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Abstract

Emotion recognition methodologies from physio-
logical signals are increasingly becoming person-
alized, due to the subjective responses of differ-
ent subjects to physical stimuli. Existing works
mainly focused on modelling the involved physi-
ological corpus of each subject, without consider-
ing the psychological factors. The latent correlation
among different subjects has also been rarely ex-
amined. We propose to investigate the influence of
personality on emotional behavior in a hypergraph
learning framework. Assuming that each vertex is
a compound tuple (subject, stimuli), multi-modal
hypergraphs can be constructed based on the per-
sonality correlation among different subjects and
on the physiological correlation among correspond-
ing stimuli. To reveal the different importance
of vertices, hyperedges, and modalities, we assign
each of them with weights. The emotion relevance
learned on the vertex-weighted multi-modal multi-
task hypergraphs is employed for emotion recog-
nition. We carry out extensive experiments on the
ASCERTAIN dataset and the results demonstrate
the superiority of the proposed method.

1 Introduction
Emotion recognition (ER) plays an important role in both in-
terpersonal and human-computer interaction. Though being
studied for years, ER still remains an open problem, which
has to face the fact that human emotions are not expressed
exclusively but through multiple channels, such as speech,
gesture, facial expression and physiological signals [D’mello
and Kory, 2015]. Unlike other signals that can be adopted vol-
untarily or involuntarily, physiological signals are controlled
by the sympathetic nervous systems, which are generally in-
dependent of humans’ will and cannot be easily suppressed or
masked. Therefore, physiological signals may provide more
reliable information for emotions compared to visual cues
and audio cues [Shu and Wang, 2017]. Meanwhile, human
emotions are a highly subjective phenomenon, as shown in
Figure 1, which can be influenced by a number of contextual
and psychological factors, such as interest and personality.
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Figure 1: Left: the valence and arousal standard deviations of the
58 subjects on the 36 video clips. Right: the video distribution with
different annotated emotion numbers (7-scale) in the ASCERTAIN
dataset, where “# Emotions” and “# Videos” represent the numbers
of annotated emotions and videos, respectively. These two figures
clearly show the emotion’s subjectiveness in this context: the left
figure shows that the valence and arousal STD of most videos are
larger than 1, while the right one indicates that all the videos are
labeled with at least 4 emotions by different subjects.

In this paper, we focus on personalized emotion recogni-
tion (PER) from physiological signals, which enables wide
user-centric applications, ranging from character analysis to
personalized recommender systems. The emotion we aim to
recognize here is perceived emotion. For the difference be-
tween expressed, perceived and induced emotions, please re-
fer to [Juslin and Laukka, 2004]. However, PER is still a
non-trivial problem because of the following challenges:

Multi-modal data. Emotions can be expressed through
physiological signals from different modalities [D’mello and
Kory, 2015], such as Electroencephalogram (EEG), Electro-
cardiogram (ECG), Galvanic Skin Response (GSR), and tem-
perature, etc. Different subjects may have different physio-
logical responses of the same emotion on the same modal-
ity signal. Further, the importance of various physiological
signals to emotions differs from each other. Combining the
complementary multi-modal data would obtain better results.

Multi-factor influence. Besides the physical stimuli, there
are many other factors that may influence the emotion percep-
tions. For example, personal interest and personality may di-
rectly influence the emotion perceptions [Kehoe et al., 2012];
viewers’ emotions are often influenced by their recent past
emotions [Frijda, 1986] and by their friends on social net-
works [Yang et al., 2014].

Incomplete data. Due to the influence of many normal fac-
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tors in data collection, such as electrode contact noise, and
sensor device failure [Shu and Wang, 2017], physiological
signals may be sometimes corrupted, which results in a com-
mon problem - data missing, i.e. physiological data from
some modalities are not available [Wagner et al., 2011].

Existing methods on PER mainly worked on the first chal-
lenge by designing effective fusion strategies, based on the
assumption that the signals from all modalities are always
available, which is often unrealistic in practice. In this pa-
per, we make the first attempt at estimating the influence of
one psychological factor, i.e. personality, on PER from multi-
modal physiological signals, trying to solve the incomplete
data issue simultaneously.

