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Abstract

Instance-correspondence (IC) data are potent resources for
heterogeneous transfer learning (HeTL) due to the capability
of bridging the source and the target domains at the instance-
level. To this end, people tend to use machine-generated IC
data, because manually establishing IC data is expensive and
primitive. However, existing IC data machine generators are
not perfect and always produce the data that are not of high
quality, thus hampering the performance of domain adap-
tion. In this paper, instead of improving the IC data gen-
erator, which might not be an optimal way, we accept the
fact that data quality variation does exist but find a better
way to use the data. Specifically, we propose a novel hetero-
geneous transfer learning method named Transfer Learning
with Weighted Correspondence (TLWC), which utilizes IC
data to adapt the source domain to the target domain. Rather
than treating IC data equally, TLWC can assign solid weights
to each IC data pair depending on the quality of the data.
We conduct extensive experiments on HeTL datasets and the
state-of-the-art results verify the effectiveness of TLWC.

Introduction

Transfer learning or domain adaptation builds machine
learners that can be generalized across different domains,
and is capable of leveraging rich label information from the
source domain to the target domain. Transfer learning can
effectively ease the manual effort of labeling data for the
target domain (Pan and Yang 2010).

Different from homogeneous transfer learning (HoTL),
where the source and the target domain share the same fea-
ture space, heterogeneous transfer learning (HeTL) allows
the data in two domains to be represented with different fea-
ture spaces (Weiss, Khoshgoftaar, and Wang 2016). There-
fore, how to unify the feature spaces of the two domains is a
bottleneck of HeTL.

For HeTL, instance-correspondence (IC) data are valu-
able mediums to unify the feature spaces (i.e. a document
presented both in English and French) (Zhu et al. 2011;
Zhou et al. 2014). These data can be utilized to either
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Figure 1: Framework of TLWC. IC data points sizes are pro-
portional to their weights.

establish a common feature space (Xiao and Guo 2013;
Zhou et al. 2015; 2016) for the two domains or learn a fea-
ture transformation that maps data from one domain to an-
other (Zhou et al. 2014; Guntuku et al. 2016; Wang, Cui, and
Zhu 2018). Existing HeTL methods unify the two domains
by matching marginal distributions at the domain-level or
conditional distributions at the category-level. Provided with
IC data, HeTL methods can undoubtedly unify domains bet-
ter because they can bridge two domains at the instance-
level.

Manually establishing IC data is primitive and expen-
sive. Therefore, machine-generated data can be a substi-
tute. Taking Natural Language Processing (NLP) tasks as
examples, the IC documents can be generated with Machine
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Translation. However, the qualities of machine-generated
data sometimes fail to meet the requirement. For example,
machine-translated sentences sometimes cannot accurately
express the meaning of the original sentences and even can-
not be sentenced. Bridging two domains with such rough
IC data cannot achieve satisfactory results. Moreover, the
quality of data should be judged by a floating score rather
than just good or bad. Although there are existing instance
weighting strategies, such as reweighting regularizer (Long
et al. 2014) and kernel mean matching (Chu, La Torre,
and Cohn 2013), they are not designed to reweight IC data
and can only be applied for HoTL. Some coping strategies
were designed, such as selecting high-quality correspon-
dence with active learning (Zhou et al. 2016). However, they
fail to assign precise weights to IC data and waste massive
information.

To assign solid weights to IC data and learn more ro-
bust transformed features for both domains, in this paper,
we propose a novel HeTL method named Transfer Learn-
ing with Weighted Correspondence (TLWC). Following a
meta-learning paradigm (Finn, Abbeel, and Levine 2017;
Ren et al. 2018), TLWC establishes a meta-learner to opti-
mize the weights of IC data. The meta-objective of the meta-
learner is to minimize the classification loss of limited la-
beled target-domain data. After the optimization is finished,
weighted IC data are utilized to learn feature transforma-
tions that map the source-domain data to the target-domain.
Then the transformations can be optimized by the meta-
learner further. After the optimization procedure is finished,
the classifier in the meta-learner is the one we need. The as-
sumption we base is: If the IC data are assigned with the op-
timal weights, the feature transformations learned with them
is most adaptive for the classification task in the target do-
main. The framework of TLWC is shown in Figure 1.

The contributions of the paper are summarized as fol-
lows: (1) We propose a novel heterogeneous transfer learn-
ing method, where the feature spaces of the two domains
are unified with weighted IC data. Our method can be ap-
plied to different features, datasets, and modalities. (2) We
are among the first to consider the IC data weights and we
establish a meta-learner that utilizes the classification loss of
target-domain data to guide the weights updating and trans-
formation optimization procedure. Compared with previous
HeTL methods based on IC data, TLWC can effective re-
move noisy information in IC data and learn a unified fea-
ture space which is more suitable for the classification task
in the target domain.

