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Real-Time Scalable Visual Tracking via Quadrangle
Kernelized Correlation Filters

Guiguang Ding, Wenshuo Chen, Sicheng Zhao, Jungong Han, Qiaoyan Liu

Abstract—Correlation filter (CF) has been widely used in
tracking tasks due to its simplicity and high efficiency. How-
ever, conventional CF based trackers fail to handle the scale
variation occurs when the targeted object is moving, which is
one of the most notable unsolved problems of visual object
tracking. In this paper, we propose a scalable visual tracking
algorithm based on kernelized correlation filters, referred to
as Quadrangle Kernelized Correlation Filters (QKCF). Unlike
existing complicated scalable trackers that either perform the
correlation filtering operation multiple times or extract many
candidate windows at various scales, our tracker intends to
estimate the scale of the object based on the positions of its four
corners, which can be detected using a new Gaussian training
output matrix within one filtering process. After obtaining four
peak values corresponding to the four corners, we measure
the detection confidence of each part response by evaluating
its spatial and temporal smoothness. On top of it, a weighted
Bayesian inference framework is employed to estimate the final
location and size of the bounding box from the response matrix,
where the weights are synchronized with the calculated detection
likelihoods. Experiments are performed on the OTB-100 dataset
and 16 benchmark sequences with significant scale variations.
The results demonstrate the superiority of the proposed method
in terms of both effectiveness and robustness, compared to the
state-of-the-arts.

Index Terms—Image emotion, probability distribution,
valence-arousal, Gaussian mixture model, shared sparse
regression, multi-task learning

I. INTRODUCTION

With the rapid development of digital multimedia technol-
ogy, the total amount of video data, such as user-generated
videos and surveillance videos, has been explosively increas-
ing, which poses a great challenge to Internet inspection and
security monitoring. As an important technique in computer
vision, visual object tracking [1], [2] aims to estimate the
location of a visual target at each frame of an image sequence
and plays an important role in intelligent transportation sys-
tems [3], [4]. Due to the complexity of real-world scenes,
such as illumination variation, partial occlusion, background
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Fig. 1. Comparisons of the proposed QKCF with KCF tracker [5] in the
challenging situation of scale variation on the CarScale sequence [6]. While
preserving the high tracking speed of KCF, our tracker can well handle the
scale variation problem by a Gaussian training output matrix with four peak
values in one filter.

clutter, motion blur and scale variation, visual tracking remains
a challenging task.

In recent years, tracking based on correlation filter (CF) [5],
[7]–[10] has shown to accurately provide the object location
in real-time. The underlying principle behind these approaches
lies in the exploration of the circulant matrix structure in
tracking scenes, which can be efficiently computed using
convolution theorem based on a fast Fourier transform (FFT).
Bolme et al. [7] presented a pioneering research that uses CF
for visual tracking on gray-scale images to learn a minimum
output sum of squared error (MOSSE). The tracking speed of
MOSSE tracker reaches several hundreds frames per second
(f/s), i.e. 669 f/s on low resolution videos. This is deemed to be
a remarkable improvement, in contrast to the existing trackers
like Struck [11], TLD [12] and MIL [13] and ORIA [14],
where the first three can hardly reach 30 f/s while the last one
only gets 9 f/s in the equivalent circumstance. There are a lot
of improved versions of MOSSE, such as CSK [8], CAT [9],
spatio-temporal context (STC) [10] and KCF [5], in which the
CSK tracker [8] that extends the CF in a kernel space, turns
out to be the most outstanding one in terms of the tracking
speed [6]. Late on, replacing the gray-scale representation with
the HOG features [15] allows the KCF tracker [5] to achieve a
good trade-off between tracking speed and tracking accuracy.

In spite of satisfactory performance achieved in the simple
environment, all the above mentioned CF trackers suffer from
the problem that the scale of targeted object changes dramat-
ically over time, which occurs frequently in the real-world
scenarios, as illustrated in Figure 1. To solve this problem,
some recent visual trackers adopt either part based multiple
filters [16] or multi-scale spatial pyramid [17], [18], in which
the optimal scale is estimated by repeatedly applying the
correlation filtering to the candidate regions sampled from
different image scales. Despite its great success in detecting
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the object-scale variation for most practical situations, the
computational efficiency is dramatically degraded due to the
multiple filtering operations carried out in one single frame.

In this paper, we aim to solve the scale variation problem in
a single-frame-single-filter framework. Based on the intrinsic
boundary extension property of CF trackers, we introduce a
quadrangle Gaussian training label matrix to fully explore
the boundary information of the target object. By improving
the training and tracking algorithms of KCF [5], we propose
Quadrangle Kernelized Correlation Filters (QKCF), which can
simultaneously obtain the location and scale of the target
object in only one filter.

