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A B S T R A C T

While deep learning-based image compression methods have shown impressive coding performance, most
existing methods are still in the mire of two limitations: (1) unpredictable compression efficiency gain
when adopting convolutional neural networks with different depths, and (2) lack of an accurate model to
estimate the entropy during the training process. To address these two problems, in this paper, a deep
multi-stage representation based image compression (MSRIC) method is proposed. Owing to this architecture,
the detail information of shallow stages and the compact information of deep stages can be utilized for
image reconstruction. Furthermore, a data-dependent channel-wised factorized probability model (DCFPM) is
adopted to increase the accuracy of entropy estimation. Experimental results indicate that the proposed method
guarantees better perceptual performance at a wide range of bit-rates. Also, ablation studies are carried out
to validate the above mentioned technologies.
1. Introduction

Nowadays the data volume of raw images collected by visual sensors
becomes quite large, thus it is necessary to compress them in order to
transmit and store images effectively. To this end, image compression
has always been studied from a variety of disciplines including engi-
neers, computer scientists, etc. A normal image compression framework
is generally composed of three parts, i.e. transformation, quantization
and entropy coding. Conventional image encoding standards such as
JPEG [1], JPEG2000 [2] and HEVC intra-frame encoding (BPG) [3]
generally adopt a pre-defined handcrafted transform, i.e. discrete co-
sine transform (DCT) or discrete wavelet transform (DWT), to reduce
redundancy. Then, quantization and entropy coding are performed
subsequently to obtain compressed bitstream. In the early years, re-
searchers often focused on improving compression performance on the
basis of existing conventional compression standards.

Recently, deep learning demonstrates exceptional performance in
several computer vision tasks, also including image compression.
Through neural network with proper architecture, raw image data can
be transformed from the spatial domain into the feature domain, which
is in some way similar to the frequency domain transformation in
conventional image compression technology. Instead of the handcrafted
designed transformation matrix, deep learning-based method is able
to obtain more efficient transform model in a data-driven way. There-
fore, the compression efficiency can be improved. Several deep image
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compression methods have been studied during the past years. By the
design of differentiable quantization, deep image compression can be
modeled as an end-to-end training architecture, as firstly presented
in [4]. After that, studies about deep image compression mainly focus
on two directions: (1) mining better network architecture to improve
compression efficiency and (2) maximizing the compaction of actual la-
tent representation once the network architecture is determined. More
details of related works will be discussed in Section 2. In this paper,
we focus on both aspects to further improve deep image compression
method.

With respect to the first aspect, we notice that previous studies
often design a straight-forward network architecture and then encode
the output feature maps of the last layer into bitstream. A general
architecture is often composed of three down-sampling operations and
several convolutional layers in between. However, the depth of the
network varies among these studies. For example, three convolutional
layers are adopted in order to compress the raw image data in [4].
In [5], three residual blocks are utilized, where each block consists
of an additional two convolutional layers. In [6], a similar network
architecture as [5] is proposed but with 15 residual blocks. Intuitively,
a deeper network is beneficial for extracting more compact represen-
tation, thus the network tends to be deeper in order to obtain a more
efficient transform model. However, growing network depth is at risk
of losing more information in texture detail. From this perspective, the
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network should be shallower in order to reduce the information lost
during compression and obtain better reconstruction performance. In
light of the above two points, both shallow and deep network seem to
have their own superiorities, thus, it is a meaningful study to find an
architecture that can combine these advantages.

Regarding the second aspect, an accurate probability model of latent
representation is quite important during the training process so as to
estimate actual bit-rate correctly, and thus has a direct influence on the
final compaction of output feature maps. A handy solution as proposed
in [4] is to formulate a piece-wise linear function to approximate
the distribution of extracted latent representation. After that, hyper-
prior [7] is proposed to obtain more accurate approximation. Despite
impressive performance, a hyperprior module is generally composed
of several convolutional layers with down-sampling and up-sampling,
which involves more complexity and may limit its application in prac-
tical scenarios. Considering the complexity burden, we follow and
improve the previous implementation to approximate the distribution
by a piecewise linear function. We notice that the distribution of
latent representation will be different once the input image changes.
Thus, to decrease the margin between the estimated probability model
and actual distribution, the probability model of latent representation
should be data-dependent.

To address the above-mentioned problems, a deep multi-stage repre-
sentation based image compression (MSRIC) method is proposed in this
paper. Besides, a data-dependent channel-wised factorized probability
model (DCFPM) is implemented during the training process. Our main
contributions are summarized as follows:

• A deep image compression model with multi-stage representa-
tion is presented. Here, a novel multi-stage network framework
is specifically designed such that the latent representation is
composed of multi-stage feature maps. Thanks to this architec-
ture, both textural information extracted by shallower layers
and abstract information extracted by deeper layers coexist in
a compressed bitstream, and multi-stage representation can be
simultaneously utilized to synthesize the reconstructed image. In
this way, the advantages of shallow network and deep network
are combined, thus a more compact transform can be learned and
the compression efficiency is improved.

• A data-dependent channel-wised factorized probability model
(DCFPM) for latent representation is proposed. We argue that the
distribution of latent representation is discrepant among different
input images and different output channels. To this end, separate
probability models are modeled for each output channel of each
input image in a batch. In this way, estimating compressed bit-
rate during the training process can be more accurate, thereby
improving the final compression performance.

