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Dynamic Selective Network for RGB-D Salient
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Abstract— RGB-D saliency detection is receiving more and
more attention in recent years. There are many efforts have
been devoted to this area, where most of them try to integrate
the multi-modal information, i.e. RGB images and depth maps,
via various fusion strategies. However, some of them ignore the
inherent difference between the two modalities, which leads to
the performance degradation when handling some challenging
scenes. Therefore, in this paper, we propose a novel RGB-D
saliency model, namely Dynamic Selective Network (DSNet),
to perform salient object detection (SOD) in RGB-D images
by taking full advantage of the complementarity between the
two modalities. Specifically, we first deploy a cross-modal global
context module (CGCM) to acquire the high-level semantic
information, which can be used to roughly locate salient objects.
Then, we design a dynamic selective module (DSM) to dynami-
cally mine the cross-modal complementary information between
RGB images and depth maps, and to further optimize the
multi-level and multi-scale information by executing the gated
and pooling based selection, respectively. Moreover, we conduct
the boundary refinement to obtain high-quality saliency maps
with clear boundary details. Extensive experiments on eight
public RGB-D datasets show that the proposed DSNet achieves
a competitive and excellent performance against the current 17
state-of-the-art RGB-D SOD models.

Index Terms— RGB-D salient object detection, multi-modal,
dynamic selection, feature fusion.
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I. INTRODUCTION

SALIENT object detection (SOD) is a fundamental problem
that has received continuous attention in recent years. Its

purpose is to pop-out the most attractive regions in images
or videos. With the continuous efforts of researchers, SOD
has made significant achievements and plays an important
role in many applications, such as image segmentation [1],
[2], object recognition [3], [4], visual tracking [5], [6], and
video analysis [7], [8], to name a few. Therefore, it is of great
theoretical value and practical significance to carry out the
research on saliency detection.

The traditional SOD model [9], [10] has some certain
limitations. Most of them rely on manually designed features,
and are in lack of the effective representation of high-level
semantic information. Recently, with the rapid development
of deep learning technologies, Convolutional Neural Net-
works (CNNs) [11], [12] has become the protagonist in
SOD [13]–[20], which have achieved better performance than
traditional methods. However, when handling some complex
scenes, such as low contrast and cluttered backgrounds, the
performance of existing deep learning based saliency models
often degrades to some degree, as shown in Fig. 1. The
main reason behind this lies in that RGB images represent
appearance information well, but they cannot effectively define
spatial information. Meanwhile, depth maps are capable of
measuring the distance of objects from the camera, and contain
the rich spatial structure information, which is essential for
saliency detection. Besides, with the fast development of depth
sensors such as Microsoft Kinect and Intel RealSense, the
collection of depth information has become easier and the gen-
erated depth maps are more accurate. Therefore, researchers
try to introduce depth cues into RGB SOD, namely RGB-D
SOD, which gives a further performance improvement.

Similar to RGB SOD, most of the early RGB-D SOD
methods [22]–[25] focused on using specific prior knowledge
to design manual feature descriptors, which ignore the effects
of semantic information in SOD. In contrast, deep learn-
ing based RGB-D SOD models [26]–[31] try to sufficiently
utilize the high-level semantic features and low-level spatial
features. However, there is still a large room to elevate the
performance of RGB-D SOD models, though the cutting-edge
models have achieved stable and reliable results. Generally,
there are mainly following challenges to be solved: 1) How
to effectively aggregate cross-modal features. Obviously, the
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Fig. 1. The results of SOD in different challenging scenes (top: low contrast;
bottom: complex background). (a) RGB images, (b) Depth maps, (c) Ground
Truth, the saliency maps generated by (d) Ours, (e) A2dele [21] (RGB-D
SOD), and (f) SOD100K [17] (RGB SOD).

inherent attributions of RGB images and depth maps are quite
different, where the former focuses on texture information and
the latter pays more attention to geometric information. Some
existing methods [26]–[28] statically mine the complementary
information between different modalities, which makes it diffi-
cult to comprehensively explore the interaction between cross-
modal features. 2) How to efficiently integrate cross-level
deep features. The simple fusion methods such as summation
and concatenation ignore the particularity of different level
features. Some existing methods [29]–[31] indiscriminately
fuse cross-level information, which can easily superimpose
and amplify inherent noise and lead to counterproductive
effects.

To address the above challenges, we propose a Dynamic
Selective Network (DSNet) for RGB-D saliency detection,
as shown in Fig. 2. It explores the possibility of consis-
tent fusion of cross-modal (RGB images and depth maps),
cross-level (obtained from different convolutional blocks), and
multi-scale (generated from various pooling rates) cues by
means of dynamic selection. The proposed DSNet mainly
includes a dynamic selective module (DSM) and a cross-modal
global context module (CGCM), where the DSM contains two
sub-modules including a cross-modal attention module (CAM)
and a bi-directional gated pooling module (BGPM). Specif-
ically, to acquire more comprehensive high-level semantic
features, which are helpful to locate salient objects, we first
introduce a CGCM to roughly highlight salient objects.
Then, inspired by the attention mechanism, we design a
CAM to dynamically mine the complementary information
between RGB images and depth maps from layer and spatial
views, which promotes the cross-modal feature fusion. Next,
we deploy a BGPM to pay more concerns on cross-level and
multi-scale deep features, where the BGPM bi-directionally
optimizes cross-level information with gated-based selec-
tion and adaptively strengthens multi-scale information with
pooling-based scaling. Furthermore, we deploy the deeply
supervision strategy with spatial attention based feedback
mechanism. Following this way, we can obtain high-quality
saliency maps, which can not only highlight salient objects
completely, but also provides clear boundary details.

In summary, the main contributions of the proposed DSNet
can be stated as follows:

1) We propose a novel RGB-D saliency model, i.e.
Dynamic Selective Network (DSNet), which automat-
ically explores the cross-modal complementary infor-
mation, bi-directionally optimizes the cross-level
information, and adaptively strengthens the multi-scale
information.

