
Where to Prune: Using LSTM to Guide End-to-end Pruning∗

Jing Zhong†, Guiguang Ding†, Yuchen Guo†, Jungong Han‡, Bin Wang†,
† Beijing National Laboratory for Information Science and Technology (BNList)

School of Software, Tsinghua University, Beijing 100084, China
‡ School of Computing & Communications, Lancaster University, UK

{zhongjingheart,yuchen.w.guo}@gmail.com, {dinggg,wangbin}@tsinghua.edu.cn,
jungong.han@morthumbria.ac.uk

Abstract
Recent years have witnessed the great success of
convolutional neural networks (CNNs) in many re-
lated fields. However, its huge model size and
computation complexity bring in difficulty when
deploying CNNs in some scenarios, like embed-
ded system with low computation power. To ad-
dress this issue, many works have been proposed
to prune filters in CNNs to reduce computation.
However, they mainly focus on seeking which fil-
ters are unimportant in a layer and then prune filters
layer by layer or globally. In this paper, we argue
that the pruning order is also very significant for
model pruning. We propose a novel approach to
figure out which layers should be pruned in each
step. First, we utilize a long short-term mem-
ory (LSTM) to learn the hierarchical characteris-
tics of a network and generate a pruning decision
for each layer, which is the main difference from
previous works. Next, a channel-based method is
adopted to evaluate the importance of filters in a
to-be-pruned layer, followed by an accelerated re-
covery step. Experimental results demonstrate that
our approach is capable of reducing 70.1% FLOPs
for VGG and 47.5% for Resnet-56 with comparable
accuracy. Also, the learning results seem to reveal
the sensitivity of each network layer.

1 Introduction
Deep convolutional neural networks (CNNs) have achieved
impressive results in many computer vision tasks, like im-
age classification [Simonyan and Zisserman, 2015; He et al.,
2016], object detection [Girshick, 2015], and face recogniza-
tion [Schroff et al., 2015]. Starting from simple architec-
tures like LeNet [LeCun et al., 1990], researchers have pro-
posed more complicated and powerful architectures, such as
AlexNet [Krizhevsky et al., 2012], VGG [Simonyan and Zis-
serman, 2015], and ResNet [He et al., 2016], which progres-
sively lead to better performance. In some cases, CNNs are

∗This work was supported by the National Natural Science Foun-
dation of China (No. 61571269). Corresponding authors: Guiguang
Ding and Bin Wang.

Figure 1: The accuracy of ResNet-56 after one layer is pruned. The
same number of filters are removed in different layers in a stage. Lm
in x-axis denotes the mth residual block.

even capable of surpassing human-level performanc [He et
al., 2015; Zhang et al., 2017; Schroff et al., 2015]. Owing
to the promising results, CNNs have attracted considerable
attention from the academia and the industry.

Apart from the accuracy, the model complexity of CNNs is
also an important issue, especially in real-world applications,
because it is very often that we have to run deep model on
cheap devices with limited computation resources and low-
frequency CPUs, like a mobile phone. In this case, it is de-
sired that the CNNs are tiny and fast enough while preserving
the accuracy. To address this issue, deep model compression
techniques have become a popular research topic.

Generally speaking, model compression techniques fall
into four categories. The first category is quantization.
In [Rastegari et al., 2016], a model binarization approach is
proposed. Although significant speed-up has been achieved,
binarized network suffers from performance drop and less ro-
bustness. The second category is sparseness [Cun et al., 1990;
Hassibi and Stork, 1993] by removing unimportant weights
(or setting it to zero). Unfortunately, the sparse matrix cal-
culation cannot be accelerated by the existing software and
hardware libraries at present. The third category is ten-
sor factorization [Denton et al., 2014] which uses a com-
bination of smaller tensors and simpler operations to ap-
proximate larger tensors and complicated operations. Al-
though it may lead to smaller and faster networks, it de-
grades the performance, especially for complicated tasks.
The fourth category is filter-level pruning [Li et al., 2017;
Molchanov et al., 2017] which directly removes unimportant
convolutional kernels. Pruning can well preserve the structure
of the network, which leads to smaller and faster models with

