DESC loss. That is, we try to enforce
the predicted emotions of the source images xS and adapted
images x′S to be as close as possible. Since we have already
known that source images and adapted images have different
styles, we use two different classifiers to compute the loss.
For source images, we use FS that is trained on the source
domain; for adapted images, we use F′S that is trained on the
adapted domain. The DESC loss is defined as

LDESC(GST) = ExS∼PS d
(
FS(xS), F′S(GST(xS))

)
(10)

LDESC(GTS) = ExT∼PT d
(
F′S(xT), FS(GTS(xT))

)
(11)

where d(·, ·) is a function that measures the distance between
two emotion labels. In this article, we define d in two ways.
The first one is using the symmetric Kullback–Leibler (SKL)
divergence to measure the difference of two distributions p
and q

SKL(p‖q) = KL(p‖q)+ KL(q‖p) (12)

KL(p‖q) =
L∑

l=1

(
pl ln pl − pl ln ql

)
. (13)

Second, we employ Mikels’ wheel [8] to calculate the distance
between emotions. As one of our overall goals is dominant
emotion classification, we select the emotion category with
the largest probability as our emotion label. Pairwise emo-
tion distance is defined as 1+ “the number of steps required
to reach one emotion from another,” as shown in Fig. 4.
Pairwise emotion similarity is defined as the reciprocal of the
pairwise emotion distance. d(·, ·) equals 1-pairwise emotion
similarity. From the definitions of these two methods, for the
emotion distribution learning task, we can only use the first
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Fig. 4. Mikels’ emotion wheel and an example of Mikels’ emotion distances
for the emotion category fear [8]. (a) Mikels’ wheel. (b) Mikels’ emotion
distance.

method as the DESC loss, and for dominant emotion clas-
sification, we can use both methods. We name the models
using these two methods as CycleEmotionGAN++-SKL and
CycleEmotionGAN++-Mikels, respectively.

C. Feature-Level Alignment Loss

Since we want the adapted images x′S and target images xT

to be similar, we should ensure that they are similar not only
on a pixel level but also on a feature level. Our model trains
a discriminator Dfeat that tries to maximize the probability
of correctly classifying adapted images x′S and target images
xT . The feature-level information we leverage is the output
of the last layer in F′S. So, the information is an L-dimension
vector. We assume that the adapted images drawn from the
distribution of F′S(GST(xS)) are x′′′S and rename the distribution
as P′S

LGAN
(
F′S, Dfeat, xT , F′S(GST(xS))

)

= Ex′′′S ∼P′S
[
log Dfeat

(
F′S(GST(xS))

)]

+ ExT∼PT

[
log

(
1− Dfeat

(
F′S(xT)

))]
. (14)

D. Task Classification Loss

Under the assumption that the emotion labels of the adapted
images do not change during the adaptation process, we
can train a transferable task classifier F′S based on the
adapted images x′S and corresponding source emotion labels
yS. Besides F′S(x′s) → y′′s , which assigns emotion y′′S to
the adapted image x′s, the proposed CycleEmotionGAN++
is augmented with another classifier FS(xs) → y′s assigning
emotion y′S to the source image xs for DESC. For emo-
tion distribution learning, we use the KL-Divergence as the
task loss

Ltask(FS) = E(xS,yS)∼PS
KL

(
yS‖FS(xS)

)
(15)

Ltask
(
F′S

) = E(xS,yS)∼PS
KL

(
yS‖F′S(GST(xS))

)
. (16)

For dominant emotion classification, following [38], the two
classifiers FS and F′S are optimized by minimizing the standard
cross-entropy loss:

Algorithm 1: Adversarial Training Procedure of Our
CycleEmotionGAN++ Model

Input: Sets of source images xs ∈ xS with emotion labels ys ∈
yS, target images xt ∈ xT , the maximum number of
steps of the first and second parts T1, T2, respectively, a
threshold thres.

Output: Predicted emotion label distributions of target domain
image xT .