Related Work

Transfer learning or domain adaptation aims at transferring
rich label information from a source domain to a target do-
main. The main problem of transfer learning is how to re-
duce the data discrepancy between the two domains (Pan
and Yang 2010; Weiss, Khoshgoftaar, and Wang 2016).

Depending on whether the feature spaces of the two do-
mains are the same, transfer learning is divided into two
categories: homogeneous transfer learning (HoTL) and het-
erogeneous transfer learning (HeTL). Different from HoTL,

where the domain shift can be reduced by directly mini-
mizing the data distribution discrepancy (Tzeng et al. 2015;
Long et al. 2017), HeTL must unify the feature spaces of the
two domains. For HeTL, there are two groups of methods for
feature unification: (1) Projecting data from the two domains
into a common feature space (Wang and Mahadevan 2011;
Hoffman et al. 2014; Yang et al. 2015; Herath, Harandi, and
Porikli 2017); (2) Mapping data from one domain to another
one (Li et al. 2013; Hoffman et al. 2014; Xiao and Guo 2015;
Tsai, Yeh, and Wang 2016).

For the first group, for example, Li et al. (2013) pro-
posed a semi-supervised heterogeneous domain adaptation
(SFHA), which transforms data from two domains into an
augmented feature space. Herath et al. (2017) considered an
invariant latent space (ILS) and they established a common
Hilbert space for both domains.

For the second group, for example, Tsai et al. (2016)
mapped the labeled source-domain data to the dimension-
reduced target domain. And the mapped data are as-
signed with different weights. Hoffman et al. (2014) pro-
posed a max-margin domain transformation (MMDT). With
MMDT, the data in the target domain are projected to the
source domain, while the projected data are classified by
maximizing the margins.

The above HeTL methods bridge two domains by match-
ing either the marginal or conditional distributions at
the domain-level and the category-level respectively. With
instance-correspondence (IC) data, the two domains can be
bridged at the instance-level, which will boost the unifica-
tion and adaptation of the two heterogeneous domains. Ac-
cording to the above two groups of feature unification meth-
ods, IC data can be utilized in various ways. For the first
group of methods, which learns a common feature space
for the two domains, IC data can be taken as the equiva-
lent data in the common feature space. For example, Xiao
and Guo (2013) proposed a two-step learning method which
turns feature space learning into a matrix completion prob-
lem. The combined IC data are complete data in the matrix
and they are employed to complete the unobserved data in
the matrix. Zhou et al. (2015) designed a subspace for both
domains and the projected IC data in the subspace are the
same. For the second group of methods, which maps data
from one domain to another, IC data are applied to learn
the feature transformations. For example, Zhou et al. (2014)
proposed a hybrid heterogeneous transfer learning (HHTL),
which learns several transformation matrices with high-level
features of IC data. Wang et al. (2018) applied deep autoen-
coder to embed the shallow representations of both domains
and learned a feature transformation with IC data features at
the top embedding layer.

However, all of the above methods consider the IC data
to be equally important, which is not reliable. The IC data
with low quality will hamper the domain adaptation proce-
dure. Although there are existing instance weighting strate-
gies (Chu, La Torre, and Cohn 2013; Long et al. 2014), they
are only designed for HoTL. Zhou et al. (2016) selectively
labeled IC data with active learning, but manually labeling
IC data is prohibitive and informative machine-generated
data are given up.
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We assigned different weights to all the IC data pairs
and optimized these weights as well as feature transfor-
mation with meta-learning. Meta-learning aims at optimiz-
ing parameter or hyper-parameter of a learner by establish-
ing a high-level learner. The high-level learner can be di-
vided into two groups: 1. Learner based on hyper-network
(Andrychowicz et al. 2016; Snell, Swersky, and Zemel 2017;
Jin et al. 2018); 2 Learner based on gradient descent (Finn,
Abbeel, and Levine 2017; Ren et al. 2018). For the first
group, a hyper-network, such as LSTM, is constructed to
guide the parameter updating of the original leaner. For
the second group, a meta-objective is established, which
is derivable to the parameters to be updated. The meta-
objective can be validation loss of the original learner. In
the beginning, meta-learning aims to supervise the updat-
ing procedure of the original learner and guide it to learn
to learn better (Andrychowicz et al. 2016; Finn, Abbeel,
and Levine 2017). Recently, instance weights are also con-
sidered to be updated with a meta-learner (Jin et al. 2018;
Ren et al. 2018).