• Experimental results turn out that the proposed MSRIC can
achieve better compression efficiency over a large rate scales,
compared with BPG, when being evaluated by multi-scale struc-
tural similarity index (MS-SSIM) metrics. Moreover, ablation
study demonstrates the performance improvement if introducing
multi-stage representation and data-dependent probability model.

The remainder of this paper is organized as follows. Section 2
eviews the existing studies of deep image compression. Section 3
resents the framework of MSRIC in details. Section 4 gives the ex-
erimental results. Section 5 concludes this paper.

. Related work

In this section, previous works about deep image compression are
riefly reviewed in two categories: (1) mining more efficient network
rchitecture to increase the efficiency of extracting representation and
2) trying to maximize the compaction of actual latent representation
o as to minimize the coding rate.
2

For the first category, several advanced network frameworks are
introduced in deep image compression task, including convolutional
auto-encoders (CAEs), recurrent neural networks (RNNs), generative
adversarial networks (GANs), and others. Ballé et al. [4] firstly modeled
deep image compression as a variational auto-encoder with convolution
layers and incorporated differentiable approximations of quantization
so that the network can be trained end-to-end by gradient backpropaga-
tion. Moreover, fully factorized prior probability model was proposed
to estimate the entropy of latent representation. Theis et al. [5] intro-
duced residual module into auto-encoder architecture. And the network
was furthermore suitable for high-resolution images thanks to sub-pixel
architectures. Toderici et al. [8] presented a long short-term memory
(LSTM) recurrent network to compress low-bytecount image previews
(thumbnails). This study was further extended to full resolution images
in [9], and the performance was able to outperform JPEG at most bit-
rates. In [10], Johnston et al. proposed a recurrent architecture and
a spatially adaptive bit allocation algorithm. In [11], Agustsson et al.
proposed a GAN-based extreme learned image compression architec-
ture. Akbari et al. [12] adopted residual coding framework and the
semantic segmentation map of the input image was also utilized to
reconstruct the image. In [13], Huang et al. proposed a multi-scale
framework and also employed GANs with multi-scale discriminators.
Compared with other studies, better visually pleasing images could be
obtained at significant lower bit-rates by GANs. However, despite better
subjective quality results at extreme low bit-rates, GAN-based methods
show worse performance at high bit-rates, which is also important
for image compression task. Moreover, according to existing studies,
CAE-based methods typically present better RD performance than RNN-
based methods. Therefore, we propose a CAE-based architecture in this
paper.

For the second category, researchers generally make effort to im-
prove the accuracy of entropy model during the training process, so the
compaction of actual latent representation can be increased during the
real coding process. Ballé et al. [7] firstly introduced a hyperprior to ap-
proximate the actual distribution of latent representation. In this way,
the spatial dependencies in the latent representation were captured
so that the accuracy of the entropy model was improved. Moreover,
the side information generated by hyperprior was also beneficial to
entropy coding. Zhou et al. [14] modeled the prior probability of
compressed representation as a Laplacian distribution. What is more,
a post-processing module was proposed in order to remove the com-
pression artifacts and blurs for low bit-rate images. A rate control
algorithm was also applied to further improve coding efficiency. Liu
et al. [15] jointly took the hyperpriors and autoregressive priors for
conditional probability estimation and proposed a non-local module
to capture global correlations of input images so as to improve com-
pression efficiency. Cheng et al. [16] used discretized Gaussian Mixture
Likelihoods to parameterize the distributions of latent codes. Attention
modules were also incorporated into network architecture to enhance
the performance.

There were also several studies that focus on other techniques to
improve the compaction of latent representation. In [17], Cheng et al.
designed a CAE architecture to extract compact representation. Then
principal components analysis (PCA) was utilized to generate a more
energy-compact representation. In their follow-up work [18], they
provided a mathematical analysis on the energy compaction property
for CAE and proposed a normalized coding gain metric in neural
networks, which could act as a measurement of compression capability.
Campos et al. [19] proposed a content adaptive optimization that
optimized the latent representation individually. Note that an iteration
procedure was adopted during encoding, while the computation on the
decoder remains unchanged. Li et al. [20] took the spatial variation of
image content into account and designed an importance map subnet to
produce the importance mask for locally adaptive bit-rate allocation.
Moreover, the entropy of latent representation could be estimated by

summation of importance map.
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Fig. 1. Overall Framework of MSRIC.
Nevertheless, the above-mentioned methods generally have two
shortcomings, i.e. additional computational complexity and extra side
information, which may limit its application in practical scenes. Specif-
ically, a hyperprior module is actually an additional convolutional
network besides the ordinary image compression auto-encoder, as in [7,
14–16]. Introducing the hyperprior module not only increases the train-
ing difficulty, but also improves the computational burden in practical
applications. Also, both the hyperprior module and importance map
subnet [20] lead to extra side information to be stored in a compressed
bitstream. It may limit the compression ratio.

In this paper, we adopt a data-dependent channel-wised factorized
probability model to approximate the entropy of latent representa-
tion during the training process. There is no additional convolutional
layer apart from auto-encoder to be taken into account and no extra
side information need to be considered in the compressed bitstream.
This probability model leads to better training efficiency and higher
compression performance of the proposed network.

