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Humans are emotional creatures. Multiple modalities are 
often involved when we express emotions, whether we do so 
explicitly (such as through facial expression and speech) or 

implicitly (e.g., via text or images). Enabling machines to have 
emotional intelligence, i.e., recognizing, interpreting, process-
ing, and simulating emotions, is becoming increasingly impor-
tant. In this tutorial, we discuss several key aspects of multi-
modal emotion recognition (MER). 

We begin with a brief introduction on widely used emotion 
representation models and affective modalities. We then sum-
marize existing emotion annotation strategies and correspond-
ing computational tasks, followed by a description of the main 
challenges in MER. Furthermore, we present some represen-
tative approaches on representation learning of each affective 
modality, feature fusion of different affective modalities, and 
classifier optimization as well as domain adaptation for MER. 
Finally, we outline several real-world applications and discuss 
some future directions.

Introduction
Emotion is present everywhere in human daily life and can in-
fluence or even determine our judgment and decision making 
[1]. For example, in marketing, a widely advertised brand can 
generate a mental representation of a product in consumers’ 
minds and influence their preferences and actions; inducing 
sadness and disgust during a shopping trip would, respective-
ly, increase and decrease consumers’ willingness to pay [31]. 
Drivers experiencing strong emotions, such as sadness, anger, 
agitation, and even happiness, are much more likely to be in-
volved in an accident [32]. In education—especially current 
online classes during the COVID-19 pandemic period—stu-
dents’ emotional experiences and interactions with teachers 
have a big impact on their learning ability, interest, engage-
ment, and even career choices [33]. 

The importance of emotions in artificial intelligence was 
recognized decades ago. Minsky, a Turing Award winner in 
1970, once claimed, “The question is not whether intelligent 
machines can have any emotions, but whether machines can be 
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intelligent without emotions” [2]. Enabling machines to have 
emotional intelligence, i.e., recognizing, interpreting, process-
ing, and simulating emotions, has recently become increas-
ingly important, with wide potential applications involving 
human–computer interaction [3]. 

On the one hand, emotionally intelligent machines can pro-
vide more harmonious and personal services for human beings, 
especially the elderly, those with disabilities, and children. For 
example, companion robots that can work with emotions can 
better meet the psychological and emotional needs of the elderly 
and help them stay comfortable. 

On the other hand, by recognizing humans’ emotions 
automatically and in real time, intelligent machines can bet-
ter identify humans’ abnormal behaviors, send reminders to 
their relatives and friends, and prevent extreme behaviors to 
themselves and even to the rest of society. For example, an 
emotion-monitoring system for driving can automatically play 
some soothing music to relax angry individuals who might be 
dissatisfied with a traffic jam and can remind them to focus on 
driving safely. 

The first step for intelligent machines to express human-like 
emotions is to recognize and understand humans’ emotions, typi-
cally through two groups of affective modalities: explicit affec-
tive cues and implicit affective stimuli. Explicit affective cues 
correspond to specific physical and psychological changes in 
humans that can be directly observed and recorded, such as facial 
expressions, eye movement, speech, actions, and physiologi-
cal signals. These can be either easily suppressed and masked or 
difficult and impractical to capture. 

Meanwhile, the popularity of mobile devices and social 
networks enables humans to habitually share their experiences 
and express their opinions online using text, images, audio, 
and video. Implicit affective stimuli correspond to these com-
monly used digital media, the analysis of which provides an 
implicit way to infer humans’ emotions [4].

Regardless of whether emotions are expressed explicitly or 
implicitly, there are generally multiple modalities that can con-
tribute to the emotion recognition task, as shown in Figure 1. As 

compared to unimodal emotion recognition, MER has sev-
eral advantages. The first is data complementarity. Cues from 
different modalities can augment or complement each other. 
For example, if we see a social media post from a good friend 
saying, “What great weather!” it is highly probable that our 
friend is expressing a positive emotion, but, if there is also 
an auxiliary image of a storm, we can infer that the text is 
actually sarcastic and that a negative emotion is intended to 
be expressed. 

The second is model robustness. Due to the influence of 
many normally occurring factors in data collection, such as 
sensor device failure, some data modalities might be unavail-
able, which is especially prevalent in the wild. For example, 
in the CALLAS data set containing speech, facial expres-
sion, and gesture modalities, the gesture stream is missing 
for some momentarily motionless users [5]. In such cases, 
the learned MER model can still work with the help of other 
available modalities. 

The final advantage is performance superiority. Joint 
consideration of the complementary information of different 
modalities can result in better recognition performance. A 
meta-analysis indicates that, as compared to the best unimodal 
counterparts, MER achieves 9.83% performance improvement 
on average [6].

In this article, we give a comprehensive tutorial on dif-
ferent aspects of MER, including psychological models, 
affective modalities, data collections and emotion annota-
tions, computational tasks, challenges, computational meth-
odologies, applications, and future directions. There have 
been several reviews/surveys on MER-related topics [4], 
[6]–[9]. In particular, [7] and [9] cover different aspects of 
general multimodal machine learning with few efforts on 
emotion recognition, [6] focuses on the quantitative review 
and meta-analysis of existing MER systems, and [4] and [8] 
are survey-style MER articles with a technical emphasis on 
multimodal fusion. However, this tutorial-style article aims 
to give a quick and comprehensive MER introduction that is 
also suitable for nonspecialists.

Psychological models
In psychology, categorical emotion states 
(CES) and dimensional emotion space 
(DES) are two representative types of 
models to measure emotion [10]. CES 
models define emotions as being in a 
few basic categories, such as binary sen-
timents (positive and negative, some-
times including neutral), Ekman’s six 
basic emotions [happiness and surprise 
(positive) as well as anger, disgust, fear, 
and sadness (negative)], Mikels’s eight 
emotions [amusement, awe, content-
ment, and excitement (positive) as 
well as anger, disgust, fear, and sadness 
(negative)], Plutchik’s emotion wheel 
(eight basic emotion categories, each 

(c)(a) (b) (d)

(g)(f)(e)

What an exciting day!
I will never forget it.

FIGURE 1. The multiple modalities for emotion recognition. Explicit affective cues include (a) facial ex-
pression, (b) action and gait, (c) speech, and (d) physiological signals. Implicit affective stimuli include 
(e) text, (f) image, and (g) video. 
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with three intensities), and Parrott’s tree hierarchical group-
ing (primary, secondary, and tertiary categories). The de-
velopment of psychological theories motivates CES to be 
increasingly diverse and fine-grained. DES models em-
ploy continuous 2D, 3D, or higher-dimensional Cartesian 
spaces to represent emotions; the most widely used DES 
model is valence–arousal–dominance (VAD), which rep-
resent the pleasantness, intensity, and control degree of 
emotions, respectively. 

CES models agree better with humans’ intuition, but no 
consensus has been reached by psychologists on how many 
discrete emotion categories should be included. Furthermore, 
emotion is complex and subtle, which cannot be well reflected 
by limited discrete categories. DES models can theoretically 
measure all emotions as different coordinate points in the con-
tinuous Cartesian space, but the absolute continuous values are 
beyond users’ understanding. These two types of definitions 
of emotions are related, with a possible transformation from a 
CES to DES. For example, anger relates to negative valence, 
high arousal, and high dominance.

Besides emotion, there are several other widely used con-
cepts in affective computing, such as mood, affect, and senti-
ment. Emotions can be expected, induced, or perceived. We 
do not aim to distinguish them in this article. Please refer to 
[11] for more details on the differences or correlations among 
these concepts.