1 for i← 1 to T1 do
2 Sample a mini-batch of source images xs and target

images xt.
/* Updating θST and θTS when fixing φS,

φT, δS and δ′S */
3 Update θST and θTS by taking an SGD step on mini-batch

loss LmCycleGAN plus LDESC(GST ) and LDESC(GTS) in
Eq. (9), Eq. (10) and Eq. (11).
/* Updating φS, φT when fixing θST, θTS,

δS and δ′S */
4 Compute GST (xs, θST ) with current θST .
5 Compute GTS(xt, θTS) with current θTS.
6 Update φT and φS by taking an SGD step on mini-batch

loss LGAN in Eq. (1), Eq. (2).
/* Updating δS and δ′S when fixing θST, θTS,

φS and φT */
7 Compute GST (xs, θST ) with current θST .
8 Update δS, δ′S by taking an SGD step on mini-batch loss

Ltask(FS) and Ltask(F
′
S) in Eq. (15) / Eq. (17) and

Eq. (16) / Eq. (18).
9 end

10 Compute GST (xs, θST ) with current θST .
11 for j← 1 to T2 do
12 Update φ by taking an SGD step on mini-batch loss LGAN

and in Eq. (14).
13 if Accuracy(Dfeat) > thres then
14 Update δ′S by taking an SGD step on mini-batch loss

Ltask(F
′
S) in Eq. (16) / Eq. (18).

15 end
16 end
17 return F′S(xt, δ

′
S);

Ltask(FS) = E(xS,yS)∼PS

L∑

l=1

1[l=yS] log
(
σ
(

F(l)
S (xS)

))
(17)

Ltask
(
F′S

) = E(xS,yS)∼PS

L∑

l=1

1[l=yS] log
(
σ
(

F
′(l)
S (GST(xS))

))

(18)

where σ is the softmax function and 1 is an indicator function.

E. CycleEmotionGAN++ Learning

Our model objective loss combines the CycleGAN loss,
DESC loss, and the feature-level alignment loss

LModel = LmCycleGAN + γ LDESC(GST)+ γ LDESC(GTS)

+ LGAN
(
F′S, Dfeat, xT , F′S(GST(xS))

)
(19)

where γ controls the relative importance of the DESC loss to
the overall loss.

In our implementation, the generators GST and GTS are
CNNs with residual connections that maintain the resolution
of the original image as illustrated in Fig. 3. The discrimina-
tors DT , DS, and Dfeat and the classifiers FS and F′S are also
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CNNs. The optimization of the our model is divided into two
parts. In the first part, we optimize GST , GTS, DT , DS, FS,
and F′S. Those networks are optimized by alternating between
three stochastic gradient descent (SGD) steps. During the first
step, we fix DT , DS, FS, and F′S and update GST and GTS.
During the second step, we update DT and DS, while keeping
GST , GTS, FS, and F′S fixed. During the third step, we update
FS and F′S, while keeping GST , GTS, DT , and DS fixed. After
the first part, we use GST to generate the adapted domain x′S
with GST(xS). In the second part, we also optimize Dfeat and
F′S by using SGD steps. F′S is fixed when Dfeat’s accuracy
is lower than 0.8. The detailed training procedure is summa-
rized in Algorithm 1, where θST , θTS, φS, φT , δS, δ′S, and φ

are the parameters of GST , GTS, DS, DT , FS, F′S, and Dfeat,
respectively.

IV. EXPERIMENTS

In this section, we introduce the experimental settings, eval-
uate the performance of the proposed model, and report and
analyze the results as compared to state-of-the-art approaches.

A. Datasets

Flickr-LDL [9] is a subset of FlickrCC [3] and contains
11 500 images that are labeled by 11 viewers based on Mikels’
eight emotion categories. Twitter-LDL [9] contains 10 045
images obtained by searching from Twitter using emotions
keywords. The images are labeled by 8 viewers also based on
Mikels’ emotion categories. The original labels of each image
in Flickr-LDL and Twitter-LDL datasets are the number of
votes on each emotion category. To obtain the emotion dis-
tribution labels, we divide the votes of each category by the
total number of voters.

ArtPhoto [11] contains 806 artistic photographs organized
by Mikels’ emotion categories. The photographers took the
photos, uploaded them to the website, and determined which
one of the eight emotion categories each photo belongs to. The
artists try to evoke a certain emotion in the viewers through the
photos with conscious manipulation of the emotional objects,
lighting, colors, etc. The FI dataset [38] contains images from
the FI websites, which are labeled into one of Mikels’ emotion
categories by a group of 225 Amazon Mechanical Turk (AMT)
workers. 23 308 images that received at least three agreements
among workers are included in the FI dataset.