The CF trackers usually train a model based on the labeled
bounding box of the target object in the first frame and
then determine the offset location of the target object in
subsequentl frames by CF operations, which is called target
translation detection. Without taking the scale variation into
consideration, the traditional KCF tracker [5] only requires
obtaining the centre point of the target object, which can be
easily accomplished by selecting the offset with the maximum
response. However, the proposed quadrangle Gaussian training
label matrix relies on the boundary information instead of
the centre point. Therefore, a straightforward duplication of
maximum response will no longer work in this context.

To tackle this problem, a weighted Bayesian inference
framework is proposed to estimate the location and size of the
bounding box from the four-peak-value response matrix. More
specifically, it adaptively measures each part response both
spatially and temporally, and then makes a biased combination
of all confidence maps based on the response weights. In
practice, some parts of the object may be occluded or undergo
illumination changes, thereby producing unreliable informa-
tion. In our formulation, we adaptively adjust the weights
such that the information from unreliable parts contributes less
during the combination. We conduct extensive experiments on
the OTB-100 dataset and 16 benchmark sequences with sig-
nificant scale variations. The experimental results demonstrate
the superiority of the proposed method in terms of tracking
accuracy, efficiency and robustness, compared to the state-of-
the-art tracking methods.

The rest of this paper is organized as follows. Section II
reviews related work on visual tracking. The detailed algo-
rithms, i.e., the quadrangle kernelized correlation filter and
weighted Bayesian inference are described in Section III and
Section IV, respectively. Experimental evaluation and analysis
are presented in Section VI, followed by conclusion and future
work in Section VII.

II. RELATED WORKS

Visual tracking has been extensively studied and numerous
trackers [1], [2], [6], [19] have been proposed in the past
decade. In this section, we briefly discuss the methods closely
related to our work, which are (i) CF based trackers and (ii)
scalable visual trackers.
Correlation filter based trackers: As a popular measurement
of the correlation or similarity between two signals, correlation
filter (CF) has been widely used in various applications, such

as eye localization and object detection [20]. Since the CF
operator can be easily transferred into the Fourier domain,
on which the correlation can be efficiently computed via
FFT, CF-based trackers have been widely used in real-time
applications [5], [7]–[10]. Having initialized a small window
centered on the object in the first frame, the target is tracked
by correlating the filter over a larger searching window in next
frame and the new location of the target is specified by looking
at the maximum correlation response. This new location is in
turn used to updated the filter.

MOSSE [7] is the first CF based tracker, which directly
takes the gray values as visual features and detects the target
object via a linear CF classifier. The tracking speed of MOSSE
can reach several hundreds frames per second with the aid
of CF. Heriques et al. proposed extending CF to a kernel
space by the CSK method [8], which is built upon the
illumination intensity features. Both KCF tracker [5] and CAT
tracker [9] are the extended multi-channel versions of CSK,
where the former one adopted the geometry and illumination
invariant HOG features while the latter replaced the original
gray scale representation with the color attributes. Zhang
et al. [10] changed the Gaussian function in MOSSE to a
Bayesian framework such that the contextual information can
be incorporated into the filter learning. This STC track can
model the scale change to limited extent based on consecutive
correlation responses. To sum up, all the above methods are
restricted to only estimating the target translation so that
they generally yield a poor performance in complex scenarios
where significant scale changes occur.
Scalable visual trackers: The phenomenon of scale change is
a common yet challenging problem in computer vision [21].
In the framework of discriminative model based tracking-
by-detection [12], [22], how to automatically estimate the
scale of target object has kept researchers busy for a long
while. Among the available proposals, part based detection
and multi-scale spatial pyramid seem excellent. DSST [18]
and LCT [17] are two typical trackers of multi-scale spatial
pyramid under the CSK framework. DSST tracker [18] firstly
used the MOSSE algorithm to find the maximum response of
the object indicating the object translation. Next, a separate
scale detection model is trained to search the optimal scale
in the multi-scale spatial pyramid. By learning discriminative
correlation filters, the scale in LCT [17] is estimated by
searching the target appearance pyramid exhaustively while
the translation is estimated by modeling the temporal context
correlation. Though performed pretty well on video sequences
with significant scale variation, DSST [18] and LCT [17]
both greatly reduce the tracking efficiency of a traditional
CSK due to the heavy computation load spent on training and
detecting object across the multi-scale images. Alternatively,
PBT method [16] divided the target object into multiple parts
and learned CF for each part separately. A Bayesian inference
framework was adopted to estimate the object’s new location
and scale by combining the tracking results of all parts.
Experiments showed that PBT can well handle the foreground
occlusion and scale variation. But again, multi-scale filtering is
operated at each localization step, which dramatically reduces
the tracking speed.
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Deep trackers: Very recently, owing to the powerful fea-
ture learning capability of CNN, deep networks have been
introduced into visual tracking. Due to lacks of training data,
CNNs are usually pretrained on a large-scale dataset for image
classification [23] [24] [25] [26] to learn a generic relationship
between object motion and appearance in either an on-line or
off-line manner. Late on, [27] [28] [29] propose to train the
CNNs on a set of annotated video sequences instead of still
images, and the obtained results showed that the CNNs trained
on video sequences are more robust to the environmental
variations. In contrast to these deep trackers that reply on
a large training set, our algorithm aims to tracking scaling
objects based on fast CF technique with no need for an
intensive training procedure.