2) To fuse the multi-source information containing object
cues, we design an effective dynamic selective module
(DSM), where the cross-modal attention module (CAM)
and bi-directional gated pooling module (BGPM) aggre-
gate the deep features from the perspective of multi-
modal, multi-level and multi-scale.

3) To mine the internal correlation between high-level RGB
cues and depth cues, we introduce a cross-modal global
context module (CGCM), which can roughly locate
salient regions and suppress background regions.

4) We conduct comprehensive experiments on eight public
RGB-D datasets, and the experimental results show that
the proposed DSNet achieves a comparable performance
when compared with 17 state-of-the-art models.

The rest of this paper is arranged as follows. Sec. II
first summarizes the related works of RGB-D SOD. Then,
Sec. III details the proposed RGB-D SOD model. Next, the
experimental results and corresponding analysis are presented
in Sec. IV. Eventually, the concise conclusion is drawn in
Sec. V.

II. RELATED WORKS

In this section, we briefly introduce some previous saliency
detection methods related to our work.

A. Salient Object Detection for RGB Images

In the past several decades, salient object detection (SOD)
has been widely concerned by researchers. The early efforts
are carried out on RGB images. Itti et al. [32] proposed
an IT model that integrates multiple features, which fully
considers the color, brightness, direction, and gradient infor-
mation. Inspired by this, many hand-crafted feature based
models [33]–[35] are designed to recognize salient objects.
Among them, heuristic prior knowledge such as color con-
trast [33], background prior [34] and center prior [35] plays
a very important role in SOD. However, these methods are
heavily depending on specially designed hand-crafted fea-
tures, namely the low-level appearance information, while they
ignore the high-level semantic cues.

Recently, deep learning has played a key role in var-
ious computer vision tasks. Obviously, researchers have
also introduced deep learning technologies such as convolu-
tional neural networks (CNNs) into SOD, where the perfor-
mance of SOD has been pushed forward remarkably. These
methods [36]–[38] usually adopt an encoder-decoder structure,
that is to say, CNNs are used as the encoder to extract
multi-level and multi-scale RGB features, and then these
features are merged in a specially designed decoder to generate
the final saliency map. In particular, the feature selection
ability of the attention mechanism [39], [40] is very consistent
with the goals of SOD. Therefore, some methods [41]–[43] try
to selectively weight key regions to better explore the structure
of salient objects.

The RGB images based SOD methods have achieved
encouraging performance, but the RGB saliency models
encounter bottlenecks when dealing with challenging scenarios
such as low contrast and cluttered backgrounds. This is mainly
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because RGB images only provide rich appearance cues,
which cannot distinguish the foreground from background
in some complex scenes. Fortunately, depth maps, which
capture abundant spatial cues, are beneficial for locating and
segmenting salient objects. Therefore, researchers have tried to
introduce depth maps into RGB SOD, namely RGB-D SOD.
In this paper, our model focuses on the task of RGB-D SOD.

B. Salient Object Detection for RGB-D Images

Similar to RGB SOD, the traditional RGB-D SOD methods
mainly focus on using specific prior knowledge to design
hand-crafted features. For example, Feng et al. [23] utilized
a local background enclosure to capture the angular direction
of the background, and calculated the saliency score of each
region. Song et al. [25] used low-level feature contrasts, mid-
level feature weighted factors, and high-level location priors to
achieve multi-scale discriminative saliency fusion. The manual
feature based models are capable of describing local details
accurately, but generally are lack of the representation of
high-level semantic information, which limits the performance
improvement.

With the widespread application of deep learning tech-
nologies in computer vision, the CNNs based RGB-D SOD
methods [21], [27], [29], [44]–[51] have effectively pushed
forward the progress of RGB-D SOD. At present, many meth-
ods have been designed to efficiently learn the complementary
information of different modalities (i.e., RGB images and
depth maps). For example, Li et al. [29] designed a cross-
modal depth-weighted combination block to discriminate the
cross-modal features from different sources and to enhance
RGB features with depth features at each level. Piao et al. [21]
implemented a RGB stream embedded with a depth distiller,
which transfers the depth cues from depth stream to RGB
stream. Liu et al. [44] proposed a self-mutual attention module
to incorporate the long-range global context from different
modalities. Li et al. [45] introduced a cross-modality feature
modulation module, which takes the depth features as prior to
enhance the representations of corresponding RGB features.
Fan et al. [27] employed a depth-enhanced module to capture
the informative cues in depth maps and improved the com-
patibility of RGB and depth features. The above-mentioned
methods adopt an asymmetrical structure to enhance RGB
information with depth cues. Such a design only regards depth
maps as the supplement of RGB images, and ignores the
complementarity of them. In contrast, our model treats the two
modalities equally and explores their correlations dynamically.

Except the fusion of cross-modal information, the
cross-level feature fusion is also crucial for CNNs based
RGB-D saliency models, where they attempted to integrate the
low-level texture information and high-level semantic informa-
tion progressively. For example, Chen and Li [46] employed a
progressive feature fusion method, which considers the com-
plementarity of cross-modal features and integrates multi-scale
information. Fu et al. [47] leveraged a densely-cooperative
fusion strategy to robustly integrate cross-level features. Both
of them adopt progressive and dense integration rules to
aggregate features at different levels in a one-directional

way. Compared with the bi-directional interaction, an obvious
weakness of one-directional interaction is that it is difficult to
comprehensively explore the relationship between cross-level
features. Besides, to deal with the large discrepancy among dif-
ferent scale salient objects, the weighted fusion of multi-scale
features has also become popular [48], [49]. Nevertheless,
we use a symmetrical structure with bi-directional interaction
to mutually guide adjacent-level features, and adopt pooling
operations with different scales to adaptively aggregate multi-
scale features.