Specifically, we propose to employ the hypergraph struc-
ture to formulate the relationship among physiological sig-
nals and personality. Recently, hypergraph learning [Zhou
et al., 2006] has shown superior performances in various
vision and multimedia tasks, such as music recommenda-
tion [Bu et al., 2010], object retrieval [Gao et al., 2012;
Su et al., 2017], social event detection [Zhao et al., 2017b]
and clustering [Purkait et al., 2017]. However, tradition-
al hypergraph structure treats different vertices, hyperedges,
and modalities equally, which is obviously unreasonable. To
this end, we propose a Vertex-weighted Multi-modal Multi-
task Hypergraph Learning (VM2HL) for PER, which intro-
duces an updated hypergraph structure considering the vertex
weights, hyperedge weights, and modality weights. In our
method, each vertex is a compound tuple (subject, stimuli).
The personality correlation among different subjects and the
physiological correlation among corresponding stimuli are
formulated in a hypergraph structure. The vertex weights
and hypergraph weights are used to define the influence of
different samples and modalities on the learning process, re-
spectively, while the hyperedge weights are used to generate
the optimal representation. The semi-supervised learning is
conducted and the estimated factors, referred as emotion rel-
evance, are used for emotion recognition. The emotions of
multiple subjects can be recognized simultaneously. We eval-
uate the proposed method on the ASCERTAIN dataset [Sub-
ramanian et al., 2016].

The contributions of this paper are three-fold:
1. We propose to computationally study the influence of per-

sonality on personalized emotion recognition from physi-
ological signals.

2. We present a novel hypergraph learning algorithm, i.e.
VM2HL, to jointly model the physiological signals and
personality by considering the weighted importance of
vertices, hyperedges, and modalities.

3. Extensive experiments are conducted on the ASCERTAIN
dataset with the conclusion that the proposed VM2HL sig-
nificantly outperforms the state-of-the-art and can easily
handle the challenge of data incompleteness.

2 Related Work
Emotion recognition from physiological signals. Due to
the complex expression nature of human emotions, many
ER methods employ a multimodal framework by consider-
ing multiple physiological signals [D’mello and Kory, 2015].

Lisetti and Nasoz [2004] employed GSR, heart rate, and tem-
perature signals to recognize human emotions elicited by
movie clips and mathematics questions. Muscle movements,
heart rate, skin conductivity, and respiration changes are used
to recognize emotions induced by music clips [Kim and An-
dré, 2008]. Koelstra et al. [2012] analyzed the mapping be-
tween blood volume pressure, respiration rate, skin temper-
ature, Electrooculogram (EOG) and emotions induced by 40
music videos. Soleymani et al. [2012] constructed a mul-
timodal dataset with synchronized face video, speech, eye-
gaze and physiological recordings, including ECG, GSR, res-
piration amplitude, and skin temperature. User responses are
correlated with eye movement patterns to analyze the impact
of emotions on visual attention and memory [Subramanian
et al., 2014]. The mappings from Magnetoencephalogram
(MEG), Electromyogram (EMG), EOG and ECG to emo-
tions are studied for both music and movie clips [Abadi et
al., 2015b]. Subramanian et al. [2016] investigated binary
emotion recognition from physiological features, including
GSR, EEG, ECG and facial landmark trajectories (EMO), on
their collected ASCERTAIN dataset. Besides the psycholog-
ical signals, a playgame context is also considered to esti-
mate the player experience or emotion [Tognetti et al., 2010;
Martinez et al., 2013; Camilleri et al., 2017]. However, all
these methods do not consider any psychological factor be-
sides physiological signals and contextual interaction. In this
paper, we employ GSR, EEG, ECG, and EMO for emotion
recognition by considering the influence of personality.

Among the above ER approaches, both categorical emo-
tion states (CES) [Lisetti and Nasoz, 2004; Soleymani et
al., 2012] and dimensional emotion space (DES) [Koelstra
et al., 2012; Subramanian et al., 2014; Abadi et al., 2015b;
Subramanian et al., 2016] are used to represent emotions.
Similar to [Subramanian et al., 2016], we represent emotions
using the discretized VA model.