Proposed Method

Problem Formulation

Our problem is to establish a classifier for a target domain
with limited labeled data. To achieve this goal, we need
to transfer knowledge from a source domain with rich la-
bel information to the target domain. The given data are:
sufficient labeled data {XS,l,yS,l} = {(xS,l

i , ySi )}nS,l

i=1 and
unlabeled data {XS,u} = {xS,u

i }nS,u

i=1 in the source do-
main; a set of labeled data {XT,l,yT,l} = {(xT,l

i , yTi )}nT,l

i=1

and unlabeled data {XT,u} = {xT,u
i }nT,u

i=1 in the target
domain, where nS,l � nT,l; a set of unlabeled IC data
{XS,c,XT,c} = {(xS,c

i ,xT,c
i )}nc

i=1 across the two domains.
xS,l
i , xS,u

i and xS,c
i are in R

dS while xT,l
i , xT,u

i and xT,c
i

are in R
dT , where ds �= dT . nS = nS,l + nS,u + nc and

nT = nT,l + nT,u + nc.
To solve the problem, we propose a HeTL method named

Transfer Learning with Weighted Correspondence (TLWC),
which consists of two components: (1) High-level feature
learning; (2) IC data weights and transformation updating.
For the first component, we learn high-level features for
both domains with a marginalized stacked denoised autoen-
coder (mSDA). For the second component, we establish a
meta-learner to optimize the weights of IC data and utilize
weighted IC data to learn feature transformations to bridge
two domains. Then the feature transformations are updated
further by the meta-learner. When the optimization proce-
dure is finished, the classifier for the target domain in the
meta-learner is what we need.

High-Level Feature Learning

We employ a marginalized stacked denoised autoencoder
(mSDA) on both to learn high-level features (Chen et al.
2012; Zhou et al. 2014). mSDA simplifies SDA from feature
reconstruction to feature mapping, which makes the compu-
tation much more efficient.

Denoting ∗ ∈ {S, T}, to learn the feature mapping ma-
trix W∗ ∈ R

d∗×(d∗+1), which is used to generate high-level
features, we minimize the overall squared loss:

Lsq(W) =

n∗∑
i=1

∥∥∥x∗
i −W∗[x̃∗

i ; 1]
∥∥∥2. (1)

Each dimension of x∗
i is corrupted to 0 with a probability p,

and x̃∗
i is the expected version of corrupted x∗

i . To incorpo-
rated the bias term, we absorb 1 into x̃∗

i . Defining a surviv-
ing feature vector q = [1 − p, ..., 1 − p, 1] ∈ Rd∗+1 and
X̄∗ = [X∗;1�] ∈ R

(d∗+1)×n∗ , we can write the analytic
solution of W∗ as:

W∗ = PQ−1, (2)

where Pij =
(
X∗X̄∗�)

ij
qj , and

Qij =

⎧⎨
⎩

(
X

∗
X

∗�)
ij
qiqj , if i �= j(

X
∗
X

∗�)
ij
qi, otherwise

(3)

With the reconstruction weights W∗, we can generate
nonlinear features H∗, where H∗ = tanh(W∗X̄∗). Af-
ter recursively doing the procedure by replacing X̄∗ with
H̄∗ for K − 1 times, we can obtain K layers of high-
level features, where H̄∗

k is the features at the kth layer and
H̄∗

1 = X̄∗.

Weights and Transformation Updating

We define a weight vector ε ∈ R
nc

for IC data features,
which can be applied to establish feature transformations
{Gk ∈ Rdt×(ds+1)}Kk=1 for each layer of two domains. To
optimize ε and learn more solid feature transformations for
domain adaptation, we construct a meta-learner for ε and
{Gk}Kk=1. The meta-objective of the learner consists of two
terms: (1) Small classification loss on {XT,l,yT,l}. (2) Ac-
ceptable distribution discrepancy between the two domains.
The meta-learner is a computation graph w.r.t. ε. We denote
ε as εt at each training step and ε1 = 1.

To establish the meta-learner, at each training step t, we
first learn the feature transformation Gk, which maps fea-
tures from the source to the target domain at kth layer. Gk

is learned with IC data features HS,c
k , HT,c

k and the objective
function to be minimized is:

Lp,k(εt,Gk) = ‖HT,c
k Υt−GkH̄

S,c
k Υt‖2F+λ‖Gk‖2F , (4)

where H̄S,c
k = [HS,c

k ;1�] ∈ R
(dS+1)×nc . ε is a diagonal

matrix and Υt = diag(ε). λ is the parameter of the regu-
larization term. The closed form solution for Eq. 4 can be
written as:

Gk(εt) = (H̄S,c
k ΥtΥ

�
t H

T,c
k

�
)(HT,c

k ΥtΥ
�
t H

T,c
k + λI)−1. (5)

To measure the classification loss on {XT,l,yT,l}, which
is the first term of the meta-objective, we establish a clas-
sifier fθ for the target domain, which requires the outputs
to be derivable to the inputs, such as a logistic regression
classifier or a neural network model. Let θ be the model
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Figure 2: Computation graph for updating ε
.