3. Deep multi-stage representation based image compression

In this section, we present the details of MSRIC, including a multi-
stage encoder network 𝐸 (𝜃), a multi-stage decoder network 𝐷 (𝜑), a
Q-level quantizer 𝑄, and a probability model 𝑃 (𝜓) for entropy estima-
tion. The overall framework of MSRIC is depicted as Fig. 1. Specifically,
the architecture of deep multi-stage image encoder 𝐸 (𝜃) and decoder
𝐷 (𝜑) with trainable parameter sets 𝜃 and 𝜑 are firstly presented.
Then the quantization rule of 𝑄 is introduced. The approximation of
quantization during the training process is determined, so that the
auto-encoder can be end-to-end trained. Finally, the data-dependent
channel-wised factorized probability model 𝑃 (𝜓) with trainable pa-
rameter set 𝜓 is presented to estimate the entropy during the training
process.

3.1. Multi-stage encoder and decoder networks

To improve the compression efficiency of auto-encoder, a multi-
stage encoder and network framework is proposed in this section.

Existing CAE-based image compression methods generally design a
straight-forward network architecture. Then the output feature maps
of the last convolutional layer are regarded as latent representation
and encoded into bitstream. However, the containing information of
feature maps varies as the network depth changes according to existing
knowledge about deep learning. Specifically, for image compression
task, the extracted latent representation should keep the information of
the original image as much as possible. To this end, the network has a
tendency to be shallow. This is because that the loss of pixel-level detail
information will increase, when the network becomes deeper with more
convolutions and nonlinearities. On the contrary, a deeper network is
more beneficial for extracting the most important global information of
the original image, since the range of receptive field expands as number
of convolution grows. It will be helpful for obtaining more compact
representation and improving the compression efficiency. Therefore,
3

how to determine the network depth of auto-encoder is always an
open question, since feature maps extracted by both deep and shal-
low network have a specific contribution to improving compression
efficiency.

From the above, a multi-stage framework is proposed for our deep
image compression encoder and decoder network. In this way, the ex-
tracted feature maps combine the attributions of both deep and shallow
network. Therefore, the containing information in bitstream becomes
richer, which is helpful for reconstructing the original image. Thanks
to this architecture, the compression performance can be improved.

The architecture diagrams of deep multi-stage deep encoder is
illustrated as Fig. 2. For an input image 𝑥 ∈ 𝑅𝐻×𝑊 ×3 in 8-bit RGB
format with height 𝐻 and width 𝑊 , multi-stage latent representation
is extracted by the encoder network 𝐸 (𝜃), as follow.

𝐸 (𝜃) ∶ 𝑥 ↦
{

𝑅𝑝𝑖
}4
𝑖=1 (1)

where 𝑅𝑝𝑖 denotes the latent representation extracted by the 𝑖th stage.
There are totally 4 stages in our network architecture. Due to this
framework, both the local and fine information from shallow layers
(i.e. stage 1 and stage 2) and the global compact information from deep
layers (i.e. stage 3 and stage 4) can be stored in the coded bitstream.
The details of the proposed model are presented below.

The value of raw image data is firstly normalized to [0, 1]. After
that, a convolutional layer is adopted to expand the number of image
channel from 3 to 192. Then 8 residual units and 3 down-sampling
layers following by generalized divisive normalization (GDN) [4] non-
linearities form the main stream of encoder network. Note that the
down sampling layer is implemented by an ordinary convolutional
layer with a stride of 2. Since there are 3 down-sampling layers, the
final output feature maps of the last stage have a size of 𝐻∕8 ×𝑊 ∕8.

To obtain multi-stage representations, the network is manually
divided into 4 stages separated by GDN activations. Once a stage is
finished, the output feature maps are extracted to form the correspond-
ing latent representations. Down-sampling layers are adopted for the
feature maps extracted by stage 1 and stage 2, to guarantee compres-
sion efficiency as well as ensure the extracted latent representations
are of the same size and can be concatenated with those extracted by
other stages. The filter numbers of all convolutional layers, including
those in residual units, are set to 192 based on experimental results.
The first and the last convolutional layers adopt 5 × 5 convolution,
and 3 × 3 convolution is adopted in all other convolution layers. It
is worth-noting that sigmoid activation is applied as output activation
so that the value of latent representation is in a range of (0,1). The
number of output channels of each stage are reduced from 192 to 16
by the last convolution operations before sigmoid activation. The total
channels of concatenated feature maps are 64. Specifically, the output
feature maps of each stage have a size of 𝐻∕8 × 𝑊 ∕8 × 16, and the
concatenated latent representations have a size of 𝐻∕8×𝑊 ∕8×64. Once
the latent representations are obtained, quantizer and entropy coder are
implemented to further compress them into bitstream.

