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Abstract
A lot of research attentions have been paid to image emotion analysis in recent years. Mean-
while, as convolutional neural networks (CNNs) have made great successful in computer
vision, many researchers start to employ CNN to discriminate image emotions. However, the
training procedure of CNNs depends on sufficient labeled data. Therefore, a CNN is hard to
perform well in an image domain with scant labeled information. In this paper, we propose
a deep transfer learning method for image emotion analysis. The method can leverage rich
emotion knowledge from a source domain to the target domain. Our method reduces both
marginal and joint domain distribution discrepancies at fully-connected layers. Through this
way, we can effectively extract more transferable features and advance the performance of
CNNs on poor-label emotion-image domains.

Keywords Image emotion analysis · Transfer learning · Deep learning · Convolutional
neural network

1 Introduction

Different visual content can evoke different human emotions, which directly influence our
cognition and decision. Therefore, more researchers start to investigate and interpret human
emotion contained in image content [30].Most conventionalmethods designmanually crafted
features based on art and psychology theory and then recognize human emotions by discrim-
inating these features [8,17,19,37].

Deep learning has made significant development in recent years, and the performance of
convolutional neural networks (CNNs) on many computer vision tasks is comparable to that
of humans. Meanwhile, large-scale image datasets boost feature learning based on CNNs.
For example, a CNN pre-trained with ImageNet can extract more representative features for
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general visual tasks. In the image emotion analysis field, studies have proved that CNN-based
features are more discriminative compared with traditional manually crafted features [29].

However, there are still limitations for CNNs in image emotion analysis. Firstly, training
CNN depends on massive labeled data. But in many emotion-image domains, the amount
of labeled images is limited and manually labeling them is prohibitive [18]. Moreover, the
scalability ofCNNs is still limited as different emotion-image domains exhibit different image
styles, which leads to different domain distributions. Therefore, even if a CNN performs well
in an emotion-image domain, it may not achieve comparable performance in another one.

Transfer learning aims at transferring information from a rich-label source domain to
another poor-label target domain [26]. The key technical problem is how to reduce the
distribution discrepancy of the two domains. Recently deep transfer learning methods have
been widely applied in computer visions [14,15,24,25]. One important reason is that a deep
model can learnmore domain-invariant features [29]. As deepmodels prefer to learn domain-
specific features on top layers, the main bottleneck of deep transfer learning methods is to
reduce the shift between two domain distributions of these layers.

In order to generalize CNNs to different emotion-image domains, in this paper, we design
a novel deep transfer learning method to promote CNN-based emotion classifiers on small-
scale image domains. Its advantages on image emotion analysis are as follows: 1) Ourmethod
requires two domains share the same CNN. As different emotion-image domains contain
similarity elements on pixel-level, sharing the same CNN can learn higher quality image
features at first-layers. 2) We have both considered marginal distribution discrepancy at the
same layers [14] and joint distribution discrepancy of different layers [16]. The layers in deep
models are trained jointly, so we should not only consider marginal distribution P(Zl) of one
layer, but also joint distribution P(Z1, ldots,Zl) of several layers. A proper trade-off of the
two discrepancies can advance transferability between two domains.

2 RelatedWork

Psychological researches show that human generates different emotions according to dif-
ferent visual content [9,11]. And because of the development of social networks, more and
more people upload their images, which increase the image amount for researches. Therefore,
emotion researchers pay more attention from the psychology analysis to the image emotion
analysis. Some research works even extent the analysis from dominant emotion to personal-
ized emotion [32,34,35]. Traditional method classifying emotion contained in images based
on low-level crafted features [8,17,19,37]. For example, Machajdik et al. [18] designed 8
kinds of emotion-related features. Zhao et al. [31] proposed principles-or-art based features
for discriminating emotions.

Recently, deep learning has made great development [6,13] and convolutional neural
networks (CNNs) are widely applied in computer vision [5,10,22]. One import reason is that
the appearance of large-scale datasets, such as ImageNet [1], boosts the features learning of
CNNs. In visual emotion analysis, You et al. [28] utilized weakly labeled images to train
a CNN and learned a binary image emotion classifier. Then they built a large-scale dataset
for image emotion analysis [29]. And the CNN based emotion classifier outperformed ones
based manually crafted features [29]. However, training a CNN requires massive labeled data
andmany emotion-image domains lack them. Although somemethods were designed to ease
the problem, such as generating images similar the target domains [33,36], the generating
procedure is fussy and the qualities of generated images can not be guaranteed.
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In this paper,we aimat alleviating the data scarcity problemwith transfer learning.Transfer
learning focus on knowledge transfer from the source domain with rich label information to
the target domain [26]. Traditional transfer learning methods learn domain-invariant model
based on shallow features [2,7,20]. Recent studies have demonstrated that deep models can
learn more transferable features between two domains [27]. For example, when a CNN
extract features from different image domains, the first-layer features all tend to resemble
Gabor filters or color blobs.