B. Evaluation Metrics

1) Distribution Learning on Twitter-LDL and Flickr-LDL:
We use different metrics to evaluate the performance of our
model: the sum of squared difference (SSD) [14], Kullback–
Leibler (KL) divergence,1 Bhattacharyya coefficient (BC),2

Canberra distance (Canbe),3 Chebyshev distance (Cheb),4 and
Cosine similarity (Cos)5. For BC and Cos, larger values indi-
cate better results and for SSD, KL, Canbe, and Cheb, smaller

1https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
2https://en.wikipedia.org/wiki/Bhattacharyya_distance
3https://en.wikipedia.org/wiki/Canberra_distance
4https://en.wikipedia.org/wiki/Chebyshev_distance
5https://en.wikipedia.org/wiki/Cosine_similarity

values indicate better results. KL is leveraged as the main
metric.

2) Emotion Classification on ArtPhoto and FI: Similar
to [38], we employ the emotion classification accuracy (Acc)
as the evaluation metric. Acc is defined as the proportion of
correct predictions out of total predictions. We compute the
accuracy for each category and employ the average accuracy
as the main metric.

C. Baselines

To the best of our knowledge, CycleEmotionGAN++ is
the first work on UDA for both emotion distribution learn-
ing and dominant emotion classification. To demonstrate its
effectiveness, we compare it with the following baselines.

1) Source-Only: A lower bound that trains a model on the
source domain and tests it directly on the target domain.

2) Color Style Transfer Methods: CycleGAN [22]: first,
translating the source images into adapted images via
CycleGAN and then training a task classifier on the
adapted images; SAPE [23]: first, using the descriptor to
generate semantics-aware photo enhanced style images
and then training a task classifier on the enhanced
images; EICT [24]: first, translating source images’ style
and then training a task classifier on the adapted images;
and TAECT [25]: first, transferring source images to the
color in the database extracted from reference images
and then training a task classifier on the adapted images.

3) UDA Methods: ADDA [26]: first, training the task clas-
sifier on the source images and then aligning the feature-
level information of the source and target domains;
SimGAN [27]: first, translating the source images into
the target style using the generator augmented with
a self-regularization loss, and then training on the
adapted images with corresponding source labels; and
CyCADA [28]: first, translating source images into the
target style with cycle-consistency loss and semantic-
consistency loss, and then training the task classifier on
the adapted images with feature-level alignment.

4) Oracle: An upper bound, where the classifier is both
trained and tested on the target domain.

D. Implementation Details

The generators GST and GTS use the model in [22], which
shows impressive results for neural style transfer and super-
resolution. GST and GTS contain two stride-2 convolutions,
several residual blocks, and two fractionally strided convo-
lutions with stride (1/2). Our model uses nine blocks for
256 × 256 training images. For normalization, we choose
instance normalization [74]. The discriminators DT and DS

are deployed by using 70×70 PatchGAN [75], which aims to
classify whether 70×70 overlapping image patches are real or
fake. Such a patch-level discriminator architecture has fewer
parameters than a full-image discriminator and can work on
the arbitrarily sized images in a fully convolutional fashion
with good performance. The task classifier FS and F′S for the
baselines and our method all use the ResNet-101 [4] archi-
tecture pretrained on ImageNet. We fine tune the model and
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TABLE II
CLASSIFICATION ACCURACY (%) COMPARISON BETWEEN CYCLEEMOTIONGAN++ AND STATE-OF-THE-ART APPROACHES WHEN ADAPTING FROM

ARTPHOTO TO FI. THE BEST ACCURACY OF EACH EMOTION CATEGORY AND THE AVERAGE ACCURACY ARE EMPHASIZED IN BOLD

update the classification loss into (15)–(18). The discrimina-
tor Dfeat uses the architecture as [28], which contains three
linear layers mapping an L-dimension vector to a 2-D one.
The GAN loss keeps the same as standard ones. As shown in
Algorithm 1, Dfeat is trained after acquiring fine tuned F′S and
x′S generated by GST .