In addition, there is no doubt that more accurate edge
information can better guide the prediction with more clear
boundaries. Ji et al. [50] introduced an edge collaborator
to extract edge cues from low-level RGB features and used
it for precise saliency predictions. Zhang et al. [51] imple-
mented a boundary supplement unit, which enhanced the
edge details of salient objects, to focus on high-level RGB
features. Liu et al. [52] developed a unified model based on
a pure transformer for the RGB and RGB-D SOD, where the
saliency and boundary detection are simultaneously performed
by introducing task-related tokens and a patch-task-attention
mechanism. In this paper, we deploy the deeply supervision
strategy with spatial attention based feedback mechanism to
sharp the boundaries of salient regions at each level.

III. PROPOSED METHOD

We first briefly describe the overall architecture of the
proposed dynamic selective network (DSNet) in Sec. III-A.
Second, we give a detailed description for the cross-modal
global context module (CGCM) in detail in Sec. III-B, and
present the dynamic selective module (DSM) in Sec. III-C.
Eventually, we provide the implementation details of DSNet
in Sec. III-D.

A. Architecture Overview

The overall architecture of DSNet is shown in Fig. 2, which
can be regarded as a typical encoder-decoder architecture.
Briefly, the encoder contains a symmetric dual-stream back-
bone network, which is constructed based on ResNet-50 [12],
and is used to extract the multi-level appearance features of
RGB images and spatial features of depth maps. Noted, for
each branch of encoder part, we discard the last pooling layer
and fully connected layer, and only retain five convolutional
blocks, which are downsampled by 2,4,8,16, and 16 times
respectively, and converted the number of channels at each
level from 64, 256, 512, 1024, 2048 to 64, 128, 256, 512,
512. For the decoder part, we design a dynamic selective mod-
ule (DSM) and a cross-modal global context module (CGCM)
for high-quality saliency predictions.

Specifically, we first encode the single-channel depth map
into three-channel HHA [53], which represent the horizontal
disparity, height above ground, and the angle of local surface
normal with the inferred gravity direction, respectively. There-
fore, we take the image pair composed of RGB image I and
HHA image D as the input of our model. Then, we use a
dual-stream encoder, namely the feature extraction network,
to extract the multi-level texture features {FI

i }5
i=1 and geomet-

ric features {FD
i }5

i=1. After that, we design an effective and
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efficient decoder. It mainly contains a cross-modal attention
module (CAM) that dynamically integrates the complemen-
tary information of different modalities, a cross-modal global
context module (CGCM) that emphasizes high-level semantic
features, and a bi-directional gated pooling module (BGPM)
that adaptively explores cross-level and multi-scale cues. Fol-
lowing this way, the proposed DSNet can generate accurate
and high-quality saliency predictions.

B. Cross-Modal Global Context Module (CGCM)

High-level features contain abundant semantic cues, which
can effectively characterize global information. To fully inte-
grate the high-level semantic features between different modal-
ities, i.e., RGB images and depth maps, we try to model
the cross-modal long-range dependency. As a simplified non-
local block, Global Context (GC) [54] block has two advan-
tages including effective global context modeling and efficient
lightweight computation. Inspired by [54], we propose an
efficient cross-modal global context module (CGCM), which
can roughly locate the salient objects. Concretely, according
to Fig. 2, for the high-level feature FI

5 and FD
5 from the

RGB and depth branches, a parameter sharing convolution
operation is first used to convert the number of channels to 1,
where the kernel size is 1 × 1 and stride is 1. Next, for RGB
branch, we deploy the Sigmoid function to scale the value of
high-level semantic feature FD�

5 to [0, 1], and then multiply it
with FI

5 to obtain the interactive feature FI
inter . We call it the

“inter-modal attention mechanism”. Subsequently, we adopt
the Conv-ReLU-Conv structure to further enhance deep RGB
features, and multiply the feature maps normalized by Sigmoid
function with FI

5 to obtain the enhanced RGB feature FI
intra .

We call it the “intra-modal attention mechanism”. Different
from the GC block, which adds transformed features to origi-
nal features, our CGCM further highlights the salient regions
through multiplication, where the CGCM is built based on the
spatial attention mechanism [40]. In addition, the GC block
only models the single-modal long-range dependency, while
the CGCM effectively achieves the interaction of global infor-
mation between different modalities. The above calculation
processes are formulated as,⎧⎨

⎩
FI

inter = FI
5 ⊗ δ

�
C1×1

�
FD

5

��
FI

intra = FI
5 � δ

�
C RC

�
FI

inter

��
,

(1)

where δ(·) is the Sigmoid function, C1×1(·) denotes the
convolutional layer with 1 × 1 kernel size, C RC(·) means
the Conv-ReLU-Conv structure, and ⊗ and � represent matrix
multiplication and element-wise multiplication, respectively.
Similarly, the enhanced depth feature FD

intra is defined as,⎧⎨
⎩

FD
inter = FD

5 ⊗ δ
�

C1×1

�
FI

5

��
,

FD
intra = FD

5 � δ
�

C RC
�

FD
inter

��
.

(2)

Consequently, we obtain the depth-guided high-level RGB
feature FI

intra and the RGB-guided high-level depth feature
FD

intra , which contain sufficient spatial texture cues and geo-
metric structure information.

Fig. 3. Illustration of the cross-modal attention module (CAM). Best viewed
by zooming in.