However, as CNNs always learn domain-specific features at top layers, distributions
of different domains exist relatively large discrepancies at these layers. Therefore, many
researchers add specific transfer modules to reduce the discrepancies in a layer-wise way
[14,15,24]. These methods promote the effect of deep transfer learning. However, it is neces-
sary to consider the dependencies between layers. Long et al. [16] proposed joint adaptation
network, which first considered the joint distribution of all the top fully-connected layers.

3 Preliminary

3.1 MaximumMean Discrepancy

MaximumMean Discrepancy (MMD) is used to judge whether two distributions P(Xs) and
Q(Xt ) are the same [4]. Its hypothesis is EP [ f (Xs)] = EQ[ f (Xs)] when P = Q. Now it is
usually used to measure the distribution similarity and its form is presented as:

D(P, Q) � sup
f ∈F

(EP [ f (Xs)] − EQ[ f (Xt )]) (1)

where F is a functional set.

3.2 Reproducing kernel Hilbert space

MMD can be represented as the distance in Reproducing kernel Hilbert space [4]. As
Euclidean space V is a finite vector space, Hilbert Space is typically viewed as an infinite
function spaceH and its orthogonal basis can be denoted as {√λiψi }∞i=1, whereψi is the base
function in each dimension. If X is a random variable in domain �, a function f : � → R

inH can be presented as ( f1, f2, . . .)TH. And we define another infinite-dimensional feature
map φ(x) in H as (

√
λ1ψ1(x),

√
λ2ψ2(x), . . .)TH. [3,21] We find that:

< f , φ(x) >=
∞∑

i=1

fi
√

λiψi (x) = f (x) (2)

This is the reproducing property of H. We denote EP [ f (Xs)] and EQ[ f (Xt )] as μx(P)

and μx(Q) respectively [4]. Now MMD can be presented as:

D(P, Q) = sup
f ∈H

(EP [ f (Xs)] − EQ[ f (Xt )])

= sup
f ∈H

(EP [< φ(Xs), f >] − EQ[< φ(Xt ), f >])

= sup
f ∈H

< μx(P) − μx(Q), f >

(3)
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If we only select f which satisfies | f | = 1, D(P, Q) can be calculated as:

D(P, Q) = ||μx(P) − μx(Q)||2H
=< μx(P), μx(P) >

+ < μx(Q), μx(Q) > −2 < μx(P), μx(Q) >

(4)

Now we can define a kernel function k(x, y) to replace < φ(x), φ(y) >. The kernel function
can not only be a scalar product, but also other choices like Gaussian kernel. This method
is widely employed in many tasks like density estimation and two-sample test [4,23]. Given
two sets Ds = {xsi }nsi=1 and Dt = {xti }nti=1 with finite instances sampled from P and Q. The
kernel embeddings are calculated by:

μx(P) = 1

ns

ns∑

i=1

φ(xsi ) (5)

μx(Q) = 1

nt

nt∑

i=1

φ(xti ) (6)

As k(x, ·) = φ(x), μx(P) and μx(Q) are called kernel embedding here. Now MMD can
be estimated as the distance of two kernel embeddings and its formula is:

D(P, Q) = 1

n2s

ns∑

i=1

ns∑

j=1

k(xsi , x
s
j ) + 1

n2t

nt∑

i=1

nt∑

j=1

k(xti , x
t
j ) − 2

nsnt

ns∑

i=1

nt∑

j=1

k(xsi , x
t
j ) (7)

4 Transfer Learning for Image Emotion Analysis

Given a source emotion-image domain Ds = {(xsi , ysi )}nsi=1 and a target emotion-image
domainDt = {(xti , yti )}nti=1, where ns � nt , our task is employing a transfer learning method
to optimize a CNN with Ds and Dt and improve its classification performance in Dt . The
specificmethod is to reduce the domain distribution discrepancy at the fully-connected layers
while training the CNN with Ds and Dt simultaneously.