Similar to LSGAN [76], our model trains a GAN
loss LGAN(GST , DT , xS, xT) by minimizing GST in
ExS∼PS [(DT(GST(xS)) − 1)2] and minimizing DT in
ExT∼PT [(DT(xT) − 1)2] + ExS∼PS [DT(GST(xS))

2]. It is
more stable to train GANs on high-resolution images.
LGAN(GTS, DS, xT , xS) is also optimized by using LSGAN.
We follow [27] to reduce the model oscillation by updating
the discriminators using a history of generated images rather
than the ones produced by the latest generators. We leverage
an image pool that stores the 50 recently created images.

α, β, and γ in (4), (9), and (19) are empirically set to 0.5,
10, and 50, respectively. Similar to [73], in order to simplify
parameter selection, we set αj = βj = γj for all j’s in (5),
and normalize the cross-scale settings such that

∑M
j=1 γj = 1,

which makes different parameter settings comparable. M is set
to 5 and K1 and K2 are set to 0.01 and 0.03, respectively. We
also set β1 = γ1 = 0.0448, β2 = γ2 = 0.2856, β3 = γ3 =
0.3001, β4 = γ4 = 0.2363, and α5 = β5 = γ5 = 0.1333,
respectively. For the first part, we use the Adam optimizer
for generators with a learning rate of 0.0002 and the SGD
optimizer for classifiers with a learning rate of 0.0001 and a
batch size of 1. We train the first part for 200 epochs, keeping
the same learning rate for the first 100 epochs and linearly
decaying it to 0 over the next 100 epochs. Then, we choose
the classifier F′S and GST with the best validation performance
during the first stage (image translation training) and use the
classifier and the adapted images x′S generated by GST during
the second stage. For the second part, we use the Adam opti-
mizer with a batch size of 64 and a learning rate of 0.0001.
We train Dfeat and F′S for 200 epochs and F′S is updated only
when Dfeat’s accuracy is larger than 0.8. All our experiments
are conducted on a machine with 4 NVIDIA TITAN V GPUs,
each with 12-GB memory.

E. Results and Analysis

Comparison With State of the Art: The performance com-
parisons between the proposed CycleEmotionGAN++ model

and state-of-the-art approaches are shown in Tables II–V. From
the results, we have several observations.

1) The source-only method directly transferring the mod-
els trained on the source domain to the target domain
performs the worst in all adaptation settings. Due to the
influence of domain shift, the style of images and distri-
bution of labels are totally different in the two different
domains, which results in the model’s low transferability
from one domain to another.

2) All the style transfer and DA methods outperform
the source-only method, with CycleEmotionGAN++
performing the best since these methods can over-
come the domain shift to some extent. Specifically,
the performance improvements of our model over
source-only, CycleGAN, SAPE, EICT, TAECT, ADDA,
SimGAN, and CyCADA measured by KL are 15.67%,
10.39%, 9.46%, 12.73%, 12.40%, 11.05%, 11.27%, and
2.40% when adapting from the source Twitter-LDL to
the target Flickr-LDL, respectively. The performance
improvements of our model over these methods mea-
sured by average classification accuracy are 34.16%,
23.16%, 22.93%, 33.38%, 27.58%, 21.57%, 22.50%,
and 8.07% when adapting from the source ArtPhoto to
the target FI, respectively. The improvements imply that
our model can achieve superior performance relative to
these approaches.

3) For the Twitter-LDL and Flickr-LDL datasets, we
observe that our model obtains the best performance
in most of the evaluation metrics except BC in the
Twitter-LDL→Flickr-LDL process and Canbe in the
Flickr-LDL→Twitter-LDL process. For ArtPhoto and FI
datasets, a better model cannot ensure better accuracy on
every single category, but only for the average accuracy.
The two methods of (dynamic) emotional semantic con-
sistency (ESC) loss obtain similar performance. For the
original CycleEmotionGAN [30], Mikels’ wheel obtains
better performance, while SKL outperforms Mikels’
wheel for CycleEmotionGAN++.