Affective modalities
In the area of MER, multiple modalities are employed to rec-
ognize and predict human emotions. The affective modali-
ties in MER can be roughly divided into two groups based on 
whether emotions are recognized from humans’ physical body 
changes or external digital media: explicit affective cues and 
implicit affective stimuli. 

The former group includes facial expression, eye move-
ment, speech, action, gait, and electroencephalography (EEG), 
all of which can be directly observed, recorded, or collected 
from an individual. Meanwhile, the latter group comprises 
commonly used digital media types, such as text, audio, imag-
es, and video. We use these data types to store information 
and knowledge as well as transfer them among digital devices. 
In this way, emotions may be implicitly involved and evoked. 
Although the efficacy of one specific modality as a reliable 
channel to express emotions cannot be guaranteed, jointly con-
sidering multiple modalities would significantly improve the 
reliability and robustness [12].

Explicit affective cues
A facial expression is an isolated motion of one or more hu-
man face regions/units or a combination of such motions. It is 
commonly agreed that facial expressions can carry informa-
tive affective cues, and they are recognized as one of the most 
natural and powerful signals to convey the emotional states 
and intentions of humans [12]. Facial expression is also a form 
of nonverbal communication conveying social information 
among humans. 

We can deduce how an individual is feeling by observing 
his or her eye movement [34]. The eyes are often viewed as 
important cues of emotions. For example, if a person is ner-
vous or lying, the blinking rate of his or her eyes may become 
slower than normal [34]. Eye movement signals can be easily 
collected via an eye-tracker system and have been widely used 
in human–computer interaction research. 

Speech is a significant vocal modality to carry emotions 
[13], [14]. Speakers may express their intentions, like asking or 
declaring, by using various intonations, degrees of loudness, 
and tempo. Specifically, emotions can be revealed when peo-
ple talk with each other or just mutter to themselves. 

As an important part of human body language, action also 
conveys massive information about emotion. For instance, an 
air punch is an act of thrusting one’s clenched fist up into the 
air, typically as a gesture of triumph or elation. 

Similar to action, emotions can be perceived from a per-
son’s gait, i.e., his or her walking style. The psychology litera-
ture has proven that participants can identify the emotions 
of a subject by observing his or her posture, including long 
strides, collapsed upper body, and so on [35]. Body move-
ment (e.g., walking speed) also plays an important role in 
the perception of different emotions. High-arousal emo-
tions, such as anger and excitement, are more associated 
with rapid movements than low-arousal emotions, such as 
sadness and contentment. 

Last but not least, EEG, as one representative psychological 
signal, is another important method for recording the electrical 
and emotional activity of the brain [15]. Compared to the other 
aforementioned explicit cues, the collection of EEG signals is 
typically more difficult and unnatural, regardless of whether 
electrodes are placed noninvasively along the scalp or inva-
sively using electrocorticography.

Implicit affective stimuli
Text is a form used to record the natural language of human 
beings, which can implicitly carry informative emotions 
[16], [17]. It has different levels of linguistic components, 
including words, sentences, paragraphs, and articles, which 
are well studied; many off-the-shelf algorithms have been 
developed to segment text into small pieces. Then, the affec-
tive attribute of each linguistic piece is recognized with the 
help of a publicly available dictionary like SentiWordNet, 
and the emotion evoked by the text can be deduced. 

A digital audio signal is a representation of sound, typi-
cally stored and transferred using a series of binary num-
bers [12]. Audio signals may be synthesized directly or 
originate at a transducer, such as a microphone or musi-
cal instrument. Unlike speech, which mainly focuses on 
human vocal information and the content of which may 
be translated into natural language, audio is more general, 
including any sound, like music or birdsong. 

An image is a distribution of colored dots over space 
[36]. The phrase “a picture is worth a thousand words” is 
well known. It has been demonstrated in psychology that 
emotions can be evoked in humans by images [18]. The 
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explosive growth of images shared online and powerful 
descriptive ability of scenes have enabled images to become 
crucial affective stimuli, which has attracted extensive 
research efforts [10]. 

Video naturally contains multiple modalities at the same 
time, such as visual, audio, and textual information [19]. 
That means temporal, spatial, and multichannel representa-
tions can be learned and utilized to recognize the emotions 
in videos.

Data collections and emotion annotations
Two steps are usually involved in constructing an MER data 
set: data collection and emotion annotation. The collected data 
can be roughly divided into two categories: selecting from ex-
isting data and new recording in specific environments. 

On the one hand, some data are selected from movies, 
reviews, videos, and TV shows in online social networks, such 
as YouTube and WeiBo. For example, the review videos in 
ICT-MMMO and MOUD are collected from YouTube; audio-
visual clips are extracted from TV series in MELD; online 
reviews from the food and restaurant categories are crawled 
in Yelp; and video blogs, typically with one speaker looking 
at the camera from YouTube, are collected in CMU-MOSI to 
capture the speakers’ information. Some collected data pro-
vide a transcription of speech either manually (e.g., CMU-
MOSI and CH-SMIS) or automatically (such as ICT-MMMO 
and MELD).

On the other hand, some data are newly recorded with 
different sensors in specifically designed environments. 
For example, participants’ physiological signals and fron-
tal facial changes induced by music videos are recorded 
in DEAP.

There are different kinds of emotion annotation strate-
gies. Some data sets have target emotions and do not need to 
be annotated. For example, in EMODB, each sentence per-
formed by actors corresponds to a target emotion. For some 
data sets, the emotion annotations are obtained automatically. 
For example, in Multi-ZOL, the integer sentiment score for 
each review, ranging from 1 to 10, is regarded as the senti-
ment label. 

Several workers are employed to annotate the emotions, 
such as VideoEmotion-8. The data sets with recorded data 
are usually annotated by participants’ self-reporting, such as 
MAHNOB-HCI. In addition, the emotion labels are typically 
obtained by major voting. 

For DES models, “FeelTrace” and “SAM” are often used 
for annotation. The former is based on the activation-evalua-
tion space, which allows observers to track the emotion con-
tent of a stimulus as they perceive it over time. The latter is a 
tool that accomplishes emotion rating based on different Lik-
ert scales. Some commonly used data sets are summarized 
in Table 1.

Computational tasks
Given multimodal affective signals, we can conduct differ-
ent MER tasks, including classification, regression, detection, 

and retrieval. In this section, we briefly introduce what these 
tasks do.

Emotion classification
In the emotion classification task, we assume that one in-
stance can belong to only one or a fixed number of emotion 
categories, and the goal is to discover class boundaries or 
distributions in the data space [16]. Current works mainly 
focus on the manual design of multimodal features and 
classifiers or employing deep neural networks in an end-
to-end manner.

As defined as a single-label learning problem, MER assigns 
a single dominant emotion label to each sample. However, the 
emotion may be a mixture of all components from various 
regions or sequences rather than a single representative emo-
tion. Meanwhile, different people may have varying emotional 
reactions to the same stimulus, which is caused by a variety of 
elements, like personality. 

Thus, multilabel learning (MLL) has been utilized to study 
the problem where one instance is associated with multiple 
emotion labels. Recently, to address the problem that MLL 
does not fit some real applications well where the overall dis-
tribution of different labels’ importance matters, label-distri-
bution learning is proposed to cover a certain number of labels, 
representing the degree to which each emotion label describes 
the instance [20].