To intuitively understand the containing information of each stage,
we visualized total 64 output latent representation maps of a test



Journal of Visual Communication and Image Representation 79 (2021) 103226Z. Wang et al.
Fig. 2. Illustration of the deep multi-stage deep encoder. The local and fine information is extracted by shallow stages (i.e. stage 1 and 2). The global and compact information
is extracted by deep stages (i.e. stage 3 and 4).
Fig. 3. Visualization of multi-stage latent representation. From top to bottom at left part of this figure, each two rows present 16 output feature maps extracted by a specific
stage. Total 64 feature maps of 4 stages corresponding to those in Fig. 2 are illustrated. At the right part, original image and the visualization for sum of features in stage 1 and
4 are presented.
image as an example. As presented in Fig. 3, the extracted feature
maps from different stages contain diverse information. In general, the
local and detail texture information is stored in those feature maps
extracted by stage 1 and stage 2. As the network depth grows, the
detail information loss increases. For those representations extracted
by stage 3 and stage 4, it can be noticed that the content of feature
maps become hard to be understood by humans. It is in line with
our knowledge that the extracted feature will be more abstract and
compact when a deeper network is adopted. The right part of this
figure provide the visualization of original image and sum of features
for stage 1 and 4. With stage 1, the general appearance and details
of the original image remains. It still provides readable content for
humans. This result implies that the compression efficiency of stage
1 could be low since the sparsity of feature maps is quite limited.
With stage 4, the visualization for sum of features indicates the loss
of detail information. We notice that the textural pattern of this house
is nearly invisible in this visualization (white squares). However, the
distinct structural patterns in original image still remain, such as the
lines of roof (yellow squares), and the compaction of features improves.
4

Since the dissimilarity of representation from different stages, we argue
that a multi-stage framework will be beneficial for improving the rich-
ness of extracted information in latent representation. Therefore, the
compression efficiency will be improved for the proposed auto-encoder.

For the decoder side, the extracted multi-stage representation is
utilized to synthesize the reconstructed image as follow.

𝐷 (𝜑) ∶
{

𝑅𝑝𝑖
}4
𝑖=1 ↦ �̂� (2)

As indicated in Fig. 4, the compressed bitstream is firstly decoded
by entropy decoder. A symmetric architecture with encoder network is
specifically proposed for decoder network. The latent representations
from different stages are fed into the main stream of decoder network
exactly according to the stages from which they are extracted. We argue
that this symmetric architecture is beneficial to restore the image from
the extracted multi-stage representations.

For each stage, convolutional layers are firstly applied, in order to
expand the channel of input feature maps from 16 to 192. Then pixel
shuffle layers are adopted for stage 1 and stage 2 to up sample these
features maps, to make sure that they are in the same size of main
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Fig. 4. Illustration of the deep multi-stage deep decoder. The network adopts a symmetric architecture as the encoder network. The latent representations are fed into the decoder
network exactly according to the stages from which they are extracted. Here ‘‘+" does not refer to addition of pixel value, but to concatenation of two sets of feature maps.
Fig. 5. Up-sampling module in the multi-stage deep decoder network.

stream features so that can be concatenated with them. After the up-
sampled feature maps are fed into the main stream of decoder network,
following convolutional layers are adopted to fuse and concentrated the
concatenated features back into 192 channel. Therefore, the rest part
of decoder network is conducted in a consistent convolutional width of
192.

For the main stream of the network, the up-sampling module is
achieved by a series connection of pixel shuffle layer and convolutional
layer, as depicted in Fig. 5. To guarantee symmetry, the GDN nonlin-
earities are replaced by iGDN nonlinearities in decoder network. Prelu
layers are adopted to increase nonlinearity. Then the reconstructed
image is mapped back to [0, 255] at the end of the network.

3.2. Q-level quantization

Since the pixel values of output feature maps are continuous values
in a range of (0, 1), quantization operation is required to discretize
them so that the compressed bit-rate can be controlled. Assuming
that quantization level is denoted by 𝑄 and 𝑦 is the pixel value of
original extracted latent representation. According to Section 3.1, y is a
continuous value in a range of (0, 1), then the quantized discrete value
�̂� can be obtained by

�̂� = 𝑟𝑜𝑢𝑛𝑑
[

𝑦 ⋅
(

2𝑄 − 1
)]

(3)

By adopting this quantization rule, the original value is firstly scaled
from (0, 1) to

(

0, 2𝑄 − 1
)

, then the scaled value is rounded to the nearest
integer. Thus, the quantized representations have discrete value in a
range of

[

0, 2𝑄 − 1
]

. However, it is worth noting that the derivatives of
the round quantization function are zero almost everywhere, resulting
in the ineffective of gradient descent. Following [4], the round function
is replaced with an additive uniform noise during the training process,

�̃� = 𝑦 ⋅
(

2𝑄 − 1
)

+ 𝜀 (4)

where 𝜀 is an addictive i.i.d. uniform noise, which is frequently used as
a model of quantization error. Due to this approximation, stochastic
gradient descent optimization can be adopted and the auto-encoder
5

network can be end-to-end trained. In this paper, the quantization level
is set to 6 based on experiments.

3.3. Data-dependent channel-wised factorized probability model

To maximize the training performance of our model, a data-
dependent channel-wised factorized probability model (DCFPM) is
presented in this section.

For a deep lossy image compression auto-encoder, both distortion
level and rate consumption are necessary evaluation indexes. There-
fore, the loss function for training is defined as a weighted combination
of these two terms, as follows:

𝐿 = 𝐷𝑥 + 𝜆 ⋅ 𝑅 (5)

where 𝜆 can be adjusted to balance the tradeoff between these two
parts of losses. In our model, 𝐷𝑥 is measured by mean square error
(MSE) matrix between original image and reconstructed image. By this
setting, the rate-PSNR performance of our model can be maximized.