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3205



LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

CONV32,
CONV64

CONV 64,
POOL 2

CONV 64,
CONV128

…

Prune or 
Not

Prune or 
Not

Prune or 
Not

Where to prune

Network
 structure

Softmax 
layer

Filter selection
 and pruning

Calculate reward

Accelerate 
fine-tuning

Channel-based filter selection 
and recovery mechanism

Pruned network learns from 
its parent network

Performance and complexity 
both contribute to reward R

Guide pruning

Update LSTM with policy gradient

Pruning & Fine-tuning

Figure 2: The framework of end-to-end pruning method. The evaluation model based on LSTM (in the red box) finds the most unimportant
layers and generates pruning decisions to guide the pruning process(in the blue box) including channel-based filter selection, pruning and
fine-tuning. LSTM is then updated in the policy gradient method with both model performance and complexity as the reward.

little or no performance drop and seems simpler compared to
the previous techniques. Because of these advantages, prun-
ing has drawn the most attention in recent years, which is the
main focus of this paper.

Intuitively, deep model compression is a systematical task
which should utilize the whole model to make decisions for
pruning. However, it seems that most existing pruning ap-
proaches [Li et al., 2017; Hu et al., 2016; Luo et al., 2017;
Liu et al., 2017] only consider local information. In partic-
ular, they mostly focus on evaluating the importance of each
filter individually in each layer and prune filters layer by layer
sequentially from top to bottom or bottom to top. At each
step, some filters are pruned in a layer, and the next layer
is processed in the next step. However, an essential phe-
nomenon is ignored that the layers are different in terms of the
importance. If it happens to prune a few filters of an important
layer, the performance of the overall system may significantly
drop. On the other hand, pruning many filters in an unimpor-
tant layer may have little influence on accuracy but signif-
icantly reduce model complexity. To demonstrate this, we
take ResNet-56 as an example. We remove the same number
of filters in different layers in a stage so that the complexities
after pruning are identical. The experiments in each stage are
independent. We show the accuracy of the model after prun-
ing different layers (e.g., L10, L12, or L18 in stage 2) in Fig-
ure 1. Obviously, different layers have different importance,
so they have the observable different impact on the whole sys-
tem. Therefore, where to prune is a critical issue for pruning
and choosing the right layer may end up more complexity
reduction and less performance drop. In Table 3, we report
the comparison between an orderly pruning method [Li et al.,
2017] and the proposed pruning approach with layer selec-
tion. We can observe that our approach achieves larger prun-
ing rate with comparable accuracy.

The above phenomenon motivates us to investigate the
problem of choosing the right layer to prune in each step.
In this paper, we propose a novel approach to evaluate the
importance of each layer and choose less important layers to
prune. In particular, considering that a CNN is a hierarchi-
cal structure and can be represented as a string, we employ
long short-term memory (LSTM) [Hochreiter and Schmid-
huber, 1997] as an evaluation model to generate the pruning
decision for each layer, which is capable of finding the most
unimportant layers first. The LSTM is trained in a reinforce-

ment learning way with model performance and complexity
as the reward. Then a channel-based method is adopted to
evaluate the importance of each filter in the chosen layer, and
some unimportant filters are pruned combined with the recov-
ery mechanism. With several pruning steps, the complexity
achieves the required level while little or no performance drop
is accomplished. The complete framework is shown in Fig-
ure 2, and our major contributions are summarized as follows:

• We argue and demonstrate that where to prune is a crit-
ical issue at each step and we introduce an end-to-end
framework to prune models in the correct order.
• Considering the hierarchical structure of CNNs, we em-

ploy LSTM as an evaluation model to find the most
unimportant layer and generate the pruning decision.
• Our end-to-end method is capable of compressing a va-

riety of network structures largely with comparable ac-
curacy and works well on both convolutional and fully-
connected networks.
• The experimental results reveal that our method learns

the sensitivity of each network layer well.