4) The oracle method achieves the best performance on
both emotion distribution learning and dominant emotion
classification tasks. However, this model is trained using
the ground-truth emotion labels from the target domain
xT , which are actually unavailable in the UDA setting.
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TABLE III
CLASSIFICATION ACCURACY (%) COMPARISON BETWEEN CYCLEEMOTIONGAN++ AND STATE-OF-THE-ART APPROACHES

WHEN ADAPTING FROM FI TO ARTPHOTO

5) For the ArtPhoto and FI datasets, there is still an obvious
performance gap between all adaptation methods and
the oracle method, especially when adapting from the
small-scale ArtPhoto to the large-scale FI. Due to the
complexity and subjectivity of emotions [43], we find
the accuracies of all DA methods are not very high and
effectively adapting image emotions is still a challenging
problem.

Ablation Study: First, we perform various experiments to
evaluate how each component contributes to the adaptation
performance, with results shown in Tables VI and VII. We
can observe the following.

1) DESC loss boosts the performance by a large margin;
after adding it, the performance improves significantly,
proving that preserving the emotion label is of vital
importance. Since we use the classifier trained on the
adapted domain to test, we should make sure that it can
use emotion labels from the source domain as its labels.

2) From the third and fourth rows of each DA setting,
we can see the improvements that feature-level loss and
multiscale structural similarity contribute. Each of these
two components can improve the performance of the
model trained in the source domain.

3) The last row of each setting, which contains all of
the three components performs the best. For example,
it obtains the best average classification accuracy on
ArtPhoto and FI datasets.

Second, we compare the proposed dynamic semantic con-
sistency (DESC) loss and the original ESC loss. The main
difference between these two methods is that DESC uses two
classifiers, one for each of the source domain and the adapted
domain to dynamically preserve the emotion labels. The results
are shown in Tables VIII and IX. For each process, we use
CycleGAN and CycleGAN+Feat as baselines. For Table VIII,
the latter of every two rows obtains better performance in all
evaluation metrics except Canbe. For Table IX, the latter of
every two rows obtains better average classification accuracy.

Visualization of Adapted Images: As illustrated from Fig. 5,
we visualize the adapted images to demonstrate the effec-
tiveness and necessity of image translation. We compare the
adapted images generated by CycleGAN [22], SAPE [23],
EICT [24], TAECT [25], CycleEmotionGAN-SKL, and

TABLE IV
COMPARISON OF CYCLEEMOTIONGAN++WITH STATE OF-THE-ART

METHODS WHEN ADAPTING FROM THE SOURCE-DOMAIN

TWITTER-LDL TO THE TARGET-DOMAIN FLICKR-LDL. THE BEST

METHOD TRAINED ON THE SOURCE DOMAIN IS EMPHASIZED IN BOLD

TABLE V
COMPARISON OF CYCLEEMOTIONGAN++WITH STATE-OF-ART

METHODS WHEN ADAPTING FROM FLICKR-LDL TO TWITTER-LDL

CycleEmotionGAN++-SKL. We can observe that all these
methods can adapt the source images to be more sim-
ilar to the images of the target domain. However,
CycleEmotionGAN++-SKL performs better than the other
methods. For example, the hue of the adapted image (b) in the
second but last line generated by CycleEmotionGAN++-SKL
is more yellow which is closer to target domain FI. Therefore,
the images generated by our model are more similar to the
target images, as compared to the original images and the
images generated by CycleGAN. This further demonstrates
the effectiveness of the proposed model.

Similar to GAN [21] and CycleGAN [22] based image
generation methods, the proposed CycleEmotionGAN++ also
suffers from low quality problem. As our goal is to improve the
accuracy of the task classifier, that is, F′S, we did not employ
any high-resolution or high-quality generation methods, such
as MSG-GAN [77] and EventSR [78], which usually require
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TABLE VI
ABLATION STUDY ON DIFFERENT COMPONENTS OF CYCLEEMOTIONGAN++ FOR EMOTION DISTRIBUTION LEARNING. BASELINE DENOTES

PIXEL-LEVEL ALIGNMENT WITH CYCLE CONSISTENCY, +DESC DENOTES ADDING DESC LOSS, +FEAT DENOTES ADDING FEATURE-LEVEL

ALIGNMENT, AND +MSSSIM DENOTES ADDING MULTISCALE STRUCTURE SIMILARITY

TABLE VII
ABLATION STUDY ON DIFFERENT COMPONENTS OF CYCLEEMOTIONGAN++ FOR DOMINANT EMOTION CLASSIFICATION

TABLE VIII
COMPARISON BETWEEN THE PROPOSED DESC LOSS AND THE ORIGINAL ESC LOSS IN [30] FOR EMOTION DISTRIBUTION LEARNING.