Choosing aCNNasour base transfer learningmodel is basedon two reasons: (1)Compared
with conventional manually crafted features, features extracted by CNNs are more suitable
for image emotion analysis; (2) Recent studies show that CNNs can learn more transferable
image features at first layers.

where J is a cross-entropy loss function. Intuitively, if we hope to utilizeDs to improve the
performance of a CNN onDt , we can employ bothDs andDt to train the same CNN together.
However, in the image emotion analysis field, there always exists a discrepancy between
domain distributions P(Xs) and Q(Xt ). Meanwhile, the image features transits from general
to domain-specific along a CNN, which means the transferability decreases at the fully-
connected (FC) layers. Our transfer learning method minimizes the domain shift at FC layers
from two perspectives: (1) Reducing marginal distribution discrepancy {P(Zsi , Q(Zti )}i∈G
in a layer-wise way; (2) Reducing joint distribution discrepancy P(Zs1, . . . ,Zs|G|) and
P(Zt1, . . . ,Zs|G|). {Zsi }i∈G and {Zti }i∈G are features at FC layers. G is a set of selected
fully-connected layers to be aligned for joint distribution. Usually, G contains all the fully-
connected layers of the CNN.

123



Deep Transfer Learning for Image Emotion Analysis: Reducing Marginal... 2081

4.1 Joint MaximumMean Discrepancy

To decrease joint distribution discrepancy of two domains, Long et al. [16] designed amodule
to measure joint distribution discrepancy like MMD, which is called Joint Maximum Mean
Discrepancy (JMMD). JMMD is estimated as:

DG(P, Q) � ||CZs,1:|G|(P) − CZt,1:|G|(Q)||2 (8)

CZs,1:|G|(P) and CZt,1:|G|(Q) is the feature embedding in Hilbert space.

CZ∗,1:|G| = 1

n∗

n∗∑

i=1

⊗G
l=1φ

l(xli ) (9)

Where ∗ ∈ {s, t}. If we make use of kernel trick, DG(P, Q) can be estimated as:

DG(P, Q) � 1

n2s

ns∑

i=1

ns∑

j=1

∏

l∈G
kl(zsli , zslj )

+ 1

n2t

nt∑

i=1

nt∑

j=1

∏

l∈G
kl(ztli , ztlj )

− 2

nsnt

ns∑

i=1

nt∑

j=1

∏

l∈G
kl(zsli , ztlj )

(10)

4.2 Deep Transfer LearningModel

We integrate both MMD and JMMD into the FC layers of the CNN, where MMD is used for
measuring marginal discrepancy and JMMD is used for measuring joint discrepancy for two
domain. The optimizing process is minimizing MMD and JMMD of fully-connected layers
while fine-tuning CNN with Ds and Dt . The loss function is as follows:

L = Ls + Lt + λDG(P, Q) + η
∑

i∈G
Di (P, Q) (11)

where Ls and Lt are classification loss functions for Ds and Dt and they are presented as:

Ls = 1

ns

ns∑

i=1

J ( f (xsi ), y
s
i ) (12)

Lt = 1

ns

nt∑

i=1

J ( f (xti ), y
t
i ) (13)

Di (P, Q) is theMMD loss at i-th FC layer. λ and η are two trade-off parameters. The overall
architecture of JAN is shown in Fig. 1.

5 Experiment

Experiments focus on the image emotion classification problem. And the purpose is to eval-
uate whether our transfer learning method can generalize a CNN trained in a large-scale
emotion-image domain to another small-scale one better.

123



2082 Y. He, G. Ding

..
....

.. ..
..

. . . . . . . .

..
..

. ... ..

..

..

Fig. 1 Overall architecture of our deep transfer learning model

Table 1 Statistcs of three existing emotion-image datasets

Dataset Amusement Anger Awe Contentment Disgust Excitement Fear Sadness Sum

FI 4861 1236 3055 5292 1616 2827 998 2815 22,700

ArtPhoto 101 77 102 70 70 105 115 166 806

IAPS-Subset 37 8 54 53 74 55 42 62 395

Datasets
FI [29] contains 22700 emotion-images in 8 categories. Images are collected through search
engines (Flickr and Instagram) with 8 emotion keywords. Then images are labeled using
Amazon Mechanical Turk (AMT).

ArtPhoto [18] consists of 806 photos from professional artists. The labels of photos are
provided by image owners.