2 Related Work
Our work is in relation to model pruning, network structure
search, and some other issues, each being elaborated below.

2.1 Pruning
Removing network connections is an intuitive model com-
pression method, which mostly focuses on evaluating and se-
lecting unimportant connections. [Hassibi and Stork, 1993]
assess the network connections by the second-order derivative
information, but it results in high computational complex-
ity. [Han et al., 2016] compress models in three steps: remov-
ing connections with smallest absolute weights values, quan-
tization, and Huffman encoding. [Scardapane et al., 2017;
Wen et al., 2016] regularize neural network parameters by
group Lasso penalty leading to sparsity on a group level.

The above methods introduce sparsity in the parameter ten-
sors which is difficult to be accelerated by existing software
and hardware libraries. In order to achieve accelerated perfor-
mance, more works focus on filter-wise pruning which could
preserve the network structure well. [Li et al., 2017] assess
the importance of a filter by calculating its absolute weights

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3206



sum and remove unimportant filters layer by layer. [Hu et al.,
2016] observe that filters with more zero activation neurons
are redundant. [Molchanov et al., 2017] evaluate filters by
estimating their effect on the cost function through Taylor ex-
pansion and prune the less important filters under a global
threshold. Recently, [Luo et al., 2017] consider filter prun-
ing as an optimization problem and prunes filters based on its
next layer. However, its greedy algorithm of selecting filters
based on the overall loss is computationally complex. [Liu et
al., 2017] leverage the scaling factors in batchnorm layers to
evaluate filters combining with sparsity regularization.

Most of the existing methods prune filters layer by layer,
or they globally prune all unimportant filters simultaneously.
However, they do not take importance level of each layer into
account. In other words, a proper algorithm should selec-
tively prune layers in terms of their contributions to the whole
model. Existing algorithms pay more attention to evaluating
filters but not giving a reasonable pruning order. We suggest
selecting the most unimportant layers first and then evaluating
the importance of each filter in the chosen layers to prune.

2.2 Network Structure Search
Current widely used network structures are designed manu-
ally based on expert knowledge. These networks fit some
datasets well, but they are not optimal for diversified data
in the real world. In order to release human labor and pro-
duce optimal networks, two mainstream methods based on
reinforcement learning and genetic algorithm are proposed
respectively. [Zoph and Le, 2017; Baker et al., 2016] use the
recurrent neural network(RNN) to generate complete network
descriptions from scratch, and the RNN is trained by a rein-
forcement learning method. As a network architecture can
be described as a string, [Xie and Yuille, 2017] define some
genetic operations: selection, mutation, and crossover to pro-
duce new network structures from generation to generation.
However, due to the huge network search space, methods
above consume enormous time and hardware resources. In-
spired by that, [Zoph et al., 2017] search for an architectural
building block on a small dataset and then transfer the block
to a larger dataset.

2.3 Other Works
Besides compressing big networks, there is another way of
training mall networks directly. [Ba and Caruana, 2014] ob-
serve that if a small network can learn the essence of con-
densed knowledge, it will have similar performance to the
big networks. They propose a distillation method that one or
more big networks are taken as teacher networks and a small
network as the student network to learn teachers’ predictive
distributions. By minimizing the squared error between the
two logits produced by the teachers and student, the student’s
performance approximates to the teachers’.

3 Method
In this section, we give a detailed introduction to our end-to-
end pruning method. Firstly, we introduce how LSTM gener-
ates pruning strategies and how reinforcement learning helps
to train LSTM in Section 3.1. Next, our filter selection strat-
egy and accelerated training skills are presented in Section

3.2. The end-to-end pruning framework in Figure. 2 is illus-
trated as follows.
(a). Pruning guidance. An initial or intermediate network

representation is fed into LSTM, and LSTM generates a
strategy which layers should be pruned.