Emotion regression
Emotion regression aims to learn a mapping function that can 
effectively associate one instance with continuous emotion val-
ues in a Cartesian space. The most common regression algo-
rithms for MER aim to assign the average dimension values to 
the instance. To deal with the inherent subjectivity characteris-
tic of emotions, researchers propose predicting the continuous 
probability distribution of emotions, which are represented in 
dimensional VA space. Specifically, VA emotion labels can be 
represented by a Gaussian mixture model (GMM), and then 
the emotion distribution prediction can be formalized as a pa-
rameter learning problem [21].

Emotion detection
As the raw data do not ensure carrying emotions, or only part 
of the data can evoke emotional reactions, emotion detec-
tion aims to find out which kind of emotion lies where in the 
source data. For example, a restaurant review on Yelp might 
read, “This location is conveniently located across the street 
from where I work—being walkable is a huge plus for me! 
Foodwise, it’s the same as almost every location I’ve visited, 
so there’s nothing much to say there. I do have to say that the 
customer service is hit or miss.” Meanwhile, the overall rating 
score is three stars out of five. This review contains different 
emotions and attitudes: positive in the first sentence, neutral 
in the second sentence, and negative in the last sentence. As 
such, it is crucial for the system to detect which sentence cor-
responds to each emotion. Another example is affective region 
detection in images [22].
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Emotion retrieval
How to search affective content based on human perception is 
another meaningful task. The existing framework first detects 
local interest patches or sequences in the query and candidate 
data sources. Then, it discovers all matched pairs by determin-

ing whether the distance between two patches or sequences is 
less than a given fixed threshold. The similarity score between 
the query and each candidate is calculated as the quantity of 
matched components, followed by ranking the candidates of this 
query accordingly. While an affective retrieval system is useful 

Table 1. A brief summary of released data sets for MER.

Data Set Modalities Samples 
Data 
Sources Emotion Labels Website

IEMOCAP Face, speech, 
t-text, and video 

10,039 turns Recording ang, sad, hap, dis, fea, 
sur, fru, exc, and neu 

https://sail.usc.edu/iemocap 

VAD on 5-point ratings 
YouTube Face, eye, speech, 

t-text, and video
47 videos YouTube pos, neg, and neu http://multicomp.cs.cmu.edu/rsources/youtube 

-dataset-2 
MOUD Face, speech, 

t-text, and video 
412 utterances YouTube pos, and neg http://web.eecs.umich.edu/~mihalcea/ 

downloads.html#MOUD
ICT-MMMO Face, eye, speech, 

t-text, and video
370 segments Youtube 

and ExpoTV
pos and neg http://multicomp.cs.cmu.edu/resources/ict-mmmo 

-dataset 
News Rover Face, speech, 

t-text, and video 
929 videos News pos, neg, and neu https://www.ee.columbia.edu/ln/dvmm/ 

newsrover/sentimentdataset
CMU-MOSI Face, eye, speech, 

t-text, and video
2,199 clips YouTube –3 to 3 sentiment score http://multicomp.cs.cmu.edu/resources/cmu-mosi 

-dataset 
CMU-MOSEI Face, eye, speech, 

t-text, and video
23,453 
sentences 

YouTube hap, sad, ang, fea, dis, 
and sur
–3 to 3 sentiment score 

http://multicomp.cs.cmu.edu/resources/cmu-mosei 
-dataset/ 

MELD Face, speech, 
t-text, and video 

13,708 
utterances 

TV series 
Friends 

hap, sad, ang, fea, dis, 
sur, neu, and non-neu
pos, neg, and neu

https://affective-meld.github.io 

CH-SIMS Face, eye, speech, 
t-text, and video

2,281 segments Movies and 
TV series 
Variety 
shows

–1 to 1 sentiment score https://github.com/thuiar/MMSA 

eNTERFACE’05 Face, speech, and 
video 

1,166 sequences Recording ang, fea, hap, sad, and 
sur 

http://www.enterface.net/enterface05 

SEMAINE Face, speech, 
t-text, and video 

959 
conversations 

Recording val, act, pow, exp, int; 
bas-em, eps, ipa, and 
vad

https://semaine-db.eu/

EMDB Video, SCL, and 
HR 

52 clips Films ero, hor, neg, pos, sce, 
and obm
VAD on 9-point ratings 

EMDB@psi.uminho.pt

DEAP Face, EEG, GSR, 
RA, and ST 
ECG, BVP, EMG, 
and EOG

1,280 samples Recording VAD-L on 9 point ratings
F on 5-point ratings 

http://www.eecs.qmul.ac.uk/mmv/datasets/
deap/

MAHNOB-HCI Face, eye, audio, 
and EEG 

532 samples Recording sad, joy, dis, neu, hap, 
amu, ang, fea, sur, and anx 

https://mahnob-db.eu/hci-tagging

ECG, GSR, ST, 
and RA 

VAD-P on 9-point ratings 

Multi-ZOL Image and text 28,469 aspect-
review pairs 

ZOL 0–10 sentiment score https://github.com/xunan0812/MIMN 

Yelp Image and text 244,569 images 
and 44,305 
reviews

Yelp Sentiment score on 
5-point ratings 

https://github.com/PreferredAI/vista-net 

Tourism Image and text 1,796 weibos WeiBo pos, neg, and neu https://github.com/wlj961012/Multi-Modal-Event 
-awareNetwork-for-SentimentAnalysis-in-Tourism 

LIRIS-ACCEDE Video (audio and 
image) 

9,800 clips Movies Rank along valence https://liris-accede.ec-lyon.fr 

VideoEmotion-8 Video (audio and 
image) 

1,101 videos YouTube 
and Flickr 

ang, ant, dis, fea, joy, 
sad, sur, and tru 

http://www.yugangjiang.info/research/ 
VideoEmotions/index.html 

Ekman-6 Video (audio and 
image) 

1,637 videos YouTube and 
Flickr 

ang, dis, fea, joy, sad, 
and sur 

https://github.com/kittenish/Frame-Transformer 
-Network

Modalities: BVP: blood volume pressure; ECG: electrocardiogram; EMG: electromyogram; EOG: electro-oculogram; GSR: galvanic skin response; HR: heart rate; PPS: peripheral 
physiological signal; RA: respiration amplitude; SCL: skin conductance level; ST: skin temperature; t-text: transcript text.
Emotion labels: amu: amusement; ang: angry; ant: anticipation; anx: anxiety; dis: disgust; ero: erotic; exc: excited; F: familiarity; fea: fear; fru: frustration; hap: happiness; hor: 
horror; L: liking; neg: negative; neu: neutral; obm: object manipulation; P: predictability; pos: positive; sad: sadness; sce: scenery; sur: surprise; tru: trust; act: activation; bas-em: 
basic-emotions; eps: epistemic-states; exp: expectation; ipa: interaction-process-analysis; int: intensity; pow: power; val: valence; vad: validity.
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for obtaining online content with the desired emotions from 
a massive repository [10], again, the abstract and subjective 
characteristics make the task challenging and difficult 
to evaluate.

Challenges
As stated in the “Introduction” section, MER has several ad-
vantages as compared to unimodel emotion recognition, but it 
also faces more challenges.

Affective gap
The affective gap, which measures the inconsistency between 
extracted features and perceived high-level emotions, is one 
main challenge for MER. The affective gap is even more chal-
lenging than the semantic gap in objective multimedia analy-
sis. Even if the semantic gap is bridged, there might still exist 
an affective gap. 