IAPS-Subset is a subset of the International Affective Picture System (IAPS) [12]. This
dataset and Artphoto share the same 8 categories with FI

Table 1 shows the statistics of the two datasets. For ArtPhoto and IAPS-Subset, the table
shows that image numbers of each category are imbalanced and the total numbers are both
much smaller than that of FI. Therefore, we take FI as the source domain when it is included
in the task.

Based on the 3 datasets, we construct 4 cross emotion-image domain classification tasks:
F → A, F → I, I → A, A → I. F → A means, for example, taking FA as the source
domain and ArtPhoto as the target domain.

We randomly split the target-domain data into training, validation, and test set with frac-
tions 80%, 5%, 15%. We perform a 5-fold Cross Validation to obtain results.
Architecture
We choose ResNet50 [1] as the base CNN. A fully-connected layer and a softmax layer
are added behind convolutional layers. We fine-tune the whole network in an end-to-end
way. We measure marginal distribution discrepancy at the FC layer with MMD and joint
discrepancy of the FC layer and softmax layer with JMMD. The λ and η in Eq. 12 are 0.2
and 0.3 respectively.
Baseline

– CTD [29]: The CNN model is fine-tuned only with labeled data in target domain. This
is the basic method used for image emotion classification.
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Table 2 Accuracy (%) on 4 cross
emotion-images classification
tasks

CTD CBD DAN JAN Ours

F → I 24.81 26.30 25.93 27.78 29.63

A → I 22.96 24.44 30.00 27.41 27.04

F → A 39.66 36.92 36.24 36.75 37.61

I → A 30.77 34.56 36.78 34.81 39.15

The accuracies in bold are highest ones in their corresponding tasks

disgust sad contentment awe excitement fear amusement
0

10

20

30

40

50

60

70

A
cc

ur
ac

y 
(%

)

CTD
CBD
DAN
JAN
Ours

Fig. 2 Per-emotion accuracy on task F → I

– CBD: The model is fine-tuned with labeled data in both the source and the target domain
without transferring modules.

– DAN [14]: This is a classical deep transfer learning method, which measure the domain
distribution discrepancy with MMD and reduce it in a layer-wised way.

– JAN [16]: This method aligns full-conncted layers of a CNN and minimize their joint
distribution discrepancy with JMMD.

The CNN architecture and fine-tuned layers for all the baselines are the same as those of our
model. The final classification results on target domains are reported in Table 2.

Table 2 reveals the following observations: (1) CBD outperforms CTD on most tasks,
which proves the transferability of CNNs; (2) Deep transfer learning method performs better
than CBD. This validates that integrating transfer modules into CNNs can boost it to learn
more transferable features; (3) Our method outperforms DAN and JAN in most cases, which
demonstrates that reducingmarginal and joint distribution discrepancies together can improve
the transferability of the CNN further; (4) On task F → A, CTD performs best, which shows
that the degree of domain shift influences the feasibility of transfer learning. When the
domain shift is large, the transferred information from the source domain may become noise
information.

Figures 2 and 3 show the accuracy of each emotion category on task F → I and I → A.
We do not report the result of emotion anger as its data amount is scant. The results reveal that
the CNN classifier with transferring modules consistently outperforms conventional CNN
classifier. Furthermore, DAN, JAN outperforms our method on partial categories, which
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Fig. 3 Per-emotion accuracy on task I → A

0 0.1 0.2 0.3 0.4 0.5
22

24

26

28

30

32

34

36

38

40

A
cc

ur
ac

y 
(%

)

Fig. 4 Accuracy w.r.t. η

demonstrates that themost proper ratios betweenmarginal and joint distribution discrepancies
are different for different categories. But on most categories, our method performs the best.
Therefore, considering the two different discrepancies together is necessary.
Parameter Analysis

Now we check the sensitivity of proportion between JMMD parameter λ and MMD
parameter η in Eq. 12. the value of η varies in {0, 0.1, 0.2, 0.3, 0.4, 0.5} and λ = 1− η. The
results are shown in Fig. 4. The results present as bell-shaped curves, which confirms our
motivation that a proper trade-off between marginal and joint distribution discrepancies can
advance the transferability of CNNs.
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5.1 Conclusion

In this paper, we propose a deep transfer learning method into image emotion analysis. Our
purpose is improving the classification performance ofCNNs on a small-scale emotion-image
domain by transferring label information from another large-scale one. During the transfer-
ring process, we decrease the marginal and the joint distribution discrepancies together. The
experimental results demonstrate the promise of our method for discriminating image emo-
tions. In future work, we will explore how to transfer information from art and psychological
theory based features to CNN-based features.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.
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