It is noted that there are some other tracking methodologies
related to our research, including tracking-by-detection [12],
[22], ensemble tracking [30]–[33], contour tracking [34], [35],
hash tracking [36], multi-cue tracking [37] and multi-object
tracking [38]–[42]. Tracking-by-detection algorithms [12],
[22] base their trackers on the object detection results. Dif-
ferently, ensemble tracking [30]–[33] combines a set of weak
classifiers, which are trained online to distinguish the object
from background, into a strong classifier to label pixels in
the next frame. Contour tracking [34], [35] aims to track
the fine-grained contours instead of simple rectangles, which
is often used for non-rigid objects. Hash tracking maps the
high-dimensional data to a compact binary code, solving
the scale and dimension increasing problem with a constant
time. Multi-cue tracking [37] jointly employs different cues
about the object for the accurate localization of target object
in extreme conditions, while multi-object tracking [38]–[42]
tracks multiple objects simultaneously. The proposed QKCF
can be deemed as one kind of tracking-by-detection trackers
but with high accuracy and fast speed. Distinct from ensemble
tracking, contour tracking, hash tracking, multi-cue tracking
and multi-object tracking, the proposed method is a non-
ensemble, non-contour, single-cue and single-object tracker.

III. QUADRANGLE KERNELIZED CORRELATION FILTER

Basically, we aim to build a real-time tracking system that
is robust to scale variations, and meanwhile, avoid using time-
consuming multi-sampling strategy or multi-scale space pyra-
mid. Due to the high efficiency and competitive performance
of KCF [5], we base our method on the KCF tracker. The
key idea is to employ a Gaussian training output matrix with
four peak values to implement multiple edges tracking in one
filter operation. Furthermore, a weighted Bayesian inference
framework is proposed to deduce the location and size of the
bounding box simultaneously. The flowchart despicting the
whole process is shown in Figure 2

A. The KCF Tracker

In this section, we briefly introduce the KCF tracker. More
details can be referred to [5]. Using the ridge regression as
a filtering model, KCF aims to find a function f(z) = wT z
that minimizes the squared error over samples xi and their

Fig. 2. Flowchart of QKCF process. At the first frame, initial frame data
and the groundtruth are used to train the first correlation filter model. After
predicting the target window of the next frame by the model, we use the
frame data and the target window to update the model, and then predict the
next frame again.

regression targets yi,

min
w

∑
i

(f(xi)− yi)2 + λ‖w‖2, (1)

where w is kernelized filtering template and λ is a regular-
ization parameter that controls overfitting. Suppose the kernel
function is κ(x, x′) = 〈ϕ(x), ϕ(x′)〉. After mapping the inputs
of a linear problem to a nonlinear feature-space ϕ(x), the
closed form solution of ridge regression is

w =
∑
i

αiϕ(xi). (2)

Based on the circulant matrix structure and Convolution The-
orem, vector α can be obtained by

α = F−1
(
F(y)

F(k) + λ

)
, (3)

where F and F−1 denote the Fourier transform and its inverse,
respectively; k is a row vector of the n × n kernel matrix
K. Following the settings in KCF [5], the Gaussian kernel is
adopted κ(x, x′) = exp(−‖x− x′‖2/σ2). And k is computed
by

k = exp

(
− 1

σ2

(
‖x‖2+‖x′‖2−2F−1(F∗(x)·F(x′))

))
, (4)

where F∗(x) is the conjugate of the Fourier transform. The
complexity of computing a full kernel correlation isO(n log n)
[5].

When tracking the object in subsequent frames, suppose
the HOG feature of the candidate window is z, the confidence
score is calculated as

yz =
∑
i

αiκ(z, xi), (5)

where κ(z, xi) is the kernel distance between regression sam-
ple z and training sample xi. Suppose Kz is the kernel matrix
composed of the kernel distance between all training samples
and all candidate windows, it has been proved that Kz is a
circulant matrix and the circulant basis is kxz.

Similar to training, for the densely sampled candidate
windows based on z, we can obtain the following efficient
computation based on convolution theorem

F(f(z)) = F(kxz)F(α), (6)
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Fig. 3. The Gaussian training label matrix used in QKCF.

where f(z) contains the detection results of all the offset
transform to candidate window (z). The responses of all
candidate offsets can be obtained by only one computation.