For example, a blooming and a faded rose both contain 
a rose, but they can evoke different emotions. For the same 
sentence, different voice intonations may correspond to 
totally different emotions. Extracting discriminative high-
level features, especially those related to emotions, can 
help to bridge the affective gap. The main difficulty lies in 
how to evaluate whether the extracted features are related 
to emotions.

Perception subjectivity
Due to many personal, contextual, and psychological factors, 
such as the cultural background, personality, and social con-
text, different people might have varying emotional responses 
to the same stimuli [10]. Even if the emotion is the same, their 
physical and psychological changes can also be quite divergent. 

For example, all of the 36 videos in the ASCERTAIN data 
set for MER are labeled with at least four out of seven differ-
ent valence and arousal scales by 58 subjects [15]. This clearly 
indicates that some subjects have the opposite emotional reac-
tions to the same stimuli. Take a short video with a storm and 
thunder, for instance: some people may feel awe because they 
have never seen such extreme weather, others may experience 
fear because of the loud thunder noise, some may be excited to 
capture such rare scenes, still others may feel sad because they 
have to cancel their travel plans, and so on. 

Even for the same emotion (e.g., excitement), there are dif-
ferent reactions, such as facial expression, gait, action, and 
speech. For the subjectivity challenge, one direct solution is 
to learn personalized MER models for each subject. From the 
perspective of stimuli, we can also predict the emotion distri-
bution when a certain number of subjects are involved. Besides 
the content of the stimuli and direct physical and psychological 
changes, jointly modeling the personal, contextual, and psy-
chological factors mentioned earlier would also contribute to 
the MER task. 

Data incompleteness
Because of the presence of many inevitable factors in data col-
lection, such as sensor device failure, the information in specif-

ic modalities might be corrupted, which results in missing or 
incomplete data. Data incompleteness is a common phenom-
enon in real-world MER tasks. 

For example, for explicit affective cues, an EEG headset 
might record contaminated signals or even fail to capture 
any signal; at night, cameras cannot capture clear facial 
expressions. For implicit affective stimuli, one user might 
post a tweet containing only an image (without text); for 
some videos, the audio channel does not change much. In 
such cases, the simplest feature fusion method, i.e., early 
fusion, does not work because we cannot extract any fea-
tures given no captured signal. Designing effective fusion 
methods that can deal with data incompleteness is a widely 
employed strategy.

Cross-modality inconsistency
Different modalities of the same sample may conflict with 
each other and, thus, express varying emotions. For example, 
facial expressions and speech can be easily suppressed or 
masked to avoid being detected, but EEG signals that are 
controlled by the central nervous system can reflect humans’ 
unconscious body changes. When people post tweets on so-
cial media, it is very common that the images are not se-
mantically correlated to the text. In such cases, an effective 
MER method is expected to automatically evaluate which 
modalities are more reliable, such as by assigning a weight 
to each one. 

Cross-modality imbalance
In some MER applications, different modalities may contrib-
ute unequally to the evoked emotion. For example, online news 
plays an important role in our daily lives, and, in addition to 
understanding the preferences of readers, predicting their emo-
tional reactions is of great value in various applications, such 
as personalized advertising. However, a piece of online news 
usually includes imbalanced texts and images; i.e., an article 
may be very long, with lots of detailed information, while only 
one or two illustrations are inserted into the news. Potentially 
more problematic, the editor of the news may select a neutral 
image for an article with an obvious sentiment.

Label noise and absence
Existing MER methods, especially the ones based on deep 
learning, require large-scale labeled data for training. Howev-
er, in real-world applications, labeling emotions in the ground-
truth generation is not only prohibitively expensive and time-
consuming but also highly inconsistent, which results in a large 
amount of data but with few or even no emotion labels. With 
the increasingly diverse and fine-grained emotion require-
ment, we might have enough training data for some emotion 
categories but not for others. One alternate solution to manual 
annotation is to leverage the tags or keywords of social tweets 
as emotion labels, but such labels are incomplete and noisy. As 
such, designing effective algorithms for unsupervised/weakly 
supervised learning and few-/zero-shot learning can provide 
potential solutions.
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Meanwhile, we might have sufficient labeled affective 
data in one domain, such as synthetic facial expression and 
speech. The problem turns to how to effectively transfer the 
trained MER model on the labeled source domain to another 
unlabeled target domain. The presence of a domain shift causes 
significant performance decay when a direct transfer is used 
[23]. Multimodal domain adaptation and domain generaliza-
tion can help to mitigate such domain gaps. Practical settings, 
such as multiple source domains, should also be considered.

Computational methodologies
Generally, there are three components in an MER framework 
with sufficient labeled training data in the target domain: 
representation learning, feature fusion, and classifier optimi-
zation, as shown in Figure 2. In this section, we introduce 
these components. Further, we describe domain adaptation 
when there is no labeled training data in the target domain 
and sufficient labeled data are available in another related 
source domain.

Representation learning of each affective modality
To represent text in a form that can be understood by com-
puters, the following aspects are required: first, representing 
the symbolic words as real numbers for the next computation; 
second, modeling the semantic relationships; and, finally, ob-
taining a unified representation for the whole text [16]. In the 
beginning, words are represented by one-hot vectors with the 
length of the vocabulary size, where, for the tth word in the 
vocabulary wt, only the position t is one, and the other positions 
are zero. As the scale of the data increases, the dimension of 
this one-hot vector increases dramatically. 

Later, researchers used language models to train word 
vectors by predicting context, obtaining word vectors with 
vectors of a fixed dimension. Popular word vector representa-
tion models include word2vec, GLOVE, BERT, and XLNet, 
among others. 

The text feature extraction methods have developed from 
simple to complex ones as well. Text features can be obtained 
by simply averaging word vectors. A recurrent neural network 
(RNN) is used to model the sequential relations of words in the 
text. A convolutional neural network (CNN), which has been 
widely employed in the computer vision community, is also 
used to extract the contextual relations between words. 

To date, plenty of methods have been developed to design 
representative features for emotion stimuli in audios [13], [14]. 
It has been found that audio features, such as pitch, log energy, 
zero-crossing rate, spectral features, voice quality, and jitter, 
are useful in emotion recognition. The ComParE acoustic fea-
ture set has been commonly used as the baseline set for the 
ongoing Computation Paralinguistics Challenge series since 
2013. However, because of possible high similarities in certain 
emotions, a single type of audio feature is not discriminative 
enough to classify emotions. 

To solve this problem, some approaches propose combin-
ing different types of features. Recently, with the development 
of deep learning, CNNs are shown to achieve state-of-the-art 
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performance on large-scale tasks in many domains dealing 
with natural data, and audio emotion recognition is, of course, 
also included. Audio is typically transferred into a graphical 
representation, such as a spectrogram, to be fed into a CNN. 
Since the CNN uses shared weight filters and pooling to give 
the model better spectral and temporal invariant properties, it 
typically yields better generalized and more robust models for 
emotion recognition.

Researchers have designed informative representations for 
emotional stimuli in images. In general, images can be divided 
into two types, nonrestrictive and facial expression. For the 
former, e.g., natural images, various handcrafted features, 
including color, texture, shape, composition, and so on, are 
developed to represent image emotion in the early years [10]. 
These low-level features are developed with inspiration from 
psychology and art theory. 