parameters and f(x, y, θ) be the classification loss for ex-
ample x. The inputs of fθ are the concatenated high-level
features in the target domain. For an instance xT , its fea-
tures vector for fθ is zT = [hT

1 ; ...;h
T
K ] ∈ R

K·dT , where
hT
k is the corresponding features of xT at kth layer and

hT
1 = xT . And for an instance xS , its features vector for

fθ is zS(εt) = [G1(εt)h
S
1 ; ...;GK(εt)h

S
K ] ∈ R

K·dS . We
denote ZS

t = {zS(εt)}ns
i=1 and ZT = {zT }nT

i=1.
At each training step t, we take a one-step batch gradient

descent with {zS,li (εt), y
S,l
i }nS,l

i=1 to update θt:

LS(εt, θt,Zt) =
1

nS,l

nS,l∑
i=1

f
(
zS,li (εt), y

S,l
i , θt

)
, (6)

θ′t(εt) = θt − α∇LS(εt, θt,Zt). (7)
Now the two terms of the meta-objective can be formed. The
first term, which aims at minimizing the classification loss of
fθ′

t
on {zT,l

i , yT,l
i }nT,l

i=1 , is written as:

LT (εt, θ
′
t) =

1

nT,l

nT,l∑
i=1

f
(
zT,l
i , yT,l

i , θ′t(εt)
)
. (8)

The second term is the transformation loss in Eq. 4, which
prevents εt from overfitting to the limited labeled target-
domain data. The two terms are utilized to update both IC
weights ε and transformations {Gk}Kk=1.

Data Weights Updating To optimize εt with the meta-
objective, we take a single gradient descent step w.r.t. εt:

∇εt = ∂

∂εt

(
LT (εt, θ

′
t) + η

1

K

K∑
k=1

Lp,k(1,Gk(εt))
)
. (9)

Before updating εt with ∇εt, we normalize the ∇(εt) with

∇ε̃t = ∇εt
‖∇εt‖∞ + δ(‖∇εt‖∞)

, (10)

Algorithm 1 Transfer Learning with Weighted Correspon-
dence
Require: {XS,l,yS,l}; {XS,u}; {XT,l,yT,l}; {XT,u};
{XS,c,XT,c}; number K of high-level layers. IC data
weights vector ε; a classifier fθ with parameter θ for the
target domain; parameter λ, η, α, γ.

1: Learning high-level features HS
k and HT

k for both do-
mains

2: Initialize ε with ε1 = 1
3: for t = 1 to M , with step size 2, do
4: Gk(εt)← Eq. 5, k = 1...K
5: LS(εt, θt)← Eq. 6
6: θ′t(εt) = θt − α∇LS(εt, θt,Zt)
7: LT (εt, θ

′
t)← Eq. 8

8: ∇εt ← Eq. 9; ∇ε̃t ← Eq. 10
9: ε′t,i = max(εt,i − γ∇ε̃t,i, 0)

10: εt+1 = ε′t/‖ε′t‖∞
11: θt+1 = θt − α∇LS(εt+1, θt)
12: ∇Gk(εt+1)← Eq. 14, k=1..K
13: G′

k(εt+1) = Gk(εt+1)− β∇Gk(εt+1), k = 1..K
14: θt+2 = θt+1 − α∇LS(εt+1, θt+1,Z

′
t+1)

15: end for
16: Fine-tune fθM with {XT,l,yT,l}
Ensure: The classifier fθM for the target domain.

where δ is to prevent denominator from being 0. δ(a) = 1 if
a = 0, and equals to 0 in other cases. Then εt can be updated
with:

ε′t,i = max(εt,i − γ∇ε̃t,i, 0), (11)

εt+1 = ε′t/‖ε′t‖∞. (12)

Eq. 12 guarantees that ‖εt+1‖∞ is no more than 1. The com-
putation graph of updating εt is shown in Figure 2. θt is si-
multaneously optimized with εt. Based on εt, θt is updated
with:

θt+1 = θt − τ∇LS(εt+1, θt,Zt). (13)

Transformation Updating Firstly, with the optimized
εt+1, we can update Gk(εt) to Gk(εt+1) with Eq. 5. Then
we utilize our meta-objective to update Gk(εt+1) further:

∇Gk (εt+1) =
∂

Gk (εt+1)
(LT (εt+1, θt+1)+

ηLp,k (1,Gk (εt+1)))

(14)

G′
k(εt+1) = Gk(εt+1)− β∇Gk(εt+1). (15)

As the optimization of {Gk}Kk=1 is guided by the classifica-
tion loss of the target domain, the high-level features Z′

t+1

transformed by {G′
k(εt+1)}Kk=1 become more suitable to

update the classifier fθ. The updating step is similar to Eq.
7.