To further integrate RGB and depth high-level semantic
features, we concatenate FI

intra and FD
intra to obtain the hybrid

feature FI D , which is denoted as,

FI D =
�
FI

intra; FD
intra

�
, (3)

where [·; ·] represents the concatenation operation. Meanwhile,
as shown in Fig. 2, we introduce the spatial attention mech-
anism [40] to expand the GC block-like structure, where the
spatial attention mechanism applies average pooling and max
pooling operations along the channel axis and concatenates the
pooling results to locate salient objects. Finally, CGCM gen-
erates the cross-modal hybrid feature FC that can sufficiently
characterize global context information, which is calculated
as,

FC = C1×1

�
FI D

�
� δ

�
C7×7

��
M

�
FI D

�
; A

�
FI D

����
,

(4)

where Cn×n(·) denotes the convolution operation with n × n
kernel size, M(·) and A(·) represent the max pooling oper-
ation and average pooling operation along the channel axis.
In general, CGCM ensures that our model can make complete
saliency prediction since it integrates the high-level semantic
features of different modalities, which gives the salient regions
a coarse prediction.

C. Dynamic Selective Module (DSM)

To improve the robustness of our model, we propose a
dynamic selective module (DSM). It can not only automat-
ically select and merge cross-modal features, namely RGB
images and depth maps, but also autonomously optimize and
strengthen cross-level and multi-scale deep features. Formally,
DSM consists of two sub-modules: cross-modal attention mod-
ule (CAM) and bi-directional gated pooling module (BGPM).

1) Cross-Modal Attention Module (CAM): How to effec-
tively mine the complementarity between the cross-modal
information is a crucial problem in multi-modal learning tasks,
including RGB-D SOD. Therefore, we design a cross-modal
attention module (CAM) shown in Fig. 3 to fully explore the
information correlation between RGB images and depth maps,
where the CAM efficiently highlights spatial features and fuses
cross-modal information.

As shown in Fig. 2, let FI
i and FD

i denote the output
feature maps of the i th(i = 1, · · · , 5) convolutional block of
RGB branch and depth branch, respectively, and each group
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Fig. 2. The overall architecture of the proposed DSNet. We first adopt a variant of ResNet-50 for feature extraction. ‘Conv1_I’ ∼ ‘Conv5_I’ represent different
convolutional blocks of the RGB branch, and ‘Conv1_D’ ∼ ‘Conv5_D’ represent different convolutional blocks of the depth branch. Then, the generated
multi-level features FI

i (i = 1, · · · , 5) and FD
i (i = 1, · · · , 5) are selected and merged by the CAM to obtain the hybrid feature FA

i (i = 1, · · · , 5). Next, the
CGCM further mines and integrates the high-level semantic information in a global view. Lastly, starting from FC , the hybrid feature FA

i (i = 1, · · · , 5) is
gradually fed into the BGPM to obtain the final saliency map S. Details of our model are introduced in Sec. III.

of cross-modal features including FI
i and FD

i are sent to
CAM. Concretely, for each CAM, according to Fig. 3, we first
initially merge RGB feature FI

i and depth feature FD
i , which

not only achieves feature interaction but also retains their own
unique information. The fusion process of the two modalities
can be depicted as,

FI D
i =

�
FI

i ; FD
i ; FI

i ⊕ FD
i

�
, (5)

where FI D
i denotes the preliminary cross-modal feature of the

i th block, and ⊕ represents element-wise summation.
Furthermore, to further mine cross-modal features,

we explore the relationship between the output features of
parallel convolutional layers with different settings. To be
specific, we first set up seven different convolutional layers,
as shown in Fig. 3, where ‘1 × 1’ means that the convolution
kernel size is 1 × 1, ‘s1’ means that the stride is 1, ‘p0’
means that the padding is 0, and ‘d1’ means that the
dilation coefficient is 1. Particularly, we employ a shortcut
branch to preserve the original information. Meanwhile,
referring to the architecture of [40], we use both global
max pooling operation and global average pooling operation
simultaneously to calculate spatial statistics. The difference is
that we generate a vector FL S with eight elements to match
the number of the parallel convolutional layers (including
the shortcut branch). Then, we optimize the cross-layer deep
features by adaptive selection, which is formulated as,

FL =
8	

j=1

FL S
j � FLC

j , (6)

where FL S
j is the j th element in FL S , and FLC

j represents
the output feature maps of the j th convolutional layer (or
the shortcut branch). Here, we treat the above computational

procedure as “layer attention mechanism”, and FL denotes
the output feature maps of layer attention mechanism. Noted,
the different convolution settings ensure the feature diversity,
which is beneficial for mining the complementarity of cross-
modal information.

Besides, to strengthen the spatial structure features,
we adopt spatial attention mechanism again, where we replace
Sigmoid function with Tanh function, to expand the gap
between foreground features and background features, sup-
press background regions, and highlight salient regions. The
whole calculation process is implemented as,


FT = T anh
�

C7×7

��
M

�
FL

�
; A

�
FL

����
+ 1

FA
i = FL � FT ,

(7)

where T anh(·) denotes the Tanh function, and FT represents
the spatial feature. FA

i is the output of spatial attention block,
that is, the overall output of the i th CAM. Noted, the CAM
holds on the spatial resolution and the number of channel
of feature maps. Generally, CAM adequately exploits the
complementarity between RGB modality and depth modality,
and achieves adaptive fusion of cross-modal features.

2) Bi-Directional Gated Pooling Module (BGPM): To
explore the correlation between cross-level and multi-scale
features, we leverage a bi-directional gated pooling mod-
ule (BGPM) to autonomously merges different features.
As shown in Fig. 4, our BGPM is divided into two steps.
Firstly, the differences between cross-level features lie in that
the features from shallow layers and deeper layers focus
on representing spatial texture cues and semantic context
information, respectively. Meanwhile, we have also noticed
that the recurrent neural networks (RNNs) have achieved
excellent performance when processing sequence signals, such
as long short-term memory units (LSTM) [55] and gated
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Fig. 4. The overall architecture of the bi-directional gated pooling module (BGPM), where � represents the element-wise multiplication and concatenation
operation.