Later, midlevel features based on the visual concepts are 
presented to bridge the gap between the pixels in images and 
emotion labels. The most representative engine is SentiBank, 
which is composed of 1,200 adjective–noun pairs and shows 
remarkable and robust recognition performance among all of 
the hand-engineering features. In the era of deep learning, a 
CNN is regarded as a strong feature extractor in an end-to-
end manner. Specifically, to integrate various representations 
of different levels, features are extracted from multiple layers 
of the CNN.

Meanwhile, an attention mechanism is employed to learn 
better emotional representations of specific local affec-
tive regions [22]. For the facial expression images, firstly, the 
human face is detected and aligned, and then the face land-
marks are encoded for the recognition task. Note that, for those 
nonrestrictive images that contain human faces by chance, 
facial expression can be treated as an important midlevel cue.

Earlier, we mentioned how to identify emotions in isolated 
modalities. Here, we first focus on perceiving emotions from 
successive frames. Then, we introduce how to build joint rep-
resentation for videos. Compared to a single image, a video 
contains a series of images with temporal information [19]. 

To build representations of videos, a wide range of meth-
ods has been proposed. Early methods mainly utilize hand-
crafted local representations in this field, which include color, 
motion, and the shot cut rate. With the advent of deep learn-
ing, recent methods extract discriminative representations by 
adopting a 3D CNN that captures the temporal information 
encoded in multiple adjacent frames. After extracting modal-
ity-specific features in videos, integrating different types of 
features could obtain more promising results and improve 
the performance.

To perceive emotions, there are mainly two aspects of ways 
to learn the representations of gait [24]. For one thing, we can 
explicitly model the posture and movement information that 
is related to the emotions. To do this, we first extract the skel-
etal structure of a person and then represent each joint of the 
human body using the 3D coordinate system. After getting 
these coordinates, the angles, distance, or area among different 
joints (posture information), velocity/acceleration (movement 

information), their covariance descriptors, and so on can be 
easily extracted. 

For another thing, high-level emotional representations can 
be modeled from gait by long short-term memory (LSTM), 
deep CNNs, or graph convolutional networks. Some methods 
extract optical flow from gait videos and then extract sequence 
representations using these networks. Others learn skeletal 
structures of the gait and then feed them into multiple networks 
to extract discriminate representations. 

Since various types of information about emotions, such 
as the frequency band, electrodeposition, and temporal data, 
can be explored from the brain’s response to emotional stim-
uli, EEG signals are widely used in emotion analysis [15]. To 
extract discriminative features for EEG emotion recognition, 
differential entropy features from the frequency band or elec-
trodeposition relationship are very popular in previous works. 

In addition to handcrafted features, we can also directly 
apply end-to-end deep learning neural networks, such as 
CNNs and RNNs, on raw EEG signals to obtain power-
ful deep features [25]. Inspired by the learning pattern of 
humans, spatialwise attention mechanisms are successfully 
applied to extract more discriminative spatial information. 
Furthermore, considering that EEG signals contain multiple 
channels, a channelwise attention mechanism can also be 
integrated into a CNN to exploit the interchannel relationship 
among feature maps.

Feature fusion of different affective modalities
Feature fusion, as one key research topic in MER, aims to in-
tegrate the representations from multiple modalities to predict 
either a specific category or continuous value of emotions. 
Generally, there are two strategies: model-free and model-
based fusion [7], [9].

Model-free fusion that is not directly dependent on specific 
learning algorithms has been widely used for decades. We can 
divide it into early fusion, late fusion, and hybrid fusion [5]. 
All of these fusion methods can be extended from existing uni-
modal emotion recognition classifiers.

Early fusion, also named feature-level fusion, directly con-
catenates the feature representations from different modalities 
as a single representation. It is the most intuitive method for 
fusing multiple representations by exploiting the interactions 
between various modalities at an early stage and only requires 
training a single model. However, since the representations 
from the modalities might significantly differ, we have to 
consider the time synchronization problem to transform these 
representations into the same format before fusion. When one 
or more modalities are missing, such early fusion would fail. 

Late fusion, also named decision-level fusion, instead inte-
grates the prediction results from each single modality. Some 
popular mechanisms include averaging, voting, and signal 
variance. The advantages of late fusion include 1) flexibility 
and superiority (the optimal classifiers can be selected for dif-
ferent modalities) and 2) robustness (when some modalities are 
missing, late fusion can still work). However, the correlations 
between different modalities before the decision are ignored. 
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Hybrid fusion combines early and late fusion to exploit their 
advantages in a unified framework but with higher computa-
tional cost.

Model-based fusion that explicitly performs fusion during 
the construction of learning models has received more atten-
tion [7], [9], as shown in Figure 3, since it is based on some 
simple techniques that are not specifically designed for mul-
timodal data. For shallow models, kernel- and graph-based 
fusion are two representative methods; for recent popular deep 
models, neural network-, attention-, and tensor-based fusion 
are often used.

Kernel-based fusion is extended based on classifiers that 
contain kernels, such as support vector machine (SVM). For 
different modalities, different kernels are used. The flexibility 
in kernel selection and convexity of the loss functions make 
multiple-kernel learning fusion popular in many applications, 
including MER. However, during testing, these fusion methods 
rely on the support vectors in the training data, which results in 
large memory cost and inefficient reference.

Graph-based fusion constructs separate graphs or hyper-
graphs for each modality, combines these graphs into a fused 
one, and learns the weights of different edges and modali-
ties by graph-based learning. It can well deal with the data 
incompleteness problem simply by constructing graphs based 
on available data. Besides the extracted 
feature representations, we can also 
incorporate prior human knowledge 
into the models by corresponding 
edges. However, the computational cost 
would increase exponentially when more 
training samples are available.

Neural network-based fusion employs 
a direct and intuitive strategy to fuse 
the feature representations or predicted 
results of different modalities by a neu-
ral network. Attention-based fusion uses 
some attention mechanisms to obtain 
the weighted sum of a set of feature rep-
resentations with scalar weights that are 
dynamically learned by an attention mod-
ule. Different attention mechanisms cor-
respond to fusing different components. 

For example, spatial image attention 
measures the importance of different 
image regions. Image and text coat-
tention employs symmetric attention 
mechanisms to generate attended visu-
al and textual representations. Parallel 
and alternating coattention methods 
can be used to, respectively, generate 
attention for different modalities simul-
taneously and one by one. 

Recently, a multimodal adaptation 
gate (MAG) is designed to enable trans-
former-based contextual word represen-
tations, such as BERT and XLNet, to 

accept multimodal nonverbal data [17]. Based on the attention 
conditioned on the nonverbal behaviors, MAG can essentially 
map the informative multiple modalities to a vector with a tra-
jectory and magnitude. 

Tensor-based fusion tries to exploit the correlations of dif-
ferent representations by some specific tensor operations, such 
as outer product and polynomial tensor pooling. These fusion 
methods for deep models are capable of learning from a large 
amount of data in an end-to-end manner with good perfor-
mance but suffer from low interpretability.

One important property of these feature fusion methods is 
whether they support temporal modeling for MER in videos. 
It is obvious that early fusion can, while late and hybrid fusion 
cannot since the predicted results based on each modality are 
already known before late fusion. For model-based fusion, 
excluding kernel-based fusion, all others can be used for tem-
poral modeling. Example methods for graph-based fusion 
methods include hidden Markov models (HMMs) and condi-
tional random fields (CRFs), and RNN and LSTM networks 
can be employed for neural network-based fusion. 