One close work is personalized emotion prediction of so-
cial images by considering visual content, social context,
temporal evolution, and location [Zhao et al., 2016]. Dif-
ferently, our work aims to recognize personalized emotions
from physiological signals by modelling personality.

Personality and emotion relationship. Human personal-
ity can be described by the big-five or five-factor model in
terms of five dimensions - Extraversion, Neuroticism, Agree-
ableness, Conscientiousness and Openness (ENACO) [Costa
and MacCrae, 1992]. A comprehensive survey of personal-
ity computing is presented in [Vinciarelli and Mohammadi,
2014]. As for the personality and emotion relationship, Win-
ter and Kuiper [1997] extensively examined it in social psy-
chology. Van Lankveld et al. [2011] proposed to estimate per-
sonality via a player’s game behaviors in a video game. Abadi
et al. [2015a] and Subramanian et al. [2016] recognized per-
sonality and emotion separately using physiological signals
without considering their intrinsic correlation and influence.
Though personality is believed to affect emotions [Kehoe et
al., 2012], personality and emotion relationship from physio-
logical signals has not yet been studied comprehensively in a
computational setting, due to various problems such as inva-
siveness of sensing equipment, subject preparation time and
the paucity of reliable annotators [Subramanian et al., 2016].
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Figure 2: The framework of the proposed method for personality-aware personalized emotion recognition from physiological signals by
jointly learning the emotion relevance, hyperedge weight, vertex weight, and modality weight. Each circle represents a compound vertex
(subject, stimuli). The filled ones indicate training samples, while the empty ones are testing samples.

Besides physiological signals, we investigate the influence of
personality on emotions computationally.

Multi-modal learning. We might have multi-modal da-
ta to describe a target [Atrey et al., 2010], either from d-
ifferent sources [D’mello and Kory, 2015] or with multiple
features (also called multi-view learning) [Gao et al., 2012;
Zhao et al., 2017c; 2017a]. Typically different modal data
can represent different aspects of the target. Jointly com-
bining them together to explore the complementation may
promisingly improve the performance [Atrey et al., 2010;
D’mello and Kory, 2015]. Besides the traditional early fu-
sion and late fusion [Wang et al., 2009], there are many oth-
er multi-modal fusion strategies, such as hypergraph learn-
ing [Zhou et al., 2006], multigraph learning [Wang et al.,
2009] and multimodal deep learning [Ngiam et al., 2011].
By jointly exploring the different weights of vertices, hyper-
edges, and modalities, we present VM2HL to make full use
of personality and physiological signals for PER.

3 The Proposed Method
Our goal is to recognize personalized emotions from physio-
logical signals considering personality and dealing with miss-
ing data. We employ a hypergraph structure to formulate the
relationship among physiological signals and personality, tak-
ing advantage of its high-order correlation modelling. Con-
sidering the fact that the importance of different vertices, hy-
peredges and modalities in a hypergraph is different, we pro-
pose a novel method, named Vertex-weighted Multi-modal
Multi-task Hypergraph Learning (VM2HL), for PER. The
framework is shown in Figure 2. First, given the subjects
and stimuli that are used to evoke emotions in subjects, we
generate the compound tuple vertex (subject, stimuli). Sec-
ond, we construct the multi-modal hyperedges to formulate
the personality correlation among different subjects and the
physiological correlation among corresponding stimuli. Fi-
nally, we obtain the PER results after the joint learning of the
vertex-weighted multi-modal multi-task hypergraphs.