B. Quadrangle Gaussian training label matrix

In a traditional KCF, the Gaussian training label matrix y
used to train the filtering template is composed of the training
labels with different offsets of the training samples. The (i, j)
element yij is the label score of the offset window with i− 1
steps (pixels if grey scale feature is used and cells if HOG
is used) downwards and j − 1 steps rightwards offset, while
y11 corresponds to the original location of the target without
offset. Gaussian function is adopted to represent y in KCF [5].
When training the tracking model in the first frame, only the
zero-offset window is used as a positive sample.

However, since KCF tracker uses a target-centered window
as the training sample, it can only detect the offset of the
target between the current frame and previous one. It is unable
to detect the scale variation when target expands or shrinks
visually because its tracking model is not trained that way. To
keep it simple, KCF [5] does not determine the scale variation
besides the location. PBT tracker [16], LCT tracker [17] and
DSST tracker [18] are CF-based trackers to solve the scale
variation problem, but all of them choose to sacrifice speed
advantage by sampling, training and filtering the candidate
windows multiple times.

To solve the scale variation problem under KCF tracker’s
one-sampe-one-filter framework, we redefine the Gaussian
training label matrix y by incorporating the edge information
of the target into the tracking model. Instead of only using the
zero-offset (target-in-center) window as the positive sample,
the offset images in the four window corners of the target are
also considered as positive samples to determine the target
edges. As shown in Figure 3, the four elements y22, y2(n−1),
y(m−1)2 and y(m−1)(n−1) indicate the training response of
the target-at-right-down-corner (right-down for short) window,
left-down window, right-up window and the left-up window,
respectively. By redefining the training matrix y, we do not
need to extract the four windows, because their corresponding
elements in y will help do the work when filtering.

Formally, suppose the circulant offset between the four
cornered training samples and the original sample are ∆1 =
(i1, j1), ∆2 = (i2, j2), ∆3 = (i3, j3), ∆4 = (i4, j4), then the

Fig. 4. Examples of quadrangle edge tracking.Rectangle ABCD is location
of the current target, while A’B’C’D’ refers to target window of the next
frame. The hollow blue rectangle represents the actual extended filter template.
Nonzero areas of label matrix are shown as four dashed boxes.

matrix y can be calculated by

y =

4∑
i=1

GL(ŷ)⊕∆i, (7)

where GL(ŷ) transforms the zero matrix ŷ to a single peak
Gaussian matrix where the single peak appears on the upper
left ŷ11, ⊕ represents the circulant offset operation to a matrix.
Inputting the redefined Gaussian training label matrix y into
the tracking model allows us to train the KCF with the aim to
obtain the four edged offset images. The size and location of
the target can thereby be determined by utilizing the relative
offset of the adjacent edged images.

As shown in Figure 4, rectangle ABCD represents the
location of target in the current frame, while A’B’C’D’ refers
to the its location in the next frame. It can be seen from the
picture that the target moves towards right bottom direction
and becomes a little larger.

The hollow blue rectangle represents the actual extended
filter template. In the training stage, we use the patch cropped
by blue rectangle to train the filter. The positive samples whose
value are 1 locate at the very center of four corners of ABCD.
To be more specifically, the whole label matrix y is defined
by four accumulative Gaussian matrices. Here, nonzero areas
are shown as four dashed boxes.

In detection, the detecting window is still the blue rectangle.
We first get all the candidate windows by circulant dense
matrices, which will be scanned via the filter we obtained
in the training procedure. The one with the highest score is
chosen as the final target of the current frame. According to the
responsive matrix, we can now calculate the exact coordinates
of the four border lines of the target rectangle. The detailed
inference is provided in the next section.

IV. WEIGHTED BAYESIAN INFERENCE

After the filtering operation of the scalable quadrangle
single filter tracking, we can obtain a quadrangle response
matrix. Apparently, the single peak localization method used in
the traditional KCF [5] cannot work in our situation anymore.
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A scheme is needed to measure the confidence score of each
partial tracking result based on both temporal and spatial
information, and on top of it, a combining mechanism that
determines the optimal target window by analysing multiple
peak filtering results, each being elaborated below.

A. Spatio-Temporal Confidence Score of Partial Filter Re-
sponse

Using the quadrangle Gaussian training label matrix y and
the trained filter template F(α), we can obtain the quadrangle
filter response matrix f(z). In order to evaluate the filter
response of each part, based on the circulant offset of f(z)
with distance ∆i = (ii, ji), we capture local response matrix
ri with width and height s from the migrated matrix by

ri = (f(z)⊕∆i)
[
− s

2
:
s

2

]
. (8)

Temporally, the movement of the target between two adja-
cent frames should not be large. As a result, we simply exploit
filter response displacement to measure the smoothness of the
tracking results between two frames for each part

SCi = ‖rti − rt−1i ‖, (9)

where rti and rt−1i are the filter response matrix of the ith part
in the tth and t− 1th frame.