θt+2 = θt+1 − τ∇LS(εt+1, θt+1,Z
′
t+1). (16)

We repeat the above procedure for updating ε and {Gk}Kk=1

until fθ converges at step M , we hope that ε and {Gk}Kk=1
can benefit from the updating capacity of fθ at every stage.
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Figure 3: Classification accuracies (%) on NUS-WIDE

Table 1: The data volume for experiments.

|XS,c| |XS,l| |XS,u| |XT,c| |XT,l| |XT,u| Test
Amazon 2000 2000 9000 2000 100 9000 1900

MRC 500 3000 0 300 30 0 3000
NUS-WIDE 500 5000 0 500 100 0 1000

Table 2: The parameter settings for experiments.

K λ η α β γ τ
Amazon 3 0.7 1 0.01 105 2 0.01

MRC 3 0.7 1 0.01 105 2 0.01
NUS-WIDE 3 0.7 1 0.01 105 2 10−5

Finally, we can apply {zT,l
i , yT,l

i }nT,l

i=1 to fine-tune fθ to im-
prove its performance further, then fθM is the classifier we
need. We summarize TWLC in Algorithm 1.

Experiments

We compare TLWC with previous HeTL methods on 3
HeTL datasets and conduct a series of experiments to ver-
ify its effectiveness on IC data weighting.
Datasets and Parameters
Webis-CLS-10 (Prettenhofer and Stein 2010) is a cross-
language sentiment classification dataset, which consists of
Amazon product reviews of threes product categories: book
(B), DVD (D) and music (M). The reviews are written in four
languages: English (EN), German (GE), French (FR), and
Japanese (JP). For each category in a non-English language,
2000 data are translated into English with Google Translate.
We adopt the widely used 9 HeTL tasks of this dataset: EFB,
EFD, EFM, EGB, EGD, EGM, EJB, EJD, EJM. EFB means,
for example, taking book reviews in English as the source
domain and those in French as the target domain. the docu-
ments are represented with TF-IDF and 2000 most frequent
words are selected.
Multilingual Reuters Collection (MRC) is a news dataset
with five languages (English (EN), French (FR), German
(GE), Italian(IT) and Spanish(SP)), where each article is
represented by TF-IDF. The news articles in this dataset
share 6 topics (C15, CCAT, E21, ECAT, GCAT and M11).
Following (Zhou et al. 2016), we take English as the source
domain and other languages as target domains, which forms
4 topic classification tasks.

Table 3: Classification accuracies (%) for the 9 cross-
language sentiment classification tasks.

Task TSL DMMC HHTL DFHM DATN TLWCsup TLWC
EFB 73.95 76.52 83.63 82.68 78.47 84.92 84.50
EFD 74.30 76.23 84.26 83.89 78.63 84.41 85.00
EFM 71.15 74.05 83.26 82.26 77.68 83.58 84.30
EGB 75.98 77.47 85.42 85.37 77.89 85.61 85.57
EGD 76.01 78.28 85.26 85.00 78.16 85.45 85.57
EGM 74.57 76.61 84.37 84.47 77.21 84.32 84.94
EJB 65.81 68.54 78.26 77.37 71.89 78.05 79.05
EJD 70.72 72.12 81.05 81.05 72.42 80.76 81.68
EJM 68.22 71.37 79.32 78.26 73.37 79.04 80.94

Table 4: Classification accuracies (%) for the 4 cross-
language topic classification tasks.

Task TSL DMMC HHTL DFHM DATN TLWCsup TLWC
FR 63.18 65.52 75.93 76.07 70.53 76.47 78.70
GE 56.08 58.23 69.47 70.03 65.21 71.10 70.08
IT 57.15 60.76 61.80 62.07 55.17 61.77 68.83
SP 56.98 62.64 65.80 66.00 63.41 67.37 69.40

NUS-WIDE (Chua et al. 2009) contains 269,648 images
from Flickr and their corresponding text-tag. Follow Wang
et al. (2018) We conduct experiments on 10 categories:
birds, buildings, car, cat, dog, fish, horses, flowers, mountain
and plane. The source domain data are texts represented by
4096-dimensional tags. The target-domain data are images
represented both by 1000-dimensional DeCAF6 (Donahue
et al. 2014) and 500-dimensional SIFT (Lowe 1999) respec-
tively.

The detailed data volume and parameter settings for our
experiments are shown in Table 1 and 2.
Baselines
We compare TLWC with the following state-of-the-art
HeTL methods based on IC data.

• TSL (Xiao and Guo 2013): TSL converts domain bridg-
ing into a matrix completion problem. In the matrix, each
instance is completed based on IC data. Then a classifer
can be employed on the completed matrix.

• DMMC (Zhou et al. 2016): DMMC is an extension on
TSL. Besides matrix completion, DMMC considers the
distribution discrepancy of the two domains.