3.1 Hypergraph Construction
As stated above, the vertex in the proposed method is a com-
pound one, including the subject and involved stimuli. We

can construct different hyperedges based on the features of
each element of the vertex. Similar to [Costa and MacCrae,
1992], personality is labelled using the big five model in the
ASCERTAIN dataset [Subramanian et al., 2016], i.e. person-
ality is represented by a 5-dimension vector. We employ Co-
sine function to measure the pairwise personality similarity
between two users ui and uj as follows

sPER (ui, uj) =
< pi, pj >

|pi| · |pj |
, (1)

where pi is the personality vector of user ui.
A specific emotion perceived in humans usually leads

to corresponding changes in different physiological signals
[D’mello and Kory, 2015]. As in [Subramanian et al., 2016],
we extract different features from 4 kinds of physiological
signals: ECG, GSR, EEG, and EMO, over the final 50 sec-
onds of stimulus presentation, owing to (1) the clips are more
emotional towards the end, and (2) some employed features
are nonlinear functions of the input signal length. The di-
mensions are 32, 31, 88 and 72, respectively. Please refer to
the Table 3 in [Subramanian et al., 2016] for feature extrac-
tion details. Similar to Eq. (1), Cosine function is used to
measure the pairwise similarity of each modality feature ex-
tracted from physiological signals. Note that other similarity
or distance measures can also be used here.

Given the pairwise similarities above, we can formulate the
relationship among different samples in a hypergraph struc-
ture. Each time one vertex is selected as the centroid, and one
hyperedge is constructed to connect the centroid and its K n-
earest neighbors in the available feature space. Please note
that we construct personality hyperedges from both inter-
subject and intra-subject perspectives. All the vertices from
the same subject are connected by one hyperedge. Further, for
each subject, we select the nearest K subjects based on per-
sonality similarity and connect all the vertices of these sub-
jects by constructing another hyperedge.

Suppose the constructed hypergraphs are Gm =
(Vm, Em,Wm), where Vm is the vertex set, Em is the hy-
peredge set, and Wm is the diagonal matrix of hyperedge
weight for the mth hypergraph (m = 1, 2, · · · ,M , M = 5
in this paper, including 4 hypergraphs based on physiologi-
cal signals and 1 hypergraph based on personality). We can
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easily tackle the missing data challenge by removing the hy-
peredges of corresponding vertices. For example, if the EEG
is missing for one subject, we just simply do not construct
hyperedges based on EEG for this subject. This still works
with the emotion relevance learned from ECG, GSR, EMO,
and personality.

Given the constructed hypergraph Gm, we can obtain the
incidence matrix Hm by computing each entry as,

Hm(v, e) =

{
1, if v ∈ e,
0, if v 6∈ e.

(2)

Different from traditional hypergraph learning method, which
simply regards all the vertices equally, we assign different
weights to the vertices to measure their importance and con-
tribution to the learning process. Suppose Um is the diag-
onal matrix of vertex weight. The vertex degree of vertex
v ∈ Vm and the edge degree of hyperedge e ∈ Em are
defined as dm(v) =

∑
e∈Em

Wm(e)Hm(v, e) and δ(e) =∑
v∈Vm

Um(v)Hm(v, e). According to dm(v) and δm(e),
we define two diagonal matrices Dv

m and De
m as Dv

m(i, i) =
dm(vi) and De

m(i, i) = δm(ei).

3.2 VM2HL
Given N subjects u1, . . . , uN , and the involved stim-
uli sij (j = 1, · · · , ni) for ui, our objective is
to jointly explore the correlations among all involved
physiological signals and the personality relations a-
mong different subjects. Suppose the compound ver-
tices and corresponding labels of the cth emotion cate-
gory are {(u1, s1j)}n1

j=1, · · · , {(uN , sNj)}nN
j=1 and y1c =

[yc11, · · · , yc1n1
]T, . . . ,yNc = [ycN1, · · · , ycNnN

]T (c =
1, · · · , ne), and the to-be-estimated emotion relevance val-
ues of all stimuli related to the specified users of the cth
emotion category are r1c = [rc11, · · · , rc1n1

]T, . . . , rNc =

[rcN1, · · · , rcNnN
]T. We denote yc and rc as

yc = [yT
1c, · · · ,yT

Nc]
T, rc = [rT1c, · · · , rTNc]T. (3)