(b). Filter selection and pruning. We evaluate the impor-
tance of each filter in the layers chosen by LSTM with
a channel-based method, then prune those unimportant
filters combined with the recovery mechanism.

(c). Accelerating fine-tuning. The pruned model is fine-
tuned to restore its performance. We utilize the distil-
lation method to accelerate the fine-tuning process.

(d). Updating LSTM. We update LSTM in a reinforcement
learning way with both performance and complexity of
the pruned model as the reward signal.

(e). Repeat from (a) to (e).

3.1 Where to Prune
Input and Output of LSTM
A neural network is a hierarchical sequence from input to out-
put connected by operation nodes. These nodes can be convo-
lution, pooling and fully-connected operation. For a common
CNN here, the ith node ξi is denoted as (mi, ni), where op-
eration type m is in {0, 1, 2} corresponding to convolution,
pooling, and fully-connected block respectively, operation at-
tribute n equals to filter number, pooling stride or unit num-
ber. Convolution and fully-connected nodes(final classifier
layer is not included) are called primary nodes, while pooling
and final classifier are called secondary nodes because they
cannot be pruned but supply auxiliary information instead.

Since LSTM has a good ability of time series prediction,
we use a 2-layer LSTM in Figure 2 to learn network struc-
ture and produce reasonable pruning decisions. At each
timestep, current primary node as well as its next primary
or secondary node [ξi, ξi+1] are fed into LSTM equivalent
to [mi, ni,mi+1, ni+1] and the pruning decision whether to
prune the first primary node is generated by a softmax layer.
For a network with N primary nodes, LSTM repeats above
step N times and N distinct softmax layers predict whether
to prune these nodes or not. Pooling nodes and final classi-
fier, taken as secondary nodes cannot get pruning prediction
but play a key role in helping LSTM to understand a complete
network structure well.

Training LSTM with Policy Gradient Method
After LSTM generates pruning decisions, we prune some fil-
ters in the chosen layers and get a slimmer model. Both per-
formance and complexity of this new model contribute to the
reward signalR for assessing the performance of LSTM. The
trade-off is shown in Eq. 1 We use the training loss or ac-
curacy on the validation set to measure performance, and
use model FLOPs or the number of PARAM to measure
complexity. Let λ be a trade-off hyperparameter. We per-
form cross-validation to find the optimal λ value.

R = performance− λ× complexity (1)

We use the policy gradient algorithm [Williams, 1992]
(Eq. 2) here training LSTM to make it generate better pruning

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3207



Filter(i, j)

Channel set(i+1, j)Channel(j)

...

...

... ...

Output tensor in layer i Output tensor in layer i+1Output tensor in layer i-1 Filters in layer i Filters in layer i+1

Figure 3: Pruning a convolution filter requires removing its corresponding convolution channel set in next layer.

strategies. In order to reduce the variance, the reward of the
current input network is taken as our baseline b.

∇θJ(θ) =
1

m

m∑
k=1

T∑
t=1

∇θ logP (αt|st; θ)(Rk − b) (2)

3.2 Pruning and Fine-tuning
Filter Selection and Recovery
LSTM generates a strategy for an input network which layers
shoule be pruned. We define a global hyperparameter pruning
rateRprune to select and remove (Rprune×xi) filters in layer
i chosen by LSTM. Let xi be the filter number in layer i.