As presented in Section 3.2, the quantized value of latent represen-
tation is replaced by an approximation, so that the end-to-end training
can be implemented for auto-encoder. Due to this approximation,
the quantized value of latent representation is unknown during the
training process. Therefore, the real bit-rate of latent representation
after entropy coding cannot be directly calculated during the end-to-
end training. To this end, the estimation of entropy is a necessary
procedure in training a CAE. Following the implementation in [4], we
calculate the entropy of approximated latent representation to estimate
the real bit-rate, since the actual rate achieved by entropy encoder is
only slightly larger than the entropy. It is a common approximation in
other studies about CAE.

We argue that the accuracy of estimated entropy directly influences
the training performance of the network model, thus effecting the final
coding efficiency. Considering the diversity of probability distribution
of different feature maps extracted by different input image, a data-
dependent channel-wised factorized probability model is proposed to
estimate the entropy of coded bitstream, during the training process.
The detail of the proposed model is as follows.

Since the quantized value of continuous latent representation is
approximated by �̃�, the differential entropy of �̃� can also be used as
an approximation of the entropy of �̂�. Let an element with index 𝑖 of
feature map with index 𝑗 be denoted by 𝑦𝑗,𝑖, then the approximation
of quantized value is denoted by �̃�𝑗,𝑖. Therefore, the total information
entropy 𝐼 of latent representation extracted by one training image can
be calculated by,

𝐼 = 𝐸�̃�𝑗,𝑖∼𝑃
(

�̃�𝑗,𝑖
)

[

−log2𝑃
(

�̃�𝑗,𝑖
)]

(6)

Note that 𝑃
(

�̃�𝑗,𝑖
)

is unknown. In order to obtain the value of
𝑃
(

�̃�
)

, finely sampled piecewise linear functions are utilized to fit
𝑗,𝑖
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the probability density function curve of 𝑃 (�̃�). Specifically, we argue
that the pixels belong to the same channel of the latent representation
obeys one single probability distribution, which is so-called ‘‘channel-
wised’’. What is more, once the input training image is changed, the
distribution should also be modified. That is, the probability density
function should be data-dependent. Therefore, a factorized probability
model DCFPM that combines data-dependent and channel-wised attri-
butions is proposed to achieve accurate estimation of entropy for latent
representation.

Assuming that the batch size of the mini-batch gradient descent
algorithm is 𝐵. For a batch 𝑏, let the current input training image be
denoted by 𝑥𝑏. There are total of 64 sampled piecewise linear functions
adopted to fit the distribution of feature maps. A single linear function
corresponds to a single channel. Then, the parameters of the piece-wise
linear function of batch 𝑏 can be written as

{

𝜓𝑐 ||𝑥 = 𝑥𝑏
}64
𝑐=1. Due to

the data-dependent assumption, the piecewise linear functions of the
same channel while belong to different input images should be updated
separately. Therefore, the total parameters needed to be updated in one
training iteration is denoted by 𝜓 =

[

{

𝜓𝑐 ||𝑥 = 𝑥𝑏
}64
𝑐=1

]𝐵

𝑏=1
. According to

the above, there are 64 ×𝐵 sampled piecewise linear functions in total
to be optimized during training process, so that the value of 𝑃

(

�̃�𝑗,𝑖
)

can be obtained as accurate as possible. Specifically, the piecewise
linear functions are updated similarly to one-dimensional histograms.
For each batch 𝑏, the difference 𝐷𝑓 between estimated value 𝑃

(

�̃�𝑗,𝑖
)

calculated by piecewise linear functions and the parameter vector of
𝜓𝑐 is minimized by gradient descent. Thus the parameters of 𝜓 tend
to consist of the value of 𝑃

(

�̃�𝑗,𝑖
)

, and will be updated during each
iteration.

4. Experiments

In this section, the performance of the proposed MSRIC is compared
with existing conventional image compression standards and other
deep image compression models. Then ablation studies are given in
order to assess the validity of the multi-stage framework and DCFPM.

4.1. Experimental setup

We used a subset of ImageNet database [21] as the training dataset,
following the setting in [4]. There were 8706 images in total, which
then are cropped into 128 × 128 samples with random flips. Also,
the training samples were saved as lossless PNG format so as to avoid
compression artifacts.

During training process, two separate optimizers was employed to
update different parameter sets. To update the parameters of auto-
encoder (i.e. 𝜃 and 𝜑), Adam optimizer [22] was adopted with a batch
size of 10. The learning rate of Adam was fixed to 5 × 10−5 during the
training process, since the learning rate decay strategy has no benefit
for performance improvement according to experiments. Moreover,
stochastic gradient descent was utilized to update the parameters of
piecewise linear functions (i.e. 𝜓). To reduce the calculation burden,
2 sampling points were used for each unit interval of piecewise linear
functions. To conclude, the entire end-to-end training process of MSRIC
is described in Algorithm 1.

During training, we firstly trained an initializing model without
rate restriction. That is, the value of 𝜆 in loss function was set to
zero at the beginning of training. After enough iterations, the best
potential performance could be obtained for the proposed framework.
Then models with 𝜆 in range [0, 0.004], with an interval of 0.0002,
were trained. For these models, the network parameters were initialized
by the pre-trained model and then were fine-tuned according to the
corresponding loss functions with different 𝜆.