Let Y = [y1, · · · ,yne
],R = [r1, · · · , rne

].
The proposed VM2HL is conducted as a semi-supervised

learning to minimize the empirical loss and the regularizer on
the hypergraph structure as well as on the weights of vertices,
hyperedges, and modalities simultaneously by

arg min
R,W,U,α

{Γ(R) + λΨ(R,W,U,α) + ηR(W,U,α)}, (4)

where λ and µ are two trade-off parameters, W =
{W1, · · · ,WM}, U = {U1, · · · ,UM} and the three com-
ponents are defined as follows. Γ is the empirical loss

Γ(R) =

ne∑
c=1

||rc − yc||2. (5)

Ψ is the regularizer on the hypergraph structure

Ψ(R,W,U,α) =
1

2

ne∑
c=1

M∑
m=1

αm
∑
e∈Em

∑
µ,ν∈Vm

Wm(e)Um(µ)Hm(µ, e)Um(ν)Hm(ν, e)

δ(e)

(
rc(µ)√
Dv
m(µ, µ)

− rc(ν)√
Dv
m(ν, ν)

)2

=

ne∑
c=1

rTc

M∑
m=1

αm(Um −Θm)rc,

(6)

where α represents the weights of different hypergraphs to
evaluate the importance of different modality features, which
satisfies

∑M
m=1 αm = 1, and

Θm = (Dv
m)−

1
2UmHmWm(De

m)−1HT
mUm(Dv

m)−
1
2 . (7)

∆ =
∑M

m=1 αm(Um − Θm) can be viewed as a vertex-
weighted fused hypergraph Laplacian.
R is the regularizer on the weights of modalities, vertices

and hyperedges and one simple version is adopted by

R(W,U,α) =

M∑
m=1

(tr(WT
mWm) + tr(UT

mUm) + tr(αTα)),

(8)
where tr() is the trace of a matrix.

Solution. To solve the optimization task of Eq. (4), we
employ an alternative strategy. First, we fix W,U,α, and
optimize R. The objective function of Eq. (4) turns to

arg min
R
{
ne∑
c=1

||R(:, c)−Y(:, c)||2 + λRT∆R}, (9)

where λ > 0. According to [Zhou et al., 2006], R can be
solved by

R =
(
I +

1

λ
∆
)−1

Y. (10)

Second, we fix R,U,α, and optimize W. Since each Wm

is independent from each other, the objective function can be
rewritten as

arg min
Wm

{λ
ne∑
c=1

yT
c αm(Um −Θm)yc + ηtr(WT

mWm)}, (11)

where Dv
m(v, v) =

∑
e∈Em

Wm(e)Hm(v, e), η > 0, and
Wm(e) ≥ 0. Replacing Θm with Eq. (7), the above opti-
mization task is convex on Wm and can be easily solved via
off-the-shelf quadratic programming methods.

Third, we fix R,W,α, and optimize U. Since each Um is
independent from each other, the optimization of U is similar
to the optimization of W.

Finally, we fix R,W,U, and optimize α. The objective
function of Eq. (4) reduces to

arg min
α
{λ

ne∑
c=1

yT
c αm(Um −Θm)yc + ηM tr(αTα)}, (12)

where
∑M

m=1 αm = 1 and η > 0. Similar to [Gao et al.,
2012], we employ the Lagrange multiplier to solve the opti-
mization problem and can derive

αm =
1

M
+

ne∑
c=1

yT
c

M∑
m=1

(Um −Θm)yc

2ηM2
−

ne∑
c=1

yT
c (Um −Θm)yc

2ηM
.

(13)
The above optimization procedure is repeated until conver-

gence. Since each of the steps above decreases the objective
function which has a lower bound 0, the convergence of the
alternating optimization can be guaranteed.
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SVM L SVM R NB HL HL E VM2HL
V 58.89 56.60 60.52 63.44 65.10 74.34
A 64.68 62.18 66.80 69.02 70.92 79.46

Table 1: Performance comparison between the proposed method and
the state-of-the-art approaches in terms of recognition accuracy (%).