recurrent units (GRU) [56]. To associate features at different
levels, we treat them as adjacent sequence signals and try to
learn their correlation using RNNs-like structures. Concretely,
we regard the features from the previous layer BGPM and
the corresponding layer CAM as bi-directional data. Different
from [56], which processes sequence signals sequentially in
a one-directional way, the previous layer BGPM is used to
strengthen semantic information of the corresponding layer
CAM which is in turn applied to enhance the spatial cues
of BGPM. Thus, BGPM explores the internal relationship
between cross-level features in a bi-directional way, as shown
in Fig. 4, where the computational process can be formulated
as,⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

FM
1 =

�
δ
�

C1×1

��
FS �

i+1; FA
i

���
� FS �

i+1; FA
i

�
FM

2 =
�
δ
�

C1×1

��
FS �

i+1; FA
i

���
� FA

i ; FS �
i+1

�
FM

3 = C1×1

��
FS �

i+1; FA
i

��
FM

4 = T anh
�

C1×1

�
FM

1

��
⊕ T anh

�
C1×1

�
FM

2

��
,

(8)

where FA
i (i = 1, 2, 3, 4, 5) denotes the output feature maps

of the corresponding CAM, and FS �
i+1 denotes the enhanced

output of the previous BGPM (we will introduce the FS �
i+1 in

detail in Sec. III-D). Especially, when i = 5, FS �
6 = FC , which

is the output of CGCM. And FM
1 , FM

2 , FM
3 and FM

4 denote the
hybrid features. In this way, we can obtain the deep feature
maps,

FP = δ
�

FM
3

�
� FM

4 ⊕
�

1 − δ
�

FM
3

��
�

�
FS �

i+1 ⊕ FA
i

�
, (9)

which combines the cross-level features.
Secondly, in order to be able to accurately detect the

salient objects with different scales, we improve the layer
attention mechanism proposed in CAM, and replace con-
volutional layers with different pooling layers, as shown in
the right part of Fig. 4. It contains three average pooling
layers, three max pooling layers and one shortcut connection.
The kernel sizes of different pooling layers are set to 2, 4
and 8, respectively. Therefore, we not only retain the original
information, but also extract effective features with different
scale. Then, we integrate the deep features with different scale

(including the shortcut branch) using following formulation,

FB
i = C3×3

��
FX

j � FY
j

��
, (10)

where FX
j represents the j th element in FX , and FY

j represents
the output features of the j th pooling layer (including the
shortcut branch). After that, we concatenate the product of
each group of corresponding features (element) and pass them
to a 3 × 3 convolutional layer, yielding the feature maps FB

i ,
where i denotes the i th BGPM. Eventually, the output of
each BGPM are first resized to the same resolution and same
number of channel, and then they will be concatenated and
feed into a convolutional block. Following this way, we can
obtain the final saliency maps S.

D. Implementation Details

1) Training Loss: In this work, we adopt the cross entropy
loss to train the proposed DSNet. To be specific, given binary
object ground truth map Gs ∈ {0, 1} and final saliency map
Ss ∈ [0, 1], the loss Ls can be defined as,

Ls
�
Ss, Gs = −

H×W	
i=1

�
Gs

i log
�
Ss

i

+�
1−Gs

i


log

�
1 − Ss

i

�
,

(11)

where H and W respectively denote the height and width
of input image, and i denotes each pixel index. Furthermore,
to ensure that each side-outputs in decoder part can accurately
locate the salient objects, we adopt deeply supervision strat-
egy [29], [30]. Concretely, we upsample each side-output to
the same resolution as input image, yielding coarse saliency
map Sg

j ( j = 1, · · · , 5). Similar as Eq. 11, the loss function
Lg can be defined as follows:

Lg
�
Sg, Gs=

5	
j=1

−
�
Gs log

�
Sg

j

�
+�

1−Gs log
�

1 − Sg
j

��
,

(12)

where Sg
j denotes the j th coarse object saliency map.

Besides, to give a sharp boundary detail for salient objects,
we deploy the supervision for edge computation. First of
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Fig. 5. The PR curves of our model with 13 state-of-the-art models on eight challenging RGB-D datasets. The solid red lines represent our model and stars
on the curves represent the corresponding value of maximum F-measure.

all, referring to [61], we can obtain edge ground truth maps
Ge ∈ {0, 1}. Meanwhile, to remit the imbalance between posi-
tive and negative samples, we adopt the balanced cross-entropy
loss for each side-output of edge maps Se ∈ [0, 1],
Le

�
Se, Ge

=
5	

j=1

−
�
θGe log

�
Se

j

�
+ η

�
1 − Ge log

�
1 − Se

j

��
, (13)

where Se
j denotes the j th coarse edge map, η represents the

ratio of negative pixels, and θ = λ(1 − η). In our experiment,
we set the hyperparameter λ to 1.1, which will pay more
attention on edge pixels than background. According to Eq. 11,
Eq. 12 and Eq. 13, the total loss Ltotal is formulated as,

Ltotal = αLs
�
Ss, Gs + βLg

�
Sg, Gs + γLe

�
Se, Ge , (14)

where we set α, β and γ to 1, 0.5 and 0.5 for balancing the
importance of each part in total loss, respectively.