WE USE CYCLEGAN AND CYCLEGAN+FEAT AS BASELINES

TABLE IX
COMPARISON BETWEEN THE PROPOSED DESC LOSS AND THE ORIGINAL ESC LOSS IN [30] FOR DOMINANT EMOTION CLASSIFICATION

more computation cost. We leave generating high-quality
images as our future work.

Visualization of Predicted Results: Some predicted emotion
label distributions are visualized in Fig. 6 for the Twitter-
LDL dataset. The first two examples in the blue frame
show that our model’s results are close to the ground-truth
label distributions, which demonstrates the effectiveness of

our proposed model. In other examples in the red frame,
the results of our model, as well as the oracle, are not
close enough to the ground truth. In these two examples,
we can observe that, though the oracle performs better
than all the adaptation methods, it is still very different
from the ground truth, demonstrating the need for further
research.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 14,2023 at 07:27:56 UTC from IEEE Xplore.  Restrictions apply. 



10010 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 10, OCTOBER 2022

Fig. 5. Visualization of images across Mikels’ emotion categories from ArtPhoto, adapted in order to make them have the style of FI. From top to bottom are:
original ArtPhoto images, images generated by CycleGAN [22], SAPE [23], EICT [24], TAECT [25], CycleEmotionGAN-SKL [30], CycleEmotionGAN++-
SKL, and original FI images. (a) Amu, (b) Awe, (c) Con, (d) Exc, (e) Ang, (f) Dis, (g) Fea, and (h) Sad.

Convergence: In order to display the training process more
directly, we visualize some loss curves when adapting from the
source-domain Twitter-LDL to the target-domain Flickr-LDL
in Fig. 7. We can observe that during the first part training
of generating an adapted domain {x′S}, the best validation KL
performance appears between 50 and 100 epochs, and then with
the decrease of the training loss, the validation KL performance
becomes unstable, showing overfitting in Fig. 7 (a). We use the
networks with the best performance, that is, F′S and GST , to
generated adapted images x′S for the second part of the training.
From the other three figures, we observe that the losses decrease
gradually with the increase of epoch number.

V. CONCLUSION

In this article, we studied the UDA problem for both
emotion distribution learning and dominant emotion classifica-
tion. We proposed an end-to-end cycle-consistent adversarial
model, CycleEmotionGAN++, to bridge the gap between dif-
ferent domains. We generated an adapted domain to align
the source and target domains on the pixel level by improv-
ing CycleGAN with a multiscale structured cycle-consistency
loss. During the image translation, we proposed DESC
loss to preserve the emotion labels of the source images.
We trained a transferable task classifier on the adapted
domain with feature-level alignment between the adapted
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Fig. 6. Visualization of predicted emotion distributions on Twitter-LDL using the proposed CycleEmotionGAN++-SKL (CEGAN++-SKL), the original
CycleEmotionGAN-SKL (CEGAN-SKL) [30] and several state-of-the-art approaches (source-only, CycleGAN [22], SAPE [23], EICT [24], TAECT [25],
ADDA [26], SimGAN [27], CyCADA [28], and oracle). Original images and the corresponding ground-truth distributions are shown in the first column and
last image of each group, respectively.

Fig. 7. Examples of loss curves when adapting from the source-domain Twitter-LDL to the target-domain Flickr-LDL. The figures from left to right:
(a) Training and validation KL divergence loss, (b) GAN loss of DT and DS, (c) GAN loss of Dfeat, and (d) mixed cycle consistency loss.

and target domains. We conducted extensive experiments
on the Flickr-LDL and Twitter-LDL datasets for emotion
distribution learning, and the ArtPhoto and FI datasets for
dominant emotion classification. The results on these four
datasets demonstrate the significant improvements yielded by
the proposed method over state-of-the-art UDA approaches.

For future work, we plan to extend the CycleEmotionGAN++
model to multimodal settings, such as audio-visual emo-
tion recognition. We will also investigate domain gen-
eralization without accessing target data for VEA and
study theoretical deduction to better understand the learning
process.
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