4 Experiment Setup
4.1 Dataset
To the best of our knowledge, ASCERTAIN [Subramanian et
al., 2016] is the only published and released dataset to date
that connects personality and emotional states via physiolog-
ical responses. 58 university students (21 female, mean age =
30) were invited to watch 36 movie clips from [Abadi et al.,
2015b] , which are between 51-127s long, to evoke emotions.
All the subjects were fluent in English and were habitual Hol-
lywood movie watchers. The movie clips are shown to be
uniformly distributed (9 clips per quadrant) over the VA s-
pace. During watching the clips, several sensors were used to
record the physiological signals. After watching each clip, the
participators were requested to label the VA ratings reflecting
their affective impression with a 7-point scale, i.e. -3 (very
negative) to 3 (very positive) scale for V, and 0 (very bor-
ing) to 6 (very exciting) scale for A. Personality measures for
the big-five dimensions were also compiled using a big-five
marker scale questionnaire [Perugini and Di Blas, 2002]. The
standard deviations of ENACO are 1.0783, 0.7653, 0.7751,
0.9176, and 0.6479, respectively. Please note that the dataset
is incomplete with missing data. For example, the 13th, 15th,
27th, and 34th GSR signals of the 3rd student are missing.

4.2 Baselines
To compare with the state-of-the-art for PER, we select the
following methods as baselines: (1) Support Vector Machine
with linear kernel (SVM L) [Subramanian et al., 2016] and
with radial basis function kernel (SVM R), (2) Naive Bayes
(NB) [Subramanian et al., 2016], (3) hypergraph learning (H-
L) [Zhou et al., 2006], and (4) hypergraph learning with hy-
peredge weight update (HL E) [Gao et al., 2013]. Late fusion
for SVM and NB is implemented as in [Subramanian et al.,
2016] to deal with multi-modal physiological signals, which
are connected in one hypergraph in HL and HL E.

4.3 Implementation Details
Similar to [Subramanian et al., 2016], we dichotomize the va-
lence and arousal affective ratings based on the median values
for binary emotion recognition, since the number of movie
clips each subject watched and labelled is relatively small for
fine-grained emotion recognition. We employ the recognition
accuracy (Acc) [Subramanian et al., 2016] as the evaluation
metric. 0 ≤ Acc ≤ 1 and a larger Acc value indicates bet-
ter performance. 50% of stimuli and corresponding physi-
ological signals and emotions of each subject are randomly
selected as the training set and the rest constitute the testing
set. The parameters of the baselines are selected by 10-fold
cross validation on the training set. For example, the gam-
ma and C parameters of SVM are selected via grid search,

SVM L SVM R NB HL HL E
V 3.24 4.83 2.65 3.47 4.16
A 5.31 6.46 4.15 4.13 6.25

Table 2: Mann-Whitney-Wilcoxon test of the proposed VM2HL
with the baselines measured by p-value (×10−3).

similar to [Subramanian et al., 2016]. Unless otherwise spec-
ified, parameter K in hyperedge generation is set to 10, and
regularizer parameters λ = 0.1 and η = 100 are adopted in
experiment. Empirical analysis on parameter sensitivity is al-
so conducted, which demonstrates that the proposed VM2HL
has a superior and stable performance with a wide range of
parameter values. For a fair comparison, we carefully tune
the parameters of the baselines and report the best results.
Further, we perform 10 runs and report the average results to
remove the influence of any randomness.

5 Results and Analysis
5.1 Comparison with the State-of-the-art
First, we compare the performance of the proposed method
with the state-of-the-art approaches for personalized emotion
recognition. The result measured by recognition accuracy is
shown in Table 1, where the best methods are highlighted
in bold. The Mann-Whitney-Wilcoxon test results are given
in Table 2. From the results, we observe that: (1) the pro-
posed method significantly outperforms the baselines on both
valence and arousal under 95% confidence interval; (2) the
hypergraph learning families achieve better results than tra-
ditional SVM and NB classifiers; (3) NB performs slightly
better than SVM; though simple, the linear kernel of SVM is
superior to the RBF kernel; (4) all the methods achieve above-
chance (50%) emotion recognition performance with physio-
logical features; (5) the performance on arousal is better than
valence, which is probably because that the standard devia-
tion of arousal is larger in most cases, as shown in Figure 1,
which may lead to larger interclass difference. Specifical-
ly, the performance gains of VM2HL over SVM L, SVM R,
NB, HL and HL E are 26.25%, 31.35%, 22.84%, 17.19%,
14.20% on valence, and 22.86%, 27.78%, 18.95%, 15.12%,
12.03% on arousal, respectively.