A convolution node in layer i can be denoted by a triplet
〈Ii,Wi,Oi〉, where Ii ∈ Rxi−1×h×w same as Oi−1 is the
input tensor with channels xi−1, height h and width w. The
filter tensorWi ∈ Rxi×xi−1×k×k with k×k filter size convo-
lutes with Ii and generates an output tensor Oi with xi chan-
nels. From the perspective of filters,Wi consists of xi filters
Fi ∈ Rxi−1×k×k, while from the perspective of channels,Wi

consists of xi−1 channel sets Ci ∈ Rxi×k×k.
After the jth filter Fi,j is pruned, its corresponding jth

channel set Ci+1,j becomes useless and should be removed at
the same time. Convolution structures in other layers are not
affected and remain unchanged shown in Figure 3. It is the
output tensor deviation in layer i+1 that transfers errors to the
final loss and directly leads to worse performance. Therefore
we remove less important filters in layer i and channel sets
in layer i+ 1 to minimize the output value deviation ∆Oi+1.
Since there often exists an activation, pooling or batchnorm
layer between two convolution layers, the channel sets Ci+1

affect the output value Oi+1 more directly than convolution
filters Fi. We follow Eq. 3 to measure the importance of each
channel set in layer i+1 by L2-norm, because L2-norm gives
an expectation of the magnitude of the output feature map and
reflects the weight diversity. Then we remove the channel sets
with smaller score sj and their responding filters in layer i.

sj = ‖(Ci+1,j)‖2, s.t. j ∈ [1, xi] (3)

Eq. 3 is similar to [Li et al., 2017] in form, but focuses on
least important channel sets in layer i+1 rather than least im-
portant filters in layer i, which is a reverse selection process
starting from the occurrence of loss.

After pruning a channel set and its corresponding filter,
Fi+1 becomes F̂i+1 and Oi+1 becomes Ôi+1. To reduce
the loss of model performance, we try to minimize ∆Oi+1

through a recovery method. In detail, we use the hyperparam-
eter α to select filters with larger value deviations and scale

up those filter tensors by a certain proportion(Eq. 4). Filters
here are pruned one by one. After one filter and its corre-
sponding channel set are removed, the recovery mechanism
is operated immediately.

F̂i+1,j =

{
F̂i+1,j × (

‖Fi+1,j‖2
‖F̂i+1,j‖2

)2, if 1− ‖F̂i+1,j‖2
‖Fi+1,j‖2 >

a
xi

F̂i+1,j , otherwise

s.t. j ∈ [1, xi+1]
(4)

Accelerated Fine-tuning
In the LSTM training process, there are many intermediate
models produced, then they are fine-tuned to calculate re-
ward signals and update LSTM. In order to improve the algo-
rithm efficiency, we use the distillation method [Ba and Caru-
ana, 2014] to accelerate fine-tuning procedure. Specifically,
the input model of LSTM is regarded as a teacher network,
and the pruned model based on the teacher is taken as a stu-
dent network. During fine-tuning, we use the loss function g
(Eq. 5) to make student’s probabilities logit f approximate to
teacher’s logit z.

g(x, z, θ) =
∑
x

‖ f(x, θ), z ‖22 (5)

4 Experiments
We empirically apply our method on three benchmark
datasets: CIFAR-10, CIFAR-100, and MNIST. Two CIFAR
datasets [Krizhevsky and Hinton, 2009] contain 50000 train-
ing images and 10000 test images. The MNIST contains
60000 and 10000 images for training and testing respectively.
In all the datasets, 10% images are split from training set as
validation set used for evaluating new network structures and
calculating their reward signals to LSTM. On CIFAR, all im-
ages are cropped randomly into 32*32 with four paddings
during the training process. Horizontal flip is also adopted.
On MNIST, there is no data augmentation preprocessing.

Three networks: VGGNet [Simonyan and Zisserman,
2015], ResNet [He et al., 2016] and a 3-layer fully-connected
network in [Wen et al., 2016] are used to validate our method.
We employ a 2-layer LSTM with 100 hidden units to make
pruning decisions. All the experiments are implemented with
PyTorch on one NVIDIA TITAN X GPU.