Spatially, we use peak-to-sidelobe ratio (PSR) to measure
the confidence score of the filter response peak to other
candidate windows in the current frame, which is defined as

PSRi =
max(ri)− µi

σi
, (10)

where µi and σi are the average and standard deviation of
ri, respectively. By jointly combining SCi and PSRi, the
likelihood of a partial detection being a true detection can be
formulized as a weight, which can be calculated:

ωi =
1

SCi
+ PSRi. (11)

B. Maximum Posterior Probability of Target Window
Let s = (t, b, l, r) denote the bounding box of the target

in the current frame, s1 = (t, l), s2 = (t, r), s3 = (b, 1) and
s4 = (b, r) are the upper left, upper right, lower left and lower
right coordinates of the window. Suppose O = (o1, o2, o3, o4)
is the filter result of the candidate windows in the current
frame by QKCF, where oi = (ri, wi). The optimal s can be
obtained by

s = arg min
sj

p(sj |O), (12)

p(sj |O) = p(tj , bj , lj , rj |o1, o2, o3, o4). (13)

Obviously, t, b, l and r are determined by o1 and o2, o3

and o4, o1 and o3, and o2 and o4, respectively. Take t for an
example, using Eq. (12), we can obtain

t1 = arg min
t1j

p(t1j |o1), (14)

where p(t1j |o1) can be calculated by Bayesian

p(t1j |o1) =
p(o1|t1j )p(t1j )

p(o1)
∝ p(o1|t1j )p(t1j ). (15)

As we use the KCF model, a filter response matrix is gen-
erated in each frame. The elements in the matrix represent
the response score for some offset, which can be used to
approximate p(o1|t1j )p(t1j )

p(o1|t1j )p(t1j ) ∝ p(r1, w1|t1j ) = w1p(r1|t1j )
= w1 max(r1(t1j , :)).

(16)

Based on the smoothness constraint of adjunct frames, the
prior probability p(t1j ) is defined as

p(t1j ) =
h− |t1j − a2|

h
, (17)

where h is the width of a candidate window, a2 is the
coordinate of the upper left point in the target bounding box
used for training filter template.

Combining Eq. (15), Eq. (16) and Eq. (17) will bring us:

p(t1j |o1) = ω1 max(r1(t1j , :))
h− |t1j − a2|

h
. (18)

Similarly, we can obtain p(t2j |o2). Combining p(t1j |o1) and
p(t2j |o2) with weight, we can finally obtain t by

t =
t1p(t1j |o1) + t2p(t2j |o2)

p(t1j |o1) + p(t2j |o2)
. (19)

The solution of b, l, r can be similarly solved.

C. Weighted Interpolation Updating
To tackle the challenge of stability-plasticity dilemma, sim-

ilar to KCF [5], we adopt a weighted interpolation updating
scheme. The idea is that after obtaining the new location and
size of the target, the predicted window is used as a positive
sample to retrain the tracking model. The trained parameter
F(α̂) and feature x̂ are incorporated into the original model
parameter F(α) and feature x by linear weights. Suppose the
average and standard deviation of weights in Eq. (11) are ω
and ωσ , which can reflect the tracking results of F(α). We
propose to compute the overall confidence estimation ω of the
model in the current frame by

ω = ω +
β

ωσ
, (20)

where β is used to control the ratio between w and wσ . The
weighted interpolation updating model is

F(α) = (1− µω)F(α) + µωF(α̂), (21)

x = (1− µω)x + µωx̂, (22)

where µ is the parameter to control the updating ratio. With
the weighted interpolation updating scheme, QKCF can well
handle the problems, such as the light and shadow changes
and partial occlusion. When processing sequences with poor
tracking results, weight ω tends to be 0, which can avoid
incorporating wrong data into the tracking model. The details
are given in Algorithm 1

V. COMPLEXITY ANALYSIS

QKCF provides a method that can obtain the four corners
of target in one single filtering operation instead of adding



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 6

Algorithm 1: The tracking algorithm of QKCF
Input: The HOG features of training frame x and test

frame z with size h× w × d (d is the feature
dimension)

Output: The bounding box of the target in the test
frame s = (t, b, l, r)

/* Training */
1 Construct quadrangle Gaussian training label matrix by

Eq. (7);
2 Compute the Gaussian kernel matrix F(kxx);
3 Train the filter template by Eq. (3);
/* Testing */