For performance evaluation, the widely-used Kodak PhotoCD loss-
less dataset with 24 uncompressed 768 × 512 or 512 × 768 images was
adopted. The compression rate was evaluated by bits per pixel (bpp),
6

which is defined as the total amount of bits of the compressed bitstream
Algorithm 1 End-to-end Training for MSRIC
1: while loop in MAX iterations do
2: Input training image 𝑥
3: 𝑦 ∶= 𝐸 (𝑥; 𝜃)
4: �̃� ∶= 𝑦 ⋅

(

2𝑄 − 1
)

+ 𝜀
5: �̂� ∶= 𝐷

(

�̃�∕
(

2𝑄 − 1
)

;𝜑
)

6: Calculate 𝐷𝑓
7: Update 𝜓 by SGD
8: Calculate 𝐿 = 𝐷𝑥 + 𝜆 ⋅ 𝑅
9: Update 𝜃 and 𝜑 by Adam
0: return

divided by the number of pixels. The reconstruction performance was
evaluated by the peak signal-to-noise ratio (PSNR) and multi-scale
structural similarity (MS-SSIM). MS-SSIM (dB) is −10log10 (1 − 𝑚𝑠_𝑠𝑠𝑖𝑚).

herein, PSNR matrix assessed the pixel-level similarity between the
riginal image and the reconstructed image, while MS-SSIM matrix
ssessed the perceptual performance.

.2. Network parameter selection

To compare the performance of different network parameters and
alidate the efficiency of MSRIC, we conducted experiments based on
ifferent parameter settings, by modifying the number of convolution
hannels, the number of intermediate latent representation channels and the
uantization level. The network architecture with 192 channels of con-
olution, 64 channels of latent representation and 6-level quantization
s used as a baseline for comparison. The training settings are exactly
ame to those in Section 4.1 for fair comparison.
(1) Effect of Different Numbers of Convolution Channels: We trained

hree sets of models when the numbers of convolution channels are
28, 192 and 256 respectively. According to Fig. 6(a), there is indeed
correlation between number of convolution channels and compres-

ion efficiency. A higher number of channel increases the capacity
f network so that improves the ability to approximate the optimal
ransformation from pixel domain to feature domain. However, the
erformance gain saturates as the number of channels rising. When
ncreasing the channel number from 128 to 192, there is distinct RD
erformance improvement among a large bit-rate range; while when
egarding 192 to 256, the improvement becomes tiny and even negli-
ible at lower bit-rates. Therefore, we set the number of convolution
hannels as 192 in MSRIC.
(2) Effect of Different Numbers of Intermediate Latent Representation

hannels:Models with different number of intermediate latent represen-
ation channels were trained to validate the effect of different settings.
he numbers of channels for each stage were set to 8, 16 and 32, so
hat the total numbers of channels were 32, 64 and 128 respectively.
s shown in Fig. 6(b), the RD performance degrades drastically when

he numbers of channels for each stage were set to 8. This is because
he upper limitation of reserved information in compressed stream
s restricted on account of the size of feature maps, thus the RD
erformance will be limited. Similar to the effect of different numbers
f convolution channels, the performance will also saturate as the latent
epresentation goes wider. Besides, a larger number of representation
hannels leads to more data to be encoded by entropy coder, which
ay result in higher bit-rate of compressed stream and have impact on

ompression efficiency. Therefore, we select 16 channels for each stage
s latent representation.
(3) Effect of Different Quantization Levels: To evaluate the effect

f quantization level, the models with quantization levels 5, 6 and
were trained respectively. As presented in Fig. 6(c), the models

ith quantization level of 5 have intuitively worse performance than
hose with quantization level of 6. The impact of quantization error
ccounts for this. However, when increasing the level from 6 to 7, the
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Fig. 6. Rate-Distortion (PSNR) curves with different network parameters. (a) with different numbers of convolution channels. (b) with different numbers of intermediate latent
representation channels. (c) with different quantization levels.
RD performance decreases. We argue that this is because increasing
the quantization level introducing more potential code words types to
be encoded. Despite of lower quantization error resulting from better
reconstruction performance, more code words types lead to higher bit-
rate and do more harm to the RD performance. Therefore, 6-level
quantization is employed in MSRIC.

4.3. Compression efficiency performance

To evaluate the compression efficiency of our proposed MSRIC,
the rate–distortion (RD) curve are presented. To fairly evaluate our
proposed method, both conventional image compression standards and
other deep image compression method were compared. For conven-
tional coders, JPEG [1], JPEG 2000 [2], JPEG XR [23], BPG [3]
and versatile video coding (VVC) were considered. Libjpeg [24] was
adopted to evaluate JPEG standard. OpenJPEG [25] was adopted to
evaluate JPEG 2000 standard. JPEG XR Reference Codec [26] was
adopted to evaluate JPEG XR standard. For BPG standard, libbpg [27]
was adopted with the 4:2:0 chroma format. The VVC Test Model
(VTM) [28] was adopted to evaluate VVC. In terms of deep image
compression methods, we reproduced the network architecture of [4]
with their provided code [29]. For a fair comparison, we trained the
proposed network of [4] and [18] based on our training database. We
exactly followed the training settings presented in these papers. We also
evaluated the performance of [16] using the CompressAI Library [30].
Note that for the above learning-based approaches, we evaluated the
MSE optimized models, so that the training optimization objectives of
them and ours could be consistent. Moreover, since the source codes
of other works are generally not available, we carefully digitalized the
RD curves of [5,10] and [31] in our comparison experiments. The PSNR
curves are not provided in [10] and [31], so that only MS-SSIM curves
of them are presented as the comparison result.