The better performance of the proposed method can be at-
tributed to the following reasons. 1. The hypergraph struc-
ture is able to explore the complex high-order relationship
among multi-modal features, which leads to the superior per-
formance of hypergraph learning families over other models.
2. We take personality into account, which connects differ-
ent subjects with similar personality values. The recognition
process turns to a multi-task learning problem for multiple
subjects. The latent correlations among different subjects are
effectively explored, which can be deemed as a way to enlarge
the training set for each subject. 3. The different importance
of vertices, hyperedges, and modalities are jointly learned,
which can accordingly generate a better correlation.

5.2 On Different Physiological Signals
Second, we compare the performance of different uni-modal
physiological signals. The results on valence and arousal are
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Figure 3: Performance comparison between different single physio-
logical signal and the fusion strategy of different methods in terms
of recognition accuracy (%).

reported in Figure 3(a) and Figure 3(b), respectively. Com-
paring the results, we can observe that: (1) fusing multi-
modal physiological signals can obtain better recognition per-
formance than most uni-modal ones for all the methods; (2)
generally, GSR features produce the best performance for
both valence and arousal, while ECG and EEG features are
less discriminative; (3) for most physiological signals, the
performances of different methods follow the similar order
to the above Subsection.

5.3 On Personality
Third, we evaluate the influence of personality on the recog-
nition performance by removing the personality hyperedge in
VM2HL. The comparison between with and without person-
ality in the proposed method is shown in Table 3. It is clear
that after removing personality, the performance decreases
significantly. Comparing with VM2HL-P, VM2HL achieves
8.48% and 9.54% performance gains on valence and arousal,
respectively. This is reasonable because personality is the on-
ly element that connects different subjects and corresponding
physiological signals. By changing from single-task learning
for each subject to multi-task learning for multiple subject-
s, the latent information is extensively explored, which has a
similar impact as increasing the number of training samples
and thus improves the recognition performance.

5.4 On Vertex, Hyperedge, and Modality Weights
Fourth, we investigate the influence of optimal vertex, hyper-
edge, and modality weights by removing the optimization of
just one kind of weight. The results are shown in Table 4. We
can see that all the three kinds of weights indeed contribute
to the performance of the proposed method. The performance
gains of VM2HL over VM2HL-V, VM2HL-E, and VM2HL-
M are 3.88%, 1.43%, 1.95% on valence, and 3.98%, 1.91%,
2.38% on arousal, respectively. Please note that VM2HL-M

VM2HL-P VM2HL
Valence 68.53 74.34
Arousal 72.54 79.46

Table 3: Personalized emotion recognition results with and without
personality in terms of recognition accuracy (%), where “-P” indi-
cates without personality.

VM2HL-V VM2HL-E VM2HL-M VM2HL
Valence 71.56 73.29 72.92 74.34
Arousal 76.42 77.97 77.61 79.46

Table 4: Personalized emotion recognition results with and with-
out optimizing vertex, hyperedge, and modality weights in terms
of recognition accuracy (%), where “-V”, “-E”, and “-M” indicate
without optimizing vertex weights, hyperedge weights, and modali-
ty weights, respectively.

is similar to the multi-task version of the hypergraph learn-
ing method with hyperedge and vertex weights update [Su et
al., 2017]. Generally, vertex weights give more contribution
to the overall performance, following by modality weights
and hyperedge weights. We can conclude that jointly opti-
mizing the weights of vertices, hyperedges, and modalities
would generate more discriminative hypergraph structure and
produce better emotion recognition performance.