4 Compute the Gaussian kernel matrix F(kxz);
5 Compute the filter response matrix by

f(z) = F−1(F(kxz)F(α));
6 for i = 1 : 4 do
7 Capture local response matrix by Eq. (8);
8 Compute the confidence score of response result

by Eq. (11);
9 end

10 Infer the optimal bounding box of s = (t, b, l, r) by
Eq. (19) and its variants;
/* Model Updating */

11 Extract the HOG feature x̂ of the new predicted
window;

12 Retrain the filter template by Eq. (3) using the new
feature x̂;

13 Update the filter template parameter by Eq. (21);
14 Update the feature representation of the target by

Eq. (22);

extra filters like part-based tracker. As in Algorithm 1, the
whole process can be divided into 4 parts, including training,
testing, inference and model updating. Approximately, in the
phase of training and testing, the complexity of training should
be the same as the original KCF [5]. In the inference phase,
when calculating the exact coordinates of the target based on
weighted Bayesian inference, our method brings in an extra
cost of O(s2), where s is the side length of the local response
matrix. Compared to the overall costs of training and testing,
this extra cost is rather small and can be negligible. In the
model updating phase, though our strategy is slightly different
from KCF [5], calculating an extra weight parameter w as
Eq. (20) specified has a cost of O(1). Therefore, QKCF
is equivalent to KCF [5] in terms of the complexity. This
is confirmed by the results reported in Table. IV, where the
obtained FPSs (frames per second) of two algorithms are 168
and 195, respectively.

VI. EXPERIMENTS

To validate the effectiveness of the proposed QKCF method
for visual tracking, we carry out extensive experiments in both
scalable and unscalable situations with comparisons to state-
of-the-art methods.

TABLE I
THE AVERAGE TRACKING PERFORMANCE COMPARISON OF THE PROPOSED
METHOD WITH STATE-OF-THE-ART METHODS ON THE OTB-100 DATASET

MEASURED BY CLE AND F/S.

OTB-100 QKCF KCF [5] DSST [18] LCT [17]
CLE 40.6 40.4 40.9 38.2

f/s 165.5 198 29.9 17.6

Fig. 5. Precision and success plots over the 100 video sequences in the
OTB-100 dataset.

A. Datasets

For evaluation, we employ 100 video sequences in OTB-
100, a large object tracking benchmark dataset [6], covering
all difficult situations, such as illumination variation, scale
variation, occlusion, background clutter and motion blur. To
better compare the performance on scalable tracking, we select
16 sequences from OTB-100, where severe scale variations
arise.

B. Experimental Settings

The proposed QKCF algorithm is implemented in Matlab
and evaluated on a desktop with an Intel (R) Core (TM) i5-
3470 3.20 GHz CPU and 8 GB RAM.

Evaluation Metric. The tracking performance is typically
evaluated on the localization precision and bounding box over-
lap rate. We use centre location error (CLE) and precision plot
to measure the localization precision. CLE is computed as the
average Euclidean distance between the ground-truth and the
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Fig. 6. Performance of different learning rate µ on OTB-100.

estimated centre location of the target object, while the average
distance precision is plotted over a range of thresholds in the
precision plot. Following the PASCAL evaluation criteria [43],
success plot is used to measure bounding box overlap rate.
Finally, we provide the visualized qualitative analysis of our
approach with comparison to existing tracking methods.

Baseline Methods. On the overall tracking in OTB-100,
we tested 5 state-of-the-art trackers. They are KCF [5],
SWCF [45], DSST [18], fDSST [44] and LCT [17], where the
last three ones are scalable trackers. On the scalable dataset,
we use 4 trackers of them as baseline which includes KCF [5],
DSST [18], fDSST [44], LCT [17].

Implementation Details. Empirically, β in Eq. (20) is set
to 1, while the learning rate µ in Eq. (21) is set to 0.03.
As in [18], we use densely sampled HOG [46] for image
representation. Using a cell size of 4× 4, we can extract the
features with length 992, which are always multiplied by a
Hann window [7].

C. On the Overall Tracking in OTB-100

The average performance on CLE and the computational
efficiency for the 100 video sequences tested on the OTB-100
dataset is shown in Table I, and its corresponding precision
and success plot are shown in Figure 5. From Table I, we
can find that the six trackers perform competitively for the
unscalable tracking. It reveals that KCF [5] and its variants
perform stably when tracking objects in most situations.

Seen from Figure 5, we can observe that the performance
of QKCF is similar to that of KCF [5], and is higher
than fDSST [44] and SWCF [45], while DSST [18] and
LCT [17] perform better than the proposed QKCF and un-
scalable KCF [5] on overlap precision in the OTB-100 dataset.
However, the better performance of DSST [18] and LCT [17]
comes with the great sacrifice of computational efficiency,
which is confirmed by the fact that QKCF tracker is 5 to 10
times faster than DSST [18] and LCT [17]. The reason behind
is that only one filtering operation is required for each frame
in QKCF, while one 3D template based filtering and 33 2D
template based filtering are operated on the default 33-layer
spatial pyramid for DSST [18] and LCT [17], respectively.