• HHTL (Zhou et al. 2014): HHTL first extracts high-level
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Figure 4: Feature visualization with t-SNE on EFB and text→DeCAF6.
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features for both domains with mSDA and learns feature
transformations with IC data features, which projects the
features from the target domain to the corresponding layer
in the source domain.

• DHFM (Guntuku et al. 2016): DHFM also applies high-
level-features of IC data to bridge the two domains, while
it learns feature transformations in a cross-layer pattern.

• DATN (Wang, Cui, and Zhu 2018): DATN establishes
two deep autoencoders to learn hidden features for the
two domains. Then a feature transformation at top layer
is learned to match the two domains.

In addition, to demonstrates the effectiveness of each com-
ponent, we consider a variant version of TLWC (denoted
as TWLCsup), which does not update the feature transfor-
mation with the meta-learner. The experimental results are
shown in Figure 3, Table 3 and Table 4, On NUS-WIDE,
We do not report the results of TSL and DMMC in Figure
3 because they do not achieve comparable results with other
baselines, a possible reasons is that they are designed for
cross-language tasks.

We have made significant test in our experiment and the
p values for all the tasks are less than 0.01. From the ex-
perimental results, we have the following observations: (1)
HHTL, DFHM and DATN outperform TSL and DMMC,
which demonstrates that high-level features extracted by
deep models are more transferable between two domains. (2)
HHTL, DFHM perform better than DATN, which shows that
the features in middle layers still contain domain-invariant
factors. (3) TLWC performs better than all of the state-of-
the-art IC data based HeTL methods, which verifies the ef-
fectiveness of TLWC on domain adaptation. (4) TLWCsup

does not outperforms the baselines on some categories of
NUS-WIDE, the possible explantation is that compared
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Figure 6: IC data weights distributions.

with machine-translated IC data in Webis, the qualities of
tag-image IC data of NUS-WIDE are much higher, which
reduces the necessity to reweight the IC data. In order to
verify our guess, we will manually add some noise to these
data in the next section. (5) The improvement of TLWC over
TLWCsup demonstrates that the meta-optimization over the
feature transformation is effective.

Empirical Analysis

Feature Visualization. To validate the transferability of the
features learned by TLWC, we randomly select 50 exam-
ples form each category of both domains and plot their t-
SNE embeddings (van der Maaten and Hinton 2008) learned
by HHTL and TLWC in Figure 4. The embedding tasks are
EFB and text → DeCAF6. From Figure 4, we have the fol-
lowing observations: (1) The points with TLWC features
are more discriminative than points with HHTL features.
(2) With TLWC learned features, the points in one category
from the two domains are aligned better.
Noisy Weights Distribution. To statistically prove the ef-
fectiveness of TLWC on reweighting IC data, we manually
add quantified artificial noise to IC data. In detail, for task
text → DeCAF6, partial IC data are mismatched to other
documents and the mismatched number in each category is
ne in average. The performances w.r.t. ne are shown in Fig-
ure 5. To demonstrate the advantage on IC data reweight-
ing of TLWC, we apply TLWCsup to compare with baseline
methods.

From Figure 5 we find that the performance gap between
the methods is relatively small. However, the performances
of previous HeTL methods drop significantly when ne in-
creases, while the performance of TLWC maintains at a rel-
atively stable level. We plot the weights distribution when
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…Alors je me suis obligée d' aller jusqu'au bout. Il m'a.…

……so i forced myself for going through . He was.…

1. Inaccurate phrase.                  2. Personal pronouns cannot be judged.

… étoiles étaient pas mal du tout. … dessin est moins bon, l'humour moins fin. …

… stars were not all bad … the design is so good , the humor less fine. …

1. It should be a positive tone. 2. It should be an negative tone.

…roman de Julie Wolkenstein, Colloque sentimental, que certains rapprochaient 
volontiers de David Lodge, mais là, j’avoue que je n’irai pas jusqu’au bout. …

…previous novel julie wolkenstein , colloque sentimental, some willingly 
approached by david lodge , but then, i confess that i will not go through . …

1. Lack possessive case.             2. The translation exists grammatical problem.
3. Phrase meaning does not match the original text.

…ne reconnais même plus les personnages.Quant à l'intrigue ............... C'est à se 
demander si c'est la même personne qui a écrit ce bouquin !!!

…i do not even recognize the characters. as for the plot ............... one wonders if 
the same person who wrote this book!