The comparison results of RD curves are presented in Figs. 7 and 8.
The results are average performance among Kodak PhotoCD database.
Compared with conventional compression standards, our proposed
MSRIC outperforms JPEG2000 in terms of PSNR performance and
outperforms BPG in terms of MS-SSIM performance. At the bit-rates
higher than 1 bpp, MSRIC even outperforms VVC with regards to
MS-SSIM. Compared with other deep image compression algorithms,
ours achieves higher coding efficiency than [4,5] and [18] at a large
range of bit-rate, both on PSNR and MS-SSIM performance. Better
MS-SSIM performance is also presented when compared with [10]
and [31]. Although [16] performs better RD performance than ours,
we argue that their approach introduces more complexity, by utilizing
an additional convolution network to learn the parameters of Gaussian
mixture model for each element and encoding the side-information by
another entropy coder. High complexity may limit the application of an
image coding scheme. More details will be discussed in the following
7

evaluation on complexity performance.
Fig. 7. Rate-Distortion (PSNR) curves of different compression methods.

We notice that deep learning-based image compression method
often shows better perceptual performance (i.e. MS-SSIM) than pixel-
level similarity performance (i.e. PSNR). In terms of MSRIC, higher
MS-SSIM and lower PNSR performance can be obtained at the same
time when compared with BPG. We argue that it is because the loss
of detail texture information in pixel level is hard to avoid, due to the
convolve operations in a neural network. However, it can be observed
that MSRIC could achieve better PSNR performance than other deep
image compression methods that both use factorized entropy model and
do not introduce additional estimation network [4,5,10,18,31]. We at-
tribute this improvement to our multi-stage framework. As discussed in
Section 3, both local detail information extracted by shallow layers and
global structure information extracted by deep layers can contribute
to the synthesis of the reconstructed image. For the shallower layers,
less convolve operations are carried out, thus more pixel-level detail
information remains. Therefore, MSRIC can achieve better pixel-level
similarity between the original image and the reconstructed image.

Besides, the compression efficiency varies with different bit-rates.
For both PSNR and MS-SSIM performance, we observe that the im-
provement of MSRIC is more noticeable at higher bit-rates. Specifically,
the PNSR performance is improved by about 0.5 dB when the coded bit-
rate is larger than 0.8 bpp, using JPEG2000 as a benchmark. Then the
improvement gradually decreases as bit-rate degrades. When bit-rate
is smaller than 0.5 bpp, the PSNR performance of JPEG2000 matches
ours. Similarly, the MS-SSIM performance of MSRIC is 1 dB higher than
BPG when bit-rate is larger than 1.0 bpp. While the improvement is
negligible when bit-rate is smaller than 0.4 bpp. This is because com-
pression at higher bit-rates requires greater approximation capacity.
In other words, a higher bit-rate leads to a more complex transform
set for compressing an image. Therefore, the superiority of our multi-
stage framework can be maximized at higher bit-rates. In contrast, the
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Fig. 8. Rate-Distortion (MS-SSIM) curves of different compression methods.
Fig. 9. Rate-Distortion (MS-SSIM) curves for single images.
approximation capacity of all models is sufficient at lower bit-rates, due
to the rate limitation. Therefore, the improvement of MSRIC degrades
as rate decreases. The discussion in [31] also confirms these results.

The RD curves for single images in Kodak dataset are also pre-
sented (Fig. 9). The six test images are randomly selected with various
8

contents. According to the illustration, the compression efficiency im-

provements are mainly consistent among different inputs. Therefore,

the conclusion based on average performance that we discussed before

still holds for single images.
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Fig. 10. Example of one test image in Kodak dataset compressed by different algorithms.
Fig. 11. Ablation results on multi-stage framework. (a) Rate-Distortion(PSNR). (b) Rate-Distortion(MS-SSIM).
Fig. 12. Ablation results on data-dependent channel-wised probability model. (a) Rate-Distortion(PSNR). (b) Rate-Distortion(MS-SSIM).
In general, our proposed method is able to obtain a better perceptual
performance than conventional image coders according to the MS-
SSIM performance, which is match with the human visual system.
Moreover, despite improvement degrades at lower bit-rates, the over-
all performance of MSRIC at a large rate scale is better than other
algorithms.

To intuitively present the performance improvement of MSRIC, we
visualize the reconstructed images of different algorithms in Fig. 10. As
shown in the figure, these images are compressed at approximately 0.6
bpp. Our proposed MSRIC shows the best MS-SSIM performance among
comparison algorithms, which indicates the best subjective quality.
Let us focus on the door in the view, it can be observed that MSRIC
reserves the most detail texture information. The latch indicated by
9

blue squares and the pattern indicated by yellow squares are more clear
in the image reconstructed by MSRIC. The richer texture information
guarantees better perceptual performance, which complies with the
results presented by RD curves.