Additionally, we also conduct sensitivity tests when varying
parameter β in Eq. (20) and the learing rate µ in Eq. (21).
Because the standard deviation of weights is so small in most

Fig. 7. Precision and success plots over the 16 video sequences with
significant scale variations.

cases that the results are not that sensitive to β, which can
be simply set to 1. As for the learning rate µ, the results are
shown in Figure 6.

D. On Scalable Visual Tracking

The average performance of CLE and the computational
efficiency for the 16 video sequences with significant scale
variations is shown in Table IV, while the performance for
each sequence is shown in Table II and Table III, respectively.
The precision and success plot are shown in Figure 7.

We can find from Table II that the proposed QKCF method
achieves the best performance in 3 of the 16 sequences on
CLE, while DSST [18] , LCT [17] and fDSST [44] perform
best on 5, 3, 4 sequences, respectively. Further, the CLE of
QKCF is relatively stable without significant changes. KCF [5]
is the most sensitive to scale variation, which indicates that
KCF cannot well handle the scale variation. The results
demonstrate the effectiveness and robustness of QKCF for
scalable tracking.

From Table IV, it is clear that the tracking speed of QKCF is
5 to 8 times faster than DSST [18] and LCT [17] for scalable
tracking. From Table III, we can find that the proposed QKCF
method achieves the best performance in 4 of the 16 sequences
on computational efficiency, while KCF [5] performs best
on the other 12 sequences. Even on the challenging Car4
sequence with high resolution, QKCF can process 63.8 f/s,
exceeding the real-time requirement, while DSST [18] and
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TABLE II
THE PERFORMANCE COMPARISON OF THE PROPOSED METHOD WITH STATE-OF-THE-ART METHODS ON SCALABLE VISUAL TRACKING MEASURED BY

CLE. THE BEST PERFORMANCES ARE HIGHLIGHTED BY BOLD.

Blur Car Cros Sing Sing Skat Sylve Twin Walk Walk
CLE Body Car1 Car2 Car24 Car4 Scale sing Dog1 er1 er2 ing1 ster Toy ings ing1 ing2

[44] QKCF 15.8 0.951 1.27 1.73 9.9 12.4 1.78 3.69 4.88 9.05 6.06 5.93 7.6 11.2 3.44 2.75
KCF [5] 17.5 42.4 3.97 4.1 9.88 16.1 2.25 4.39 12.8 10.3 7.67 5.1 7.8 6.77 3.97 29

DSST [18] 12.7 1.35 1.25 1.26 1.82 19.1 1.52 3.87 3.66 7.78 8.32 6.06 8.73 3.6 1.63 3.4
LCT [17] 7.86 134 2.65 9.07 6.60 25.1 2.03 3.28 7.23 7.55 6.21 4.82 9.2 11.8 3.04 42.7

fDSST [44] 6.12 1.22 1.41 4.39 1.72 9.91 1.51 2.69 3.69 7.78 7.58 6.56 9.42 12 2.07 12.2

TABLE III
THE EFFICIENCY COMPARISON OF THE PROPOSED METHOD WITH STATE-OF-THE-ART METHODS ON SCALABLE VISUAL TRACKING MEASURED BY F/S.

THE HIGHEST EFFICIENCY IS HIGHLIGHTED BY BOLD.

Blur Car Cros Sing Sing Skat Sylve Twin Walk Walk
f/s Body Car1 Car2 Car24 Car4 Scale sing Dog1 er1 er2 ing1 ster Toy ings ing1 ing2

QKCF 87.1 141 155 290 63.8 264 303 188 118 148 152 157 123 133 217 147
KCF [5] 108 131 198 356 74.7 331 356 203 108 200 158 156 131 233 251 133

DSST [18] 3.75 27.8 29.9 41.4 10.2 46.6 64.3 63.2 4.22 29.8 25.8 30.6 20.9 53.6 42.8 25.0
LCT [17] 12.3 14.8 9.12 29.0 11.5 22.7 35.6 9.54 17.9 28.2 10.8 17.1 13.2 28.0 30.1 21.6

fDSST [44] 15.3 102 113 145 64.6 85.7 129 124 21 10.5 97.7 112 118 75.1 111 86.5

——QKCF ——KCF ——DSST ——LCT

Fig. 8. Tracking results of our QKCF algorithm, KCF [5], DSST [18] and LCT [17] methods on six challenging sequences (from top to bottom are Car1,
Car24, Dog1, Human8, Volkswagen and Walking2, respectively).

LCT [17] can track the object with 30 f/s, which may not be
used for real-time tracking. On the sequences with obvious
shaking (beginning with Blur) and light and shadow changes
(Car1), the tracking speeds of both DSST [18] and LCT [17]
are below 20 f/s, while QKCF can process 120 f/s, which
is robust to shaking and light and shadow changes. Compared
with KCF [5], the efficiency of QKCF is slightly lower, which
is caused by the weighted Bayesian inference in Section IV.