1. The clause structure is not translated, and the translation exists 
grammatical problem.

…Magnificent testimony to read. the story is really unbelievable and so hard at 
the same time…

…Magnifique témoignage à lire. L'histoire est vraiment invraisemblable et 
tellement dure en même temps…

1. The translation is accurate.

…deux personnes ont posté des avis défavorables…, vous trouvez une nuées 
d'avis hyper positifs et peu argumentés …

……two people have posted negative opinions, …, you see any clouds of opinion 
and little hyper positive arguments.…

1. Adjective position is wrong.

…et une histoire sans queue ni tête mais qui curieusement sent le "déjà vu". …

…a story without beginning or end but curiously feels déjà vu…

1. Some words aren’t  translated , but overall expression is accurate.

… les tomes 1 et 3 sont passionnants, mais ce tome n 2 est à tel point inutile 
qu'on peut très bien s'en passer !

… volumes 1 and 3 are exciting, but volume 2 is so useless that we can very well 's 
without it! 

1. Some translation exists grammar problem.
2. The translation simplifies the cumbersome expression into an accurate word.

Figure 7: IC documents examples of EFB task. 4 pairs with minimum wights are on the left and 4 pairs with maximum weights
are on the right.
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Figure 8: Feature visualization with t-SNE on EFB and text→DeCAF6.

ne = 16 and ne = 32 in Figure 6, which illustrates that
the weights of the mismatched IC data are mostly pushed
to zeros. The experimental results prove that TLWC is able
to learn reliable IC data weights according to data qualities,
which can advance the domain adaptation of HeTL.

IC Samples Display. To intuitively realize the effectiveness
of TLWC on weights learning, we display the 4 pairs of IC
documents with minimum weights and 4 pairs with maxi-
mum weights of EFB task respectively. The documents are
displayed in Figure 7. We invite a volunteer to mark the in-
appropriate translation in each pair of documents and ex-
plained the error above the pair. The volunteer is not told
the experimental purpose as well as the data weights. From
the figure, we find that there are more translation mistakes
in the documents with minimum weights and some mistakes
are even on emotions, which is detrimental to the sentiment
classification task.

Parameter Sensitivity. We investigate the effects of
the parameter α in Eq. 7, β in Eq. 15, γ in Eq.
11 and η in Eq. 9, 14 on tasks based on NUS-
WIDE. Figure 8 shows the performance variations
w.r.t. α ∈ {10−7, 10−6, 10−5, 10−4, 10−3, 10−2}, β ∈
{100, 101, 102, 103, 104, 105}, η ∈ {0, 0.5, 1, 2, 4, 8} and

γ ∈ {2−5, 2−4, 2−2, 1, 22, 24, 25}. the figure shows that the
performances w.r.t. α and β exhibit bell-shaped curves. And
the choice of α = 105 and β = 104 would be reasonable
in our experiment. Compared with α and β, The accuracies
are not so sensitive to the η and γ. For task text → SIFT ,
accuracy w.r.t. γ decreases when γ increases. As the weights
tend to be zeros or ones when γ is large, this result illustrates
that IC data weights with floating values are more robust to
learn feature transformations.

Conclusion

In this paper, we proposed a novel Transfer Learning with
Weighted Correspondence (TLWC) to perform heteroge-
neous transfer learning with instance-correspondence (IC)
data. Different from previous methods that assumed all the
IC data are equally important, we construct a meta-learner
that utilizes the classification loss in the target domain to
guide the IC data weights learning and feature transforma-
tion optimization. Based on this framework, the transformed
feature space learned by TLWC is more adaptive to the task
in the target domain. Extensive experiments on 3 datasets
demonstrate the effectiveness of TLWC on IC data weights
updating and domain adaptation.

4105



Acknowledgments

This work is supported by National Key R&D Program of
China (2018YFC0807500), National Basic Research Pro-
gram of China (2015CB352300), National Natural Science
Foundation of China (No. 61971260, No. 61701273), Na-
tional Postdoctoral Program for Innovative Talents (No.
BX20180172), and the China Postdoctoral Science Founda-
tion (No. 2018M640131).