4.4. Complexity performance

The computational complexity and the volume of network parame-
ters are evaluated in this section. We performed our experiments on
a computer with a Inter(R) Xeon(R) Processor E5-2630 v4, 256 GB
of RAM and a GeForce RTX 2080Ti GPU. The average running time
(one complete encoder and decoder process) over Kodak dataset of
our proposed MSRIC and other methods were evaluated under exactly
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Table 1
Complexity Performance of different compression methods.

Method Time (s) Parameters (M)

JPEG 0.15 –
JPEG2000 0.46 –
BPG 0.85 –
Ballé [4] 7.08 6.7
Cheng [16] 16.73 17.8
Cheng [18] 6.64 1.8
MSRIC 7.76 16.2

same environment. For deep learning-based methods, the volumes of
network parameters were also calculated. The complexity performance
are presented in Table 1.

According to the second column of Table 1, deep learning-based
methods generally requires more running time than conventional com-
pression schemes. We can observe that [16] takes the longest time to
encode and decode an image. For one thing, this is because it possesses
the largest capacity of model parameters. Specifically, the parameters
of the additional network for Gaussian mixture models are already
8.2M. For another, there are total two separate entropy coders needed
to be implemented to encode the extracted latent representation and
the side-information of Gaussian mixture models respectively. There-
fore, the total running time of [16] is approximately two times longer
than other learning-based approaches, despite of the best RD perfor-
mance. The complexity may limit its application in real-time scenarios.
Compared with [4] and [18], our MSRIC takes more time to encode
and decode an image, resulting mainly from the increasing parame-
ter volume. However, we notice that the time-consuming growth are
relatively small. From our experiments, the average running time of en-
coder network and decoder network of MSRIC is only 0.45. Therefore,
the above results infer that the running time of deep learning-based
image compression might be further reduced by adopting more efficient
entropy encoder. In general, MSRIC is an effective image compression
algorithm with good perceptual performance.

4.5. Ablation studies

To validate the performance improvement of introducing multi-
stage representation and DCFPM, we separately tested the effect of
these two components in this section. The training settings were exactly
the same as the experiments in Section 4.1 for a fair comparison.
Both the PSNR value and MS-SSIM matrix were evaluated to prove the
improvement.

To demonstrate the effect of multi-stage representation, we tested
the network performance without the multi-stage framework. Specifi-
cally, the latent representations extracted by the first three stages were
removed while only kept those representations from the final output
layer. To ensure the comparison as fair as possible, the number of
output channels was set to 64, which was exactly the same as the
total number of channels in the multi-stage framework. The comparison
result is presented in Fig. 11. According to this figure, introducing
the multi-stage representation framework brings improvements on both
PSNR and MS-SSIM index at a wide range of bit-rate. Specifically, at the
same bit-rate, PSNR value has been improved by about 0.3 dB and MS-
SSIM has been improved by about 0.5 dB. It is intuitive that the detail
information of texture is gradually lost as the network depth grows.
However, a deeper network is more beneficial for extracting structural
information and obtain a more compact representation. Both of these
two kinds of information are important for image reconstruction. There-
fore, the compression efficiency of CAE can be improved, thanks to the
multi-stage framework.

For the data-dependent channel-wised factorized probability model,
a comparison experiment was carried out by replacing the DCFPM with
ordinary channel-wised entropy models as implemented in [32]. For
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ordinary channel-wised models, it is assumed that all the pixels that
belong to the same channel follow one single probability distribution,
whatever the input image looks like. That is, there were only 64
sampled piecewise linear functions in total to be optimized during the
training process. In other words, the entropy model was independent of
batch size. The comparison result is presented in Fig. 12. It can be seen
that both PSNR and MS-SSIM performance are improved by introducing
data-dependent entropy models during the training process. In general,
the accuracy of estimated entropy directly effects the training result.
The potential performance of the network can be maximized only
when an accurate entropy model is utilized. Moreover, we notice that
the performance improvement at lower bit-rate is more distinct. The
improvement of PSNR and MS-SSIM even achieve 2 dB at 0.4 bpp. This
is because the bit limitation is stricter at lower bit-rate, so that the
requirement for accuracy of entropy estimation is stricter. Therefore,
an accurate entropy model tends to be more important for image auto-
encoder at higher compression ratios. To conclude, DCFPM is more
accurate than the ordinary channel-wised model, according to the
above-mentioned results.

5. Conclusion and future work

In this paper, a deep image compression method with multi-stage
representation (MSRIC) was proposed. A multi-stage architecture was
specifically designed for image compression task in order to improve
compression efficiency. Moreover, considering the importance of an ac-
curate entropy model for the actual performance of a trained network,
a data-dependent channel-wised factorized probability model (DCFPM)
is proposed for the training process. Then experiments were carried out
to evaluate the performance of our proposed method. According to ex-
perimental results, our method achieved better MS-SSIM performance
compared with existing conventional image compression standards
and other deep image compression algorithms that both use factor-
ized entropy models. Ablation studies were presented to demonstrate
the validation of the multi-stage framework and the data-dependent
probability model.

To further improve MSRIC, future work could investigate more
efficient network architecture to reduce parameter volume and/or low-
complexity hierarchical hyper-prior for more accurate entropy estima-
tion. More advanced objective functions such as MS-SSIM loss and
deep learning-based perceptual loss would be tried to further satisfy
human vision system. Moreover, efficient entropy coding method for
large context could also be explored to improve both the coding speed
and efficiency.
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