In addition, to further promote all side-outputs, we imple-
ment a multi-level feedback mechanism shown in Fig. 2, where
the feature maps are enhanced before feeding it to BGPM,

FS �
i = FS

i �
�
δ
�

FG
i

�
⊕ δ

�
FE

i

��
, (15)

where i ∈ {2, 3, 4, 5}, FS and FS �
denote the feature maps

before and after enhancement, respectively. And FG is object
mask and FE is edge mask, which are generated by FB

with different convolutional blocks at each level. As shown
in Eq. 16, both of them have the relationship as,⎧⎨

⎩
Sg

i = U p
�

FG
i

�
Se

i = U p
�

FE
i

�
,

(16)

where U p(·) denotes the bilinear interpolation operation.
2) Training Protocol: We implement the proposed

DSNet using PyTorch toolbox [62] and trained it on a
high-performance server with a E5-2678 CPU (64 GB
memory) and a NVIDIA GeForce RTX 2080Ti GPU (11
GB memory). During training process, the backbone parts
of DSNet is initialized with pre-trained ResNet-50 [12],

and the remaining parameters are initialized with He
initialization [63]. It should also be noted that the dual-stream
encoder doesn’t share parameters. Furthermore, we adopt
Adam algorithm [64] to optimize the model, where the
momentum, weight decay, and initial learning rate are set
to [0.9, 0.999], 1e-4, and 1e-5, respectively. In addition,
we train the model for 50 epochs with a mini-batch size of 4,
and divide learning rate by 10 after 35 epochs. Meanwhile,
to prevent the model from overfitting, we also leverage
multiple augmentation strategies, such as rotation and
flipping. Specifically, we adopt a fixed augmentation strategy,
namely first rotating the original images with angles 90◦,
180◦ and 270◦, and then flipping all of them respectively.
In the end, the augmented data is 8 times the original data in
total, i.e., 17, 480 image pairs. Notably, we resize the input
images (i.e., RGB images and depth maps) to 288 × 288 in
both training and testing phases.

IV. EXPERIMENTS

In this section, we first introduce RGB-D datasets and eval-
uation metrics in Sec. IV-A. Then, we provide the quantitative
and qualitative comparison between the proposed method and
state-of-the-art RGB-D SOD methods in Sec. IV-B. Next,
in Sec. IV-C, we conduct comprehensive ablation studies to
demonstrate the rationality of the design of our model. Finally,
we give a detailed analysis of the failure cases in Sec. IV-D.

A. Experimental Settings

1) Datasets: We conduct our experiments on eight public
RGB-D datasets: NJU2K [65], NLPR [66], STERE [67],
DES [68], LFSD [69], SSD [70], SIP [71] and ReDWeb-S [72].

For a fair comparison, we follow the same dataset settings
as [27]. Concretely, the training set before augmentation con-
sists of 2, 185 samples in total, including 1, 485 samples from
NJU2K and 700 samples from NLPR. The test set contains
the remaining samples in the NJU2K, NLPR, ReDWeb-S test
set and the whole of STERE, DES, LFSD, SSD and SIP.

2) Evaluation Metrics: We leverage six widely used eval-
uation metrics, including mean absolute error (MAE), mean
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Fig. 6. The F-measure curves of our method and 13 CNNs-based methods over eight benchmark datasets. The solid red lines represent our method and stars
on the curves represent the corresponding value of maximum F-measure.

F-measure (Fβ ) [73], mean E-measure (Eξ ) [74], S-measure
(Sα) [75], precision-recall (PR) curves and the recently pro-
posed weighted F-measure (Fw

β ) [76], to evaluate the perfor-
mance of different methods.

B. Comparison With the State-of-the-Arts

We compare our DSNet with 17 state-of-the-art RGB-D
SOD models, including four manual features based mod-
els: CDCP [22], LBE [23], SE [24] and MDSF [25];
and 13 deep learning based models: CTMF [57], MMCI [58],
PCF [46],TANet [59], CPFP [60], DMRA [48], AR [30],
ICNet [29], A2dele [21], S2MA [44], DANet [26] and
BBSNet [27] and JL-DCF [47]. Besides, we adopt the offi-
cially released source code and parameters to generate saliency
maps or directly use the results provided by the author for
comparisons. In particular, we resize the predicted saliency
maps of different methods to the same resolution, and use the
same evaluation toolbox for fair evaluation.

1) Quantitative Performance Comparison: As shown in
Tab. I, our method achieves a comparable performance against
the state-of-the-art methods on eight challenging datasets, i.e.,
NJU2K [65], NLPR [66], STERE [67], DES [68], LFSD [69],
SSD [70], SIP [71] and ReDWeb-S [72], in terms of five
commonly used evaluation metrics. We highlight the best three
results in red, blue, and green successively. It can be found
that our method obtains competitive results on all benchmark
datasets except SIP and ReDWeb-S when compared with
the state-of-the-art methods, where the performance of our
model is also comparable with JL-DCF [47] on the SIP and
ReDWeb-S datasets. In Fig. 5, we display PR curves of various
methods on different benchmark datasets. It is clear to see that
our method (i.e., solid red line) is superior to other methods,
especially on NJU2K and STERE dataset. Besides, we also
show the evaluation results of our method and 13 CNNs-based
methods in terms of F-measure curves shown in Fig. 6. It can
be found that our method achieves great advantages when
compared with other models on different datasets. According
to the aforementioned experiments, we can clearly demonstrate
the effectiveness of our model.

In addition, in Tab. I, we also provide the inference time
(seconds per image) of different models. It can be seen that our
model takes about 0.046s for an image (288 × 288). This is a
remarkable performance when compared with the state-of-the-
art methods such as JL-DCF [47], S2MA [44], and ICNet [29].
Therefore, Tab. I demonstrates the efficiency of our model.

2) Qualitative Performance Comparison: In this part,
we present some saliency maps predicted by our method
and several state-of-the-art methods shown in Fig. 7, which
contains several representative situations including simple
scenes (the 1st row), low contrast (the 2nd row), small
object (the 3rd row), multiple objects (the 4th row), unclear
depth (the 5th row), similar background (the 6th row), similar
depth (the 7th row), complex background (the 8th row), and
complex objects (the 9th row).