4.1 Implementation Details
In the experiments, we train the initial models from scratch
and calculate their accuracies as baselines. The pruning rate

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3208



Figure 4: Comparison between two methods. Figure 5: The effect of recovery mechanism. Figure 6: Sensitivity of VGG-19 for layers.

Figure 7: Pruning rate within 50 epochs. Figure 8: Pruning rate within 150 epochs. Figure 9: Pruning rate within 250 epochs.

Rprune is set to 0.2. During fine-tuning, the teacher instructs
the student to train for 30 epochs on CIFAR datasets and 10
epochs on MNIST dataset. When LSTM no longer produces
better network structures within 10 epochs, the algorithm is
terminated. We retrain the network with the best reward for
250 epochs on CIFAR and 100 epochs on MNIST. Both train-
ing and validation datasets are used for retraining the network
with fixed learning rate 0.001 to get its final accuracy.

In every epoch for training LSTM, 5 parent network archi-
tectures with biggest rewards are picked and fed into LSTM
successively. Their rewards are taken as baselines b in pol-
icy gradient method. If there are no more than 5 structures in
local, all the local networks are taken as inputs. In the first
epoch, the input is the pre-trained network.

Since CNNs have large convolution computation, we use
FLOPs to measure its complexity. For a fully-connected net-
work, PARAM number is proportional to its FLOPs, and we
use PARAM to measure its complexity in order to keep in line
with the existing methods.

4.2 Filter Selection and Recovery Criteria
Our channel-based method is compared with the filter-based
method [Liu et al., 2017], which evaluate a filter by calcu-
lating its absolute weights sum. To validate our method, we
prune some filters from a pre-trained VGG-16 on CIFAR-10
without applying the recovery mechanism. Different layers
are pruned with the same pruning rate. Then we fine-tune the
pruned model for 1 epoch. The experiment is repeated 5 times
to eliminate the influence of random disturbance, and we re-
port the averaged accuracy on the test set. Figure 4 shows
the pruning results with pruning rate ranging from 0.1 to 0.9
while both methods are set with the same configuration. The
results reveal that our channel-based filter selection outper-

forms the filter-based selection method.
To evaluate the recovery mechanism, we calculate the ac-

curacy of a pruned model on the test set directly without fine-
tuning. Figure 5 indicates that the recovery method helps the
pruned model to recover its performance significantly. An im-
pressive result is: while the hyperparameter α in Eq.4 equals
to 0.8, the pruned model gets the best recovery. Actually,
when we prune a completely unimportant channel, the filter
it belongs to does not need to be scaled because the pruned
channel almost has no contribution to the whole network per-
formance. Only when it occupies a relatively large proportion
of the filter, scaling operation is necessary.

4.3 Results
Our end-to-end layer-selection method is compared to both
orderly and global pruning method. Specifically, on the fully-
connected network and VGG, we report the pruning results
compared with two global pruning methods [Liu et al., 2017;
Wen et al., 2016]. On the Resnet-56, we compare with an
orderly pruning method [Li et al., 2017] because the global
pruning leads to more performance loss on deeper networks.

VGG-19 on CIFAR-10
We prune the VGG-19 [Simonyan and Zisserman, 2015] on
the CIFAR-10 dataset. Each convolution layer is followed by
a batch normalization layer [Ioffe and Szegedy, 2015] and we
remove its FC layers except the last layer for classification.

Floating-point operations per second(FLOPs) is used as an
indicator of model complexity. One multiply-add here is re-
garded as a floating-point operation unit. We calculate the
reward R according to Eq. 1 where network’s accuracy in
validation set represents performance, FLOPs represents
complexity and λ is set to 4× 10−10.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3209



Model FLOPs Pruned Rate% Acc.%
Baseline 3.9× 108 − 93.66

Slimming-4 − 77.2 -0.25
Slimming-5 − 88.7 -1.39

Ours 5.98× 107 84.7 -0.36

Table 1: Results of VGG-19 on CIFAR-10. “Slimming-N” denotes
repeating the slimming method N times.