The precision plot shows that the proposed QKCF outper-
forms KCF [5] and LCT [17], demonstrating great stability
and robustness of QKCF for scalable tracking. Viewing the
results when the location error threshold is set to 20 as
previous methods, we can find that the distance precision
achieves 96.7%, while the precisions of KCF [5], DSST [18],
LCT [17] and fDSST [44] are 90.4%, 97.8%, 88.1% and
96.7%, respectively. The precision improvement of QKCF over
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TABLE IV
THE AVERAGE EFFICIENCY COMPARISON OF THE PROPOSED METHOD

WITH STATE-OF-THE-ART METHODS ON THE 16 SCALABLE SEQUENCES
MEASURED BY F/S.

[5] [18] [17] [44]
Scalable QKCF KCF DSST LCT fDSST

CLE 6.2 11.5 5.4 17.7 5.6
f/s 168 195 32.4 19.5 88

KCF is 6.92%. Therefore, we can conclude that the proposed
QKCF significantly outperforms KCF on distance precision.

It is clear from the success plot that the proposed QKCF
outperforms KCF [5] and LCT [17], but performs very slightly
worse than DSST [18] and fDSST [44]. When setting the
overlap threshold to 0.5, the overlap precision of QKCF is
64.8%, while the precisions of unscalable KCF [5], DSST [18],
LCT [17] and fDSST [44] are 56.3%, 87.2%, 57.8% and
87.1%, respectively. The performance improvement of QKCF
over KCF is 15.1%, from which we can again clearly view
the superiority of QKCF over KCF.

To better show the tracking results with scale variations,
we compare our algorithm with the other three state-of-the-art
trackers (KCF [5], scalable DSST [18] and LCT [17]) on 6
challenging sequences, as shown in Figure 8.

From the above analysis, we can conclude that by sacrificing
little computational efficiency, the proposed QKCF can signifi-
cantly improve the distance precision and overlap precision for
scalable tracking in a single frame single filter framework. The
superior tracking precision and high computational efficiency
make QKCF more practical than DSST [18] and LCT [17] for
real-time tracking with significant scale variations.

E. Performance comparison of peak numbers

In principle, 2-peaks filter can already detect the location
as well as the scale of object simultaneously. In this part of
experiment, we intend to validate the effectiveness of 4-peaks
strategy, compared to other numbers of peak. Therefore, apart
from our QKCF (4-peaks filter) and the KCF (1-peak filter),
we also include in the experiment two 2-peaks filters, one 3-
peaks filter and one 5-peaks filter. Specifically, the first 2-peaks
filter has positive samples in left-top and right-bottom corners
(LT-RB for short) while the second 2-peaks filter has positive
samples in LB-RT corners. Similarly, the 3-peaks filter has
positive samples at LT-LB-RB corners, and the 5-peaks filter
is a quadrangle filter plus a single peak in the center.

As for the estimation of the target window, we use a similar
weighted Bayesian inference strategy. Specially, for 5-peaks
filter we first use the same method to calculate the target
window as quadrangle filter does, then adjust the location of
the whole target window according to the additional center
peak. Figure 9 depicts the obtained result.

Seen from the result, it is clear that the 4-peaks filter
outperforms all the other peaks strategies. To be precise, two
2-peaks filters are far behind the 4-peaks filter; 5-peaks filter
shows better precision than 2-peaks and 3-peaks strategies
but is still slightly lower than 4-peaks filter in terms of the

Fig. 9. Precision and success plots over different numbers of peak.

performance. In general, more peaks lead to higher accuracy
and better stability, because more information from various
peaks is involved in estimating the bounding box of object.
That interprets why 4-peaks filter looks much better than 2-
peaks and 3-peaks filters. However, when we add an additional
peak to the center, the precision gets lower on the contrary,
which means the fifth peak is redundant and may provide
useless information. The result turns out that choice of 4 peaks
is a good trade-off between algorithm efficiency and accuracy.

VII. CONCLUSION AND FUTURE WORK

In this paper, we studied how to utilize the Gaussian training
label matrix in KCF to solve the scale variation problem
in single filter tracking. By utilizing the circulant matrix
structure of the densely sampled candidate bounding box
in KCF, we proposed a quadrangle Gaussian training label
matrix to incorporate the location and size estimation problem
into one filtering operation. By sacrificing little computational
efficiency, the proposed QKCF can handle the scale varia-
tion in single filter tracking. A weighted Bayesian inference
framework is then utilized to deduce the location and size
of the bounding box. The experimental results demonstrate
the effectiveness, efficiency and robustness of the proposed
QKCF for both scalable and unscalable tracking. For further
studies, we will try to replace the HOG feature with CNN
representation [47]–[54] to fully explore the visual features.
How to extend the proposed quadrangle Gaussian training
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label matrix to other applications, such as image retrieval [55]–
[57], human action recognition [58], [59], and visual saliency
detection [60], [61], is also worth studying.
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