Specifically, as shown in the 1st row of Fig. 7, we present
a simple case. It is easy to find that most methods can locate
and highlight the airplane in broad sky. When the contrast
between salient objects and background regions is low, such
as the pink high-heeled shoe and the partition in the 2nd row of
Fig. 7, some methods mistakenly confuse background regions
as salient objects, while our method can accurately detect the
high-heeled shoe. In the 3rd row of Fig. 7, we find that our
method highlights small object more clearly and accurately
when compared with other models. In fact, there are often
multiple salient objects in a scene, as shown in the 4th row
of Fig. 7. Some methods only detect a part of salient objects,
while our method locates all salient objects, i.e., the two people
in conversation. Meanwhile, as an important supplement of
RGB images, the quality of depth maps seriously affects
the accuracy of salient object detection. In the 5th row of
Fig. 7, although the depth map contains a lot of noise and
has low quality, our method still predicts the salient objects
more accurately than other methods. When dealing with the
situation that the foreground and background are similarity,
some previous methods falsely highlight the confusing back-
ground regions. As shown in the 6th row of Fig. 7, our method
suppresses the similar maple leaves more effectively, while
other models falsely pop-out the non-salient leaves. Besides,
as an RGB-D saliency detection method, our model utilizes
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TABLE I

QUANTITATIVE COMPARISON RESULTS OF MAE (M), MEAN F-MEASURE (Fβ ), MEAN E-MEASURE (Eξ ), S-MEASURE (Sα ) AND WEIGHTED
F-MEASURE (Fw

β ) ON EIGHT WIDELY USED DATASETS WITH DIFFERENT RGB-D SALIENCY MODELS. NOTED, ∗ REPRESENTS THE TRADITIONAL

RGB-D SALIENCY MODEL, ‘DSNET’ IS THE PROPOSED MODEL, ↓ & ↑ DENOTE SMALLER AND LARGER IS BETTER, RESPECTIVELY. THE
BEST THREE RESULTS IN EACH ROW ARE HIGHLIGHTED IN RED, BLUE, AND GREEN SUCCESSIVELY

depth information efficiently, but does not heavily rely on
depth information. In the 7th row of Fig. 7, we show a
situation with similar depth, and we can clearly see that our
method segments salient objects correctly. In contrast, some
other models either falsely highlight the pedestal, or detect
salient objects incompletely. As shown in the 8th row of Fig. 7,
in the scenarios with complex background, our method stably
detects the salient car with sharper boundaries. In the 9th row
of Fig. 7, we also provide an example with complex objects.
Many methods are difficult to locate all parts of salient objects
accurately and completely, but our method provides reliable
predicted results.

Overall, compared with various state-of-the-art methods,
our method performs well. When facing various challenging
scenarios, our method can not only highlight salient objects

accurately and completely, but also provides precise boundary
details.

C. Ablation Studies

1) Utility of Depth Cues: To explore whether depth maps
can really help RGB images to improve the performance
of SOD, we conduct sufficient experiments from different
perspectives. On the one hand, we verify the effectiveness
of depth cues on the baseline. We remove all CGCM and
DSM modules in DSNet, as shown in Tab. II. In the 1st

row of Tab. II, we only keep the RGB branch, and the
variant model achieves unsatisfactory results on NJU2K test
set and LFSD dataset. For a comparison, we further add the
depth branch (i.e., the 2nd row of Tab. II), while holding
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Fig. 7. Qualitative comparison results of different RGB-D saliency models on several challenging scenarios. (a) RGB, (b) Depth, (c) HHA, (d) GT, (e) Ours,
(f) JL-DCF [47], (g) BBSNet [27], (h) DANet [26], (i) S2MA [44], (j) A2dele [21], (k) ICNet [29], (l) AR [30], (m) DMRA [48], (n) CPFP [60], (o) TANet [59],
(p) PCF [46], (q) MMCI [58], (r) CTMF [57], (s) MDSF [25], (t) LBE [23].

Fig. 8. Visualization results of ablation studies. (a) RGB, (b) Depth, (c) GT, (d) #1, (e) #2, (f) #3, (g) #4, (h) #5, (i) #8. Noted, ‘#n’ corresponds to the nth

row in Tab. II.

TABLE II

ABLATION STUDIES FOR OUR DSNET ON WIDELY USED NJU2K TEST SET AND LFSD DATASET. THE BEST RESULT IN EACH COLUMN

IS MARKED IN BOLD. ‘RGB-B’: RGB BRANCH, ‘DEPTH-B’: DEPTH BRANCH, ‘CGCM’: CROSS-MODAL GLOBAL CONTEXT

MODULE, ‘CAM’: CROSS-MODAL ATTENTION MODULE, ‘BGPM’: BI-DIRECTIONAL GATED POOLING MODULE,
‘OBJECT-S’: OBJECT SUPERVISION, AND ‘EDGE-S’: EDGE SUPERVISION

on the other experimental settings. With the help of depth
maps, we clearly see that the model with depth branch
achieves a large improvement on five different evaluation
metrics (i.e., M, Fβ , Eξ , Sα and Fw

β ). To illustrate the
utility of depth cues more intuitively, we visualize the pre-
dicted results, as shown in Fig. 8. The saliency maps in
Fig. 8 (d) and (e) correspond to the model without/with depth
branch, respectively. It is easy to find that the latter is good
at highlighting salient regions (e.g., the 1st row of Fig. 8)
and suppressing background regions (e.g., the 3rd row of
Fig. 8).

On the other hand, we compare DSNet with several
state-of-the-art RGB SOD methods, including PiCANet [41],
PAGRN [77], R3Net [78], CPD [79], PoolNet [36],
SOD100K [17] and GateNet [18]. As shown in Tab. III,
we conduct experiments on three datasets (i.e., NJU2K test set,
NLPR test set, and DES dataset) in terms of two evaluation
metrics (i.e., M and Sα). Notably, we use official pre-trained
model of SOD100K to generate saliency maps, and adopt
the public predicted results of GateNet. For other methods,
we borrow the evaluation results in [27] and [48]. Meanwhile,
we further design another variant of DSNet, namely our model
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TABLE III

COMPARISON WITH THE STATE-OF-THE-ART RGB SOD METHODS ON THREE DATASETS. ‘W/O D’ AND ‘W/ D’ DENOTE THAT OUR MODEL IS TRAINED
AND TESTED WITHOUT/WITH THE DEPTH BRANCH, RESPECTIVELY

without depth cues, where we replace the original depth
branch in DSNet with an additional RGB branch and mark
it as ‘w/o D’. Comparing the 6th row and the 8th row of
Tab. II, we observe that the model without depth branch has a
significant drop. Besides, in Tab. III, it is clear that our method
(i.e., DSNet (w/o D)) is obviously superior to the state-of-
the-art RGB SOD methods. With the addition of depth cues,
our method (i.e., DSNet (w/ D)) achieves further performance
improvement.