Classifier optimization for MER
For the text represented as a sequence of word embeddings, 
the most popular approaches to leverage the semantics among 
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words are RNNs and CNNs. LSTM, as a typical RNN, con-
tains a series of cells with the same structure. Every cell takes 
a word embedding and the hidden state from the last cell as 
input, computes the output, and updates the hidden state for 
the following cell. The hidden state records the semantics of 
previous words. A CNN computes local contextual features 
among consecutive words through convolution operations, and 
average- or max-pooling layers are used to further integrate 
the obtained features for the following sentiment classification. 

Recently, researchers have begun to use transformer-
based methods, e.g., BERT and GPT-3. The transformer 
is implemented as a series of modules containing a multi-
head self-attention layer followed by a normalization layer, a 
feed-forward network, and another normalization layer. The 
order of words in the text is also represented by another posi-
tion embedding layer. Compared with an RNN, the trans-
former does not require the sequential processing of words, 
which improves the parallelizability, and, compared with a  
CNN, the transformer can model relationships between more 
distant words. 

The classification approaches used in audio emotion recog-
nition generally include the following two options: traditional 
and deep learning-based methods. For traditional methods, 
HMM is a representative method because of its capability of 
capturing the dynamic characteristics of sequential data. SVM 
is also widely utilized in audio emotion recognition.

Deep learning-based methods have become more popu-
lar since they are not restricted by the classical independence 
assumptions of HMM models. Among these techniques, sequence-
to-sequence models with attention have shown success in an 
end-to-end manner. Recently, some approaches have signifi-
cantly extended the state of the art in this area by developing 
deep hybrid convolutional and recurrent models [14].

In the early years, similar to this task in other modalities, 
multiple handcrafted image features were integrated and input 
into an SVM to train classifiers. Then, based on deep learning, 
the classifier and feature extractor were connected and opti-
mized in an end-to-end manner by corresponding loss func-
tions, like cross-entropy loss [26]. In addition, popular metric 
losses, such as triplet and N-pair loss, also took part in the net-
work optimization to obtain more discriminative features. 

With the described learning paradigm, each image was 
predicted as a single dominant emotion category. However, 
based on the theories of psychology, an image may evoke 
multiple emotions in viewers, which leads to an ambiguity 
problem. To address this issue, label-distribution learning is 
employed to predict a concrete relative degree for each emo-
tion category, where Kullback–Leibler divergence is the most 
popular loss function.

Some informative and attractive regions of an image always 
determine the emotion of it. Therefore, a series of architectures 
with extra attention or detection branches is constructed. With 
optimization for multiple tasks, including attention and the orig-
inal task, a more robust and discriminative model is obtained.

Most existing methods employ a two-stage pipeline to 
recognize video emotion, i.e., extracting visual and/or audio 

features and training classifiers. For the latter, many machine 
learning methods have been investigated to model the map-
ping between video features and discrete emotion categories, 
including SVM, GMM, HMM, dynamic Bayesian networks, 
and CRF. Although the approaches contributed to the devel-
opment of emotion recognition in videos, recent methods 
have been proposed to recognize video emotions in an end-
to-end manner based on deep neural networks due to their 
superior capability [27]. 

CNN-based methods first employ 3D CNNs to extract high-
level spatiotemporal features, which contain affective informa-
tion, and then use fully connected layers to classify emotions. 
Finally, the models are followed by the loss function to opti-
mize the whole network. Inspired by the human process of 
perceiving emotions, CNN-based methods employ the atten-
tion mechanism to emphasize emotionally relevant regions of 
frames or segments in each video. Furthermore, considering 
the polar-emotion hierarchy constraint, recent methods pro-
pose polarity-consistent cross-entropy loss to guide the atten-
tion generation. 

The gait of a person can be represented as a sequence of 
2D or 3D joint coordinates for each frame in walking videos. 
To leverage the inherent affective cues in the coordinates of 
joints, many classifiers or architectures have been used to 
extract affective features in the gait. LSTM networks contain 
many special units, i.e., memory cells, and can store the joint 
coordinate information from particular time steps in a long 
data sequence. Thus, they were used in some early work of gait 
emotion recognition. 

The hidden features of LSTM can be further concatenated 
with the handcrafted affective features and are then fed into 
a classifier [e.g., SVM or random forest (RF)] to predict emo-
tions. Recently, another popular network used in gait emo-
tion prediction is the spatial–temporal graph convolutional 
network (ST-GCN), which was initially proposed for action 
recognition from human skeletal graphs. “Spatial” represents 
the spatial edges in the skeletal structure, which are the limbs 
that connect the body joints. “Temporal” refers to temporal 
edges, and they connect the positions of each joint across dif-
ferent frames. ST-GCN can be easily implemented as a spatial 
followed by a temporal convolution, which is similar to deep 
convolutional networks.

EEG-based emotion recognition usually employs various 
classifiers, such as SVM, decision trees, and k-nearest neigh-
bor to classify handcrafted features in the early stage. Later, 
since CNNs and RNNs are good at extracting the spatial and 
temporal information of EEG signals, respectively, end-to-end 
structures, such as cascade convolutional recurrent networks 
(which combine a CNN and RNN), LSTM-RNNs, and parallel 
convolutional RNNs, are successfully designed and applied to 
emotion recognition tasks.

Quantitative comparison of representative MER methods
To give readers an impression of the performances of state-of-
the-art MER methods, we conduct experiments to fairly com-
pare some representative methods based on the released codes 
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of the CMU multimodal software development kit [37] and 
MAG [38]. Specifically, the compared nondeep methods in-
clude SVM, RF, and trimodal HMM (THMM); the compared 
deep methods include multiview LSTM (MV-LSTM), bidirec-
tional contextual LSTM (BC-LSTM), tensor fusion network 
(TFN), multiattention recurrent network (MARN), memory 
fusion network (MFN), fine-tuning (FT), and MAG. 

We conduct experiments on five data sets: CMU-MOSI, 
YouTube, ICT-MMMO, MOUD, and IEMOCAP. All of the 
data sets contain three modalities: face, speech, and transcript 
text. For visual features, Facet is used to extract per-frame basic 
and advanced emotions and facial action units as indicators 
of facial muscle movement. For acoustic features, COVAREP 
is employed to extract 12 mel-frequency cepstral coefficients, 
pitch tracking and voiced/unvoiced segmenting features, glot-
tal source parameters, peak slope parameters, and maxima 
dispersion quotients. For linguistic features, three different 
pretrained word embeddings, i.e., GLOVE, BERT, and XLNet, 
are employed to obtain the word vector. For comparison, the 
human performance is also reported on CMU-MOSI with 
results derived from [39]. 

The input to the nondeep methods is the early fusion of mul-
timodal features. For emotion classification, we use accuracy 
and F1 as metrics; for emotion regression, we use mean abso-
lute error and the Pearson correlation. Higher values indicate 
better performance for all of the metrics, except mean absolute 
error, where lower values denote better performance.

From the results in Tables 2 and 3, we have the following 
observations. First, the performances of deep models are gen-
erally better than nondeep ones. Second, for different data 
sets, the methods with the best performances are different. For 
example, RF achieves the best performance among nondeep 
models except CMU-MOSI, which demonstrates its good gen-
eralization ability, while the performance of SVM is much bet-
ter than that of RF or THMM on CMU-MOSI. 

Third, multiclass classification is more difficult than binary 
classification, such as 77.1 versus 34.7 of MARN on CMU-MOSI. 
Fourth, comparing the same method in Tables 2 and 3 on CMU-
MOSI, we can conclude that BERT and XLNet can provide 

better word embeddings than GLOVE, and XLNet is gener-
ally better than BERT. Finally, although XLNet-based MAG 
achieves a near-human-level performance on CMU-MOSI, 
there is still some gap, and more efforts are expected to achieve 
even better performance than humans.