5.5 On Hyperedge Generation
Fifth, we evaluate the influence of the selected neighbor num-
berK in hyperedge generation on the performance of the pro-
posed method. The result is shown in Figure 4(a), with K
varying from 2 to 50. It is clear that the performance is rela-
tively steady with a wide range. When K becomes too small
or too large, the performance turns to be slightly worse. When
K is too small, such asK = 2, too few vertices are connected
in each hyperedge, which cannot fully explore the high-order
relationship among different vertices. However, when K is
too large, such as K = 50, too many vertices are connected
in each hyperedge, which could also limit the discriminative
ability of the hypergraph structure. We can conclude that both
too small and too largeK values will degenerate the represen-
tation ability and thus degrade the performance.

5.6 On Parameter Sensitivity
There are two regularization parameters in the proposed
method that control the relative importance of different reg-
ularizers in the objective function, i.e. λ on the regularizer
of the hypergraph structure and η on the weights of vertices,
hyperedges, and modalities. To validate the influences of λ
and η, we first fix η as 100 and vary λ, and then fix λ as 0.1
and vary η, with results shown in Figure 4(b) and Figure 4(c),
respectively. From these results, we can observe that: (1) the
proposed method can achieve steady performances when λ
and η vary in a large range; (2) with the increase of λ, the
performance tends to be stable when λ ≤ 10, and then turns
worse; (3) with the increase of η, the performance tends to be
better and becomes stable when η ≥ 100. Too large or too
small values would either dominate the objective function or
have quite little influence on the results. We can conclude that
selecting proper λ and η can indeed improve the performance
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Figure 4: The influence of (a) hyperedge generation parameter K, (b) regularization parameter λ, and (c) regularization parameter η on the
emotion recognition performance of the proposed method in terms of recognition accuracy (%).

of emotion recognition, which indicates the significance of
the joint exploration of different regularizers.

5.7 Limitation Discussion
The tested dataset is relatively small. As the only avail-
able dataset that connects personality and emotional states
via physiological responses, ASCERTAIN [Subramanian et
al., 2016] only includes 58 subjects and 36 movie clips. Con-
structing a large-scale dataset with personality and physiolog-
ical signals, and testing the proposed method on large-scale
data remain our future work.

The computational efficiency of hypergraph learning
would greatly increase when dealing with large-scale data.
To reduce the computational cost, there are two possible solu-
tions: data downsampling [Yao et al., 2016] and hierarchical
hypergraph learning strategy [Wen et al., 2014].

Dichotomizing ordinal VA values turns out to yield split
criterion biases. The reason behind is similar to [Subramani-
an et al., 2016], i.e. the number of movie clips each subject
watched and labelled is relatively small. Our method can be
easily extended to fine-grained emotion classification if large-
scale data is available. Like other hypergraph learning meth-
ods, the proposed method can only be used for emotion clas-
sification, without supporting emotion regression. As shown
in [Yannakakis et al., 2017], the ordinal labels are a more
suitable way to represent emotions. Currently, the proposed
method cannot tackle the ordinal emotions.

6 Conclusion
In this paper, we proposed to recognize personalized emo-
tions by jointly modelling personality and physiological sig-
nals, which is, to the best of our knowledge, the first com-
prehensive computational study about the influence of per-
sonality on emotion. We presented Vertex-weighted Multi-
modal Multi-task Hypergraph Learning as the learning mod-
el, where (subject, stimuli) forms the vertices, and the rela-
tionship among personality and physiological signals is for-
mulated as hyperedges. The importance of different vertices,
hyperedges, and modalities is effectively explored by learning
the optimal weights. Further, the proposed method can easily
handle the data incompleteness issue. Experimental results
on the ASCERTAIN dataset demonstrated the superiority of
the proposed PER method, which can generalize to new sub-
jects if the personality or physiological signals are known.

For further studies, we plan to combine the multimedia
content employed to evoke emotions and the physiologi-
cal signals for PER. In addition, we will predict emotion
and personality simultaneously in a joint framework to fur-
ther explore the latent correlation. Constructing a reliable
large-scale dataset with personality and physiological signals
would greatly promote the research of PER. How to improve
the computational efficiency of hypergraph learning to deal
with large-scale data is also worth studying.
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