These experimental results adequately demonstrate the
effects of depth cues in SOD. As a complementary modality
of RGB images, depth maps provide sufficient spatial structure
information, which is beneficial for locating and highlighting
salient objects.

2) Benefits of Different Modules: To further evaluate the
contribution of different modules in the proposed DSNet,
we conduct various experiments from quantitative and qualita-
tive perspectives, as shown in Tab. II and Fig. 8. In the 2nd row
of Tab. II, we test the model without additional modules (i.e.,
CGCM, CAM, and BGPM), and obtain comparable results
to the state-of-the-art methods. To verify the effectiveness of
CGCM, we follow the single variable principle, and only add
CGCM while leaving other settings as default, as shown in
the 3rd row of Tab. II. We find that the model with CGCM
gains performance improvements on both NJU2K test set and
LFSD dataset. The corresponding visualization result is shown
in Fig. 8 (f), which pays more attention to global information.
Besides, we further add CAM and BGPM, and the results on
various evaluation metrics show that they effectively improve
the performance shown in the 4th and 5th rows of Tab. II.
Furthermore, it can be found from Fig. 8 (g) and (h) that the
predicted saliency maps can effectively suppress backgrounds
and detect salient objects. When adding the complete DSM
(the 8th row of Tab. II), including CAM and BGPM, our model
performs best, which not only accurately and completely high-
lights salient objects, but also depicts sharper edges clearly,
as shown in Fig. 8 (i).

Overall, according to Tab. II and Fig. 8, we can make a
conclusion that each module in our model is beneficial for
improving the performance of the proposed DSNet.

3) Advantages of Edge Supervision: To analyze the advan-
tages of edge supervision in training phase, we conduct
corresponding experiments. Naturally, we remove all levels of
edge supervision (i.e., Le), which retrains the variant model
only under object supervision. As shown in the 7th and 8th

rows of Tab. II, we find that the performance of DSNet on

Fig. 9. Multi-level visualization results under object supervision and edge
supervision. (a) represents Ground Truth, (b) ∼ (f) represent object saliency
maps and edge saliency maps at different levels. Note that the first two rows
are generated by the model with edge supervision, and the last row is generated
by the model without edge supervision.

different evaluation metrics is better than the variant model
without edge supervision. Meanwhile, we also show the visu-
alization results under different supervision strategies in Fig. 9.
Specifically, the 1st row is the edge saliency maps of different
levels under edge supervision, which clearly describes the
boundaries of salient objects. The 2nd and 3rd rows are the
object saliency maps of different levels with/without edge
supervision, respectively. Obviously, it can be found that the
former shows clearer and sharper edges than the latter under
the supervision of edge information. Therefore, we can say
that edge supervision is helpful to acquire saliency maps with
clear boundaries.

D. Failure Case Analysis

As aforementioned, we illustrate the effectiveness and
advancement of the proposed DSNet through various quan-
titative and qualitative experiments. However, in some special
situations, the proposed DSNet is still difficult to achieve
the expected results. As shown in Fig. 10, we present six
representative failure cases, which can be divided into three
categories. In the first category, the proposed model falsely
highlights background regions and cannot correctly segment
salient objects, such as the bridge and the traffic sign, as shown
in Fig. 10 (a) and (b). This is mainly because our model pays
more attention to the global consistency of objects. In the
second category, our model either misses the salient object or
fails to detect it perfectly when dealing with occlusion scenes.
In Fig. 10 (c) and (d), we show two typical examples, one is
an owl occluded by a tree branch, and the other is a horse
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Fig. 10. Some typical failure cases of our model. (a)–(f) Represents three
different common scenes, (a) and (b): global consistency, (c) and (d): object
occlusion, (e) and (f): depth sensitivity.

occluded by fences. In this case, our model cannot accurately
detect salient objects. The reason behind this maybe lies in
that the occlusion destroys the integrity of salient objects and
greatly interferes with the detection of complete objects. In the
third category, it is difficult for the proposed DSNet to focus
on the salient object far away from camera, such as the doll in
Fig. 10 (e) and the bottle in Fig. 10 (f). We noticed that depth
maps tend to concern more on the objects close to camera.
This may lead to this phenomenon that the closer object is
more likely to be a salient object. Generally speaking, how
to further effectively and efficiently mine the complementary
information between RGB images and depth maps is still a
problem worthy of further exploration.

V. CONCLUSION

In this paper, we propose a novel Dynamic Selective Net-
work (DSNet) for RGB-D saliency detection. Our method can
not only automatically select and fuse the cross-modal fea-
tures, i.e., RGB images and depth maps, but also autonomously
optimize the cross-level and multi-scale hybrid features.
Specifically, to mine the high-level semantic information more
effectively, we employ a CGCM to highlight salient objects
globally. Besides, in the CAM, we make full use of the
attention mechanism and design a layer attention block to
dynamically explore the cross-modal complementary infor-
mation between RGB images and depth maps. Furthermore,
we introduce a BGPM to better integrate the cross-level
features and optimize the multi-scale features. Finally, the
deeply supervision strategy with feedback mechanism ensures
that the predicted saliency maps are with clearer objects and
sharper edges. Extensive experiments on eight public RGB-D
datasets show that the proposed DSNet achieves a comparable
performance against 17 state-of-the-art methods in terms of
five evaluation metrics.
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