Domain adaptation for MER
Domain adaptation aims to learn a transferable MER model 
from labeled source domains that can perform well on unla-
beled target domains [23]. Recent efforts have been dedicated 
to deep unsupervised domain adaptation [23], which employs 
a two-stream architecture. One stream is used to train an MER 
model on the labeled source domains, while the other is used 
to align the source and target domains. Based on the alignment 
strategy, existing unimodal domain adaptation approaches can 
be classified into different categories [23], such as discrepancy-
based, adversarial discriminative, adversarial generative, and 
self-supervision-based methods. 

Discrepancy-based methods employ some distance metrics 
to explicitly measure the discrepancy between the source and 
target domains on the corresponding activation layers of the two 
network streams. Commonly used discrepancy loss measures 
include maximum mean discrepancy, correlation alignment, 
geodesic distance, central moment discrepancy, Wasserstein 
discrepancy, contrastive Domain discrepancy, and higher-order 

Table 2. A quantitative comparison of some representative methods for MER on five widely used data sets using GLOVE as word embeddings.

Data Set CMU-MOSI YouTube ICT-MMMO MOUD IEMOCAP

Train:Val:Test 1,284 : 229 : 686 30 : 5 : 11 11 : 2 : 4 49 : 10 : 20 3 : 1 : 1

Method/Metric A2- F1- A7- M. C- A3- F1- A2- F1- A2- F1- A9- F1- MV. CV- MA. CA-

SVM 71.6 72.3 26.5 1.1 0.559 42.4 37.9 68.8 68.7 60.4 45.5 24.1 18 0.251 0.06 0.546 0.54
RF 56.4 56.3 21.3 — — 49.3 49.2 70 69.8 64.2 63.3 27.3 25.3 — — — —
THMM 50.7 45.4 17.8 — — 42.4 27.9 53.8 53 58.5 52.7 23.5 10.8 — — — —
MV-LSTM 73.9 74 33.2 1.019 0.601 45.8 43.3 72.5 72.3 57.6 48.2 31.3 26.7 0.257 0.02 0.513 0.62
BC-LSTM 73.9 73.9 28.7 1.079 0.581 47.5 47.3 70 71.1 72.6 72.9 35.9 34.1 0.248 0.07 0.593 0.4 
TFN 74.6 74.5 28.7 1.04 0.587 47.5 41 72.5 72.6 63.2 61.7 36 34.5 0.251 0.04 0.521 0.55
MARN 77.1 77 34.7 0.968 0.625 54.2 52.9 86.3 85.9 81.1 81.2 37 35.9 0.242 0.1 0.497 0.65 
MFN 77.4 77.3 34.1 0.965 0.632 61 60.7 87.5 87.1 81.1 80.4 36.5 34.9 0.236 0.111 0.482 0.645 

AN and F1 are percentages. - and . respectively indicate that higher and lower values represent better performance for corresponding metrics (the same below).
Evaluation metrics: AN: emotion classification accuracy, where N denotes the number of emotion classes; M: mean absolute error; C: Pearson correlation; V: valence results; 
A: arousal results. 

Table 3. A quantitative comparison of some representative methods 
for MER on the CMU-MOSI data set using BERT or XLNet as word 
embeddings.

Method/
Metric A2- F1- M. C-
TFN 74.8/78.2 74.1/78.2 0.955/0.914 0.649/0.713 
MARN 77.7/78.3 77.9/78.8 0.938/0.921 0.691/0.707 
MFN 78.2/78.3 78.1/78.4 0.911/0.898 0.699/0.713 
FT 83.5/84.7 83.4/84.6 0.739/0.676 0.782/0.812 
MAG 84.2/85.7 84.1/85.6 0.712/0.675 0.796/0.821 
Human 85.7 87.5 0.71 0.82

The numbers on the left and right sides of “/” are the MER results based on BERT 
and XLNet, respectively.
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moment matching. Besides the used discrepancy loss, there are 
some other differences among existing methods, such as wheth-
er the loss is at the domain or class level, which layer the loss is 
operated on, whether the backbone networks share weights or 
not, and if the aligned distribution is marginal or joint. 

Adversarial discriminative models usually align the source 
and target domains with a domain discriminator by adversari-
ally making different domains indistinguishable. The input 
to the discriminator ranges from the original data to extract-
ed features, and the adversarial alignment can be global or 
classwise. We can also consider using shared or unshared 
feature extractors.

Adversarial generative models usually employ a genera-
tor to create fake source or target data to make the domain 
discriminator indistinguishable from the generated and real 
domains. The generator is typically based on a generative 
adversarial network (GAN) and its variants, such as CoGAN, 
SimGAN, and CycleGAN. The input to the generator and dis-
criminator can be different in different methods.

Self-supervision-based methods combine some auxiliary 
self-supervised learning tasks, such as reconstruction, image 
rotation prediction, jigsaw prediction, and masking, with the 
original task network to bring the source and target domains 
closer. We can compare these four types of domain adaptation 
methods from the perspectives of theory guarantee, efficien-
cy, task scalability, data scalability, data dependency, opti-
mizability, and performance. We can combine some of these 
techniques to jointly exploit their advantages. 

The main difficulty in domain adaptation for MER lies in 
the alignment of multiple modalities between the source and 
target domains simultaneously. There are some simple but 
effective ways to extend unimodal domain adaptation to multi-
modal settings, as shown in Figure 4. For example, we can use 
discrepancy loss or a discriminator to align the fused feature 
representations. The correspondence between different modal-
ities can be used as a self-supervised alignment. 

Extending adversarial generative models from unimodal to 
multimodal would be more difficult. Unlike images, other 
generated modalities, such as text and speech, might have 
confused semantics, although they can make the discriminator 
indistinguishable. Generating intermediate feature represen-
tations instead of raw data can provide a feasible solution.

Applications
Recognizing emotions from multiple explicit cues and im-
plicit stimuli is of great significance in a broad range of real-
world applications. Generally speaking, emotion is the most 
important aspect of the quality and meaning of our existence, 
and it makes life worth living. The emotional impact of digi-
tal data lies in that it can improve the user experience of ex-
isting techniques and then strengthen the knowledge transfer 
between people and computers [18].

Many people tend to post texts, images, and videos on social 
networks to express their daily feelings about life. Inspired by 
this, we can mine people’s opinions and sentiments toward top-
ics and events happening in the real world [28]. For instance, 
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user-generated content on Facebook or Instagram can be 
used to derive the attitudes of people from different countries 
and regions when they face a pandemic like COVID-19 [29]. 
Researchers also try to detect sentiment in social networks and 
apply the results to predict political elections. Note that, when 
the personalized emotion of an individual is detected, we can 
further group these emotions, which may contribute to predict-
ing the tendencies of society.

Another important application of MER is business intel-
ligence, especially marketing and consumer behavior analy-
sis [30]. Today, most apparel e-retailers use human models to 
present products. The model’s face presentation is proven to 
have a significant effect on consumer approach behavior. To be 
specific, for participants whose emotional receptivity is high, a 
smiling facial expression tends to lead to the highest approach 
behavior. In addition, researchers examine how online store 
specialization influences consumer pleasure and arousal, 
based on the stimulus–organism–response framework. 