References

Andrychowicz, M.; Denil, M.; Gomez, S.; Hoffman, M. W.;
Pfau, D.; Schaul, T.; Shillingford, B.; and De Freitas, N.
2016. Learning to learn by gradient descent by gradient de-
scent. neural information processing systems 3981–3989.
Chen, M.; Xu, Z.; Weinberger, K.; and Sha, F. 2012.
Marginalized denoising autoencoders for domain adapta-
tion. arXiv preprint arXiv:1206.4683.
Chu, W.; La Torre, F. D.; and Cohn, J. F. 2013. Selective
transfer machine for personalized facial action unit detec-
tion. 2013:3515–3522.
Chua, T.; Tang, J.; Hong, R.; Li, H.; Luo, Z.; and Zheng,
Y. 2009. Nus-wide: a real-world web image database from
national university of singapore. 48.
Donahue, J.; Jia, Y.; Vinyals, O.; Hoffman, J.; Zhang, N.;
Tzeng, E.; and Darrell, T. 2014. Decaf: A deep convolu-
tional activation feature for generic visual recognition. In
ICML.
Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-agnostic
meta-learning for fast adaptation of deep networks. In
ICML.
Guntuku, S. C.; Zhou, J. T.; Roy, S.; Lin, W.; and Tsang,
I. W. 2016. Understanding deep representations learned in
modeling users likes. IEEE Transactions on Image Process-
ing 25(8):3762–3774.
Herath, S.; Harandi, M. T.; and Porikli, F. M. 2017. Learn-
ing an invariant hilbert space for domain adaptation. 2017
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) 3956–3965.
Hoffman, J.; Rodner, E.; Donahue, J.; Kulis, B.; and Saenko,
K. 2014. Asymmetric and category invariant feature trans-
formations for domain adaptation. International Journal of
Computer Vision 109:28–41.
Jin, X.; He, T.; Wan, C.; Yi, L.; Ding, G.; and Shen, D. 2018.
Automatic gating of attributes in deep structure. In IJCAI,
2305–2311.
Li, W.; Duan, L.; Xu, D.; and Tsang, I. W. 2013. Learning
with augmented features for supervised and semi-supervised
heterogeneous domain adaptation. IEEE Transactions on
Pattern Analysis and Machine Intelligence 36:1134–1148.
Long, M.; Wang, J.; Ding, G.; Sun, J.; and Yu, P. S. 2014.
Transfer joint matching for unsupervised domain adaptation.
1410–1417.
Long, M.; Zhu, H.; Wang, J.; and Jordan, M. I. 2017. Deep
transfer learning with joint adaptation networks. In Interna-
tional Conference on Machine Learning, 2208–2217.

Lowe, D. G. 1999. Object recognition from local scale-
invariant features. In iccv, 1150. Ieee.
Pan, S. J., and Yang, Q. 2010. A survey on transfer learn-
ing. IEEE Transactions on knowledge and data engineering
22(10):1345–1359.
Prettenhofer, P., and Stein, B. 2010. Cross-language text
classification using structural correspondence learning. In
Proceedings of the 48th annual meeting of the association
for computational linguistics, 1118–1127. Association for
Computational Linguistics.
Ren, M.; Zeng, W.; Yang, B.; and Urtasun, R. 2018. Learn-
ing to reweight examples for robust deep learning. In ICML.
Snell, J.; Swersky, K.; and Zemel, R. S. 2017. Prototypical
networks for few-shot learning. In NIPS.
Tsai, Y.-H.; Yeh, Y.-R.; and Wang, Y.-C. F. 2016. Learning
cross-domain landmarks for heterogeneous domain adapta-
tion. 2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR) 5081–5090.
Tzeng, E.; Hoffman, J.; Darrell, T.; and Saenko, K. 2015.
Simultaneous deep transfer across domains and tasks. In
Proceedings of the IEEE International Conference on Com-
puter Vision, 4068–4076.
van der Maaten, L., and Hinton, G. E. 2008. Visualizing
data using t-sne.
Wang, C., and Mahadevan, S. 2011. Heterogeneous domain
adaptation using manifold alignment. In IJCAI 2011.
Wang, D.; Cui, P.; and Zhu, W. 2018. Deep asymmet-
ric transfer network for unbalanced domain adaptation. In
AAAI.
Weiss, K.; Khoshgoftaar, T. M.; and Wang, D. 2016. A
survey of transfer learning. Journal of Big Data 3(1):9.
Xiao, M., and Guo, Y. 2013. A novel two-step method for
cross language representation learning. In NIPS.
Xiao, M., and Guo, Y. 2015. Feature space indepen-
dent semi-supervised domain adaptation via kernel match-
ing. IEEE Transactions on Pattern Analysis and Machine
Intelligence 37:54–66.
Yang, L.; Jing, L.; Yu, J.; and Ng, M. K. 2015. Learning
transferred weights from co-occurrence data for heteroge-
neous transfer learning. IEEE transactions on neural net-
works and learning systems 27(11):2187–2200.
Zhou, J. T.; Pan, S. J.; Tsang, I. W.; and Yan, Y. 2014. Hybrid
heterogeneous transfer learning through deep learning. In
AAAI, 2213–2220.
Zhou, G.; He, T.; Zhao, J.; and Wu, W. 2015. A subspace
learning framework for cross-lingual sentiment classifica-
tion with partial parallel data. In IJCAI, 1426–1433.
Zhou, J. T.; Pan, S. J.; Tsang, I. W.; and Ho, S.-S. 2016.
Transfer learning for cross-language text categorization
through active correspondences construction. In AAAI.
Zhu, Y.; Chen, Y.; Lu, Z.; Pan, S. J.; Xue, G.-R.; Yu, Y.; and
Yang, Q. 2011. Heterogeneous transfer learning for image
classification. In Twenty-Fifth AAAI Conference on Artificial
Intelligence.

4106