Model FLOPs Pruned Rate% Acc.%
Baseline 3.9× 108 − 73.26

Slimming-3 − 67.3 -2.34
Slimming-4 − 83 -3.85

Ours 1.19× 107 70.1 +0.0

Table 2: Results of VGG-19 on CIFAR-100.

We summarize the results in Table 1 comparing our method
with the global slimming method [Liu et al., 2017], which
select unimportant filters in all the layers first and then prune
all of them simultaneously. “Slimming-N” denotes repeating
the slimming method N times. After LSTM is trained for
150 epochs, the optimal structure emerges, whose FLOPs is
reduced by 84.7% with only 0.36% accuracy decrease.

It is worth noting that [Liu et al., 2017] take one multiply-
add as two floating-point operations, so their calculated
FLOPs is two times as much as ours. For a fair and clear
comparison, our FLOPs calculation method is regarded as a
unified standard. Table 1 displays the standardized results.

For further investigation, we plot the sensitivity of each
layer in the pre-trained VGG-19 in Figure 6. Specifically,
at each time we prune one layer while keeping the other lay-
ers unchanged, then calculate the accuracy. The results depict
that the overall sensitivity distribution keeps the same under
different pruning rates and the most sensitive four layers are
layer 2,3,4,5. Figure 7, Figure 8 and Figure 9 represent the
practical pruning rate of each layer for the optimal network
after training LSTM for 50, 150 and 250 epochs respectively.
With more training, the real pruning rate from layer 2 to 5
becomes lower and the other layers are pruned more, which
is consistent with the observation from Figure 6. The results
demonstrate that our method could make reasonable pruning
decisions and learn the network sensitivity effectively.

VGG-19 on CIFAR-100
We use the same VGG-19 network to evaluate our method
on CIFAR-100. Due to more categories, CIFAR-100 is much
more difficult to train than CIFAR-10. Thus, the training and
validation set are both used to fine-tune the pruned model.
Here we use the training loss to evaluate performance, and
set λ to 2 × 10−11 in Eq. 1. After training LSTM for 123
epochs, we get the best network whose FLOPs is reduced by
70.1% with no accuracy drop. As can be seen from Table 2,
our method outperforms the slimming method significantly.

ResNet-56 on CIFAR-10
In this section, we verify the feasibility of our method on
ResNet-56 [He et al., 2016]. Due to the particularity of
ResNet structure, we only prune the first convolution layer

Model FLOPs Pruned Rate% Acc.%
Baseline 1.25× 108 − 93.04

Li-A − 10.4 +0.06
Li-B − 27.6 +0.02

Ours-2 8.24× 107 34.1 +0.56
Ours-1 6.56× 107 47.5 -0.11

Table 3: Results of ResNet-56 on CIFAR-10.

Model Pruned% Acc.% #Neurons
Baseline − 98.57 784-500-300-10

Structured sparsity 83.5 -0.11 434-174-78-10
Slimming-1 84.4 -0.06 784-100-60-10

Ours 87.26 -0.03 784-83-48-10

Table 4: Results of a fully-connected network on MNIST.

of each ResNet block and keep the second convolution layer
unchanged for its correctness. The parameter configuration of
Eq. 1 is the same as the VGG-19 experiment on CIFAR-10.

Table. 3 reports our results compared to [Li et al., 2017],
which analyze the sensitivity of each ResNet block first, then
prune filters referring to the analysis results. We do not make
any analysis in advance because our method is capable of au-
tomatically learning the network sensitivity. After LSTM is
trained for 32 epochs, the best network emerges with 47.5%
FLOPs reduction and comparable accuracy. Compared to [Li
et al., 2017], more filters are pruned with acceptable accu-
racy decrease of 0.11%. For further comparison, we select
the second-best structure with less FLOPs reduction, and