Emotion recognition can also be used in call centers, the 
goal of which is to detect the emotional states of both the caller 
and operator. The system recognizes the involved emotions 
through the intonation and tempo as well as the texts translated 
from the corresponding speech. Based on this, we can receive 
feedback on the quality of the service.

Meanwhile, emotion recognition plays an important role in 
the field of medical treatment and psychological health. With 
the popularity of social media, some people prefer expressing 
their emotions over the Internet rather than to others. If a user 
is observed to be sharing negative information (e.g., sadness) 
frequently and continuously, it is necessary to track her or his 
mental status to prevent the occurrence of psychological illness 
and even suicide. 

Emotional states can also be used to monitor and predict 
the fatigue level of a variety of people, like drivers, pilots, 
workers on assembly lines, and students in classrooms. This 
technique both prevents dangerous situations and benefits the 
evaluation of work/study efficiency. Further, emotional states 
can be incorporated into various security applications, such as 
systems for monitoring public spaces (e.g., bus/train/subway 
stations or football stadiums) for potential aggression. 

Recently, an effective auxiliary system was introduced in 
the diagnosis and treatment process of autism spectrum dis-
order (ASD) in children to assist in collecting information on 
the condition. To help professional clinicians better and faster 
make a diagnosis and give treatment to ASD patients, this sys-
tem characterizes facial expressions and eye gaze attention, 
which are considered to be remarkable indicators for the early 
screening of autism.

MER is used to improve the personal entertainment expe-
rience. For example, a recent work in the brainwave–music 
interface maps EEG characteristics to musical structures (note, 
intensity, and pitch). Similarly, efforts have been made to 
understand the emotion-centric correlation between different 
modalities that are essential for various applications. Affective 
image–music matching provides a good chance appending a 
sequence of music to a given image such that they both evoke 

the same emotion. This helps generate emotion-aware music 
playlists from one’s personal album photos in mobile devices.

Future directions
Existing methods have achieved promising performances in 
various MER settings, such as visual–audio, facial–textual–
speech, and textual–visual tasks. However, all of the summa-
rized challenges have not been fully addressed. For example, 
the issues of how to extract discriminative features that are 
more related to emotion, balance common and personalized 
emotion reactions, and emphasize the more important modali-
ties are still open. To help improve the performances of MER 
methods and make them fit special requirements in the real 
world, we provide some potential future directions.

New methodologies for MER
■■ Contextual and prior knowledge modeling: The experienced 

emotion of a user can be significantly influenced by contex-
tual information, such as the conversational and social envi-
ronments. The prior knowledge of users, such as personality 
and age, can also contribute to emotion perception. For 
example, an optimistic user and a pessimistic viewer are like-
ly to see different aspects of the same stimuli. Jointly consid-
ering this important contextual information and prior 
knowledge is expected to improve the MER performance. 
Graph-related methods, such as graph convolutional net-
works, are possible solutions to model the relationships 
among factors and emotions. 

■■ Learning from unlabeled, unreliable, and unmatched 
affective signals: In the big data era, the affective data 
might be sparsely labeled or even unlabeled, raw data or 
labels can be unreliable, and test and training data could be 
unmatched. Exploring advanced machine learning tech-
niques, such as unsupervised representation learning, 
dynamic data selection and balancing, and domain adapta-
tion, as well as the embedding of special properties of 
emotions, can help to address these challenges. 

■■ Explainable, robust, and secure deep learning for MER: 
Due to the black-box nature, it is difficult to understand why 
existing deep neural networks perform well for MER, and the 
trained deep networks are vulnerable to adversarial attacks 
and inevitable noises that might cause erraticism. Essentially 
explaining the decision-making process of deep learning can 
help with the design of robust and secure MER systems. 

■■ A combination of explicit and implicit signals: Both 
explicit and implicit signals are demonstrated to be useful 
for MER, but they also suffer from some limitations. For 
example, explicit signals can be easily suppressed or are 
difficult to capture, while implicit signals might not reflect 
the emotions in real time. Jointly combining them to 
explore complementary information during a viewer–mul-
timedia interaction would boost the MER performance. 

■■ The incorporation of emotion theory into MER: Different 
theories have been proposed in psychology, physiology, 
neurology, and the cognitive sciences. These theories can 
help us understand how humans produce emotion, but they 
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have not been employed in the computational MER task. 
We believe such an incorporation would make more sense 
to recognize emotions.

More practical MER settings 
■■ MER in the wild: Current MER methods mainly focus on 

neat lab settings. However, MER problems in the real 
world are much more complex. For example, the collected 
data might contain much noise that is unrelated to emotion; 
the users in the test set could be from different cultures and 
languages from those in the training set, resulting in vary-
ing ways of expressing emotion; different emotion label 
spaces might be employed across various settings; or train-
ing data may be incrementally available. Designing an 
effective MER model that is generalizable to these practi-
cal settings is worth investigating. 

■■ MER on the edge: When deploying MER models in edge 
devices, such as mobile phones and security cameras, we 
have to consider the computing limitations and data privacy. 
Techniques like autopruning, neural architecture search, 
invertible neural network, and software–hardware co-design 
are believed to be beneficial for efficient on-device training. 

■■ Personalized and group MER: Because of the subjectivity of 
emotions, simply recognizing the dominant emotion of differ-
ent individuals is insufficient. It is ideal but impractical to col-
lect enough data for each individual to train personalized 
MER models. Adapting the well-trained MER models for 
dominant emotions to each individual with a small amount of 
labeled data is a possible alternate solution. On the other hand, 
it would make more sense to predict emotions for groups of 
individuals who share similar tastes or interests and have a 
similar background. Group emotion recognition is essential 
in many applications, such as recommendation systems, but 
how to classify users into different groups is still challenging.

Real applications based on MER
■■ The implementation of MER in real-world applications: 

Although emotion recognition has been emphasized to be 
important for decades, it has rarely been applied to real 
scenarios due to relatively low performance. With the 
recent rapid progress of MER, we can begin incorporating 
emotion into different applications in the marketing, educa-
tion, health care, and service sectors. The feedback from 
the applications can, in turn, promote the development of 
MER. Together with emotion generation, we believe an 
age of artificial emotional intelligence is coming. 

■■ Wearable, simple, and accurate affective data collection: 
To conduct MER tasks, the first step is to collect accurate 
affective data. Developing wearable, simple, and even con-
tactless sensors to capture such data would make it more 
acceptable to users. 

■■ Security, privacy, ethics, and fairness of MER: During 
data collection, it is possible to extract users’ confidential 
information, such as identity, age, and so on. Protecting the 
security and privacy of users and avoiding any chance of 
misuse must be taken into consideration. Emotion recogni-

tion in real applications might have a negative and even 
dangerous impact on a person, such as emotional pressure. 
Methods to eliminate such an effect should also be consid-
ered from the perspectives of ethics and fairness.

Conclusions
In this article, we provided a comprehensive tutorial on MER. 
We briefly introduced emotion representation models, both ex-
plicit and implicit affective modalities, emotion annotations, 
and corresponding computational tasks. We summarized the 
main challenges of MER in detail, and then we emphatically 
introduced different computational methodologies, includ-
ing the representation learning of each affective modality, 
feature fusion of different affective modalities, and classifier 
optimization as well as domain adaptation for MER. We ended 
this tutorial with discussions of real-world applications and 
future directions. We hope this tutorial can motivate novel tech-
niques to facilitate the development of MER, and we believe 
that this area will continue to attract significant research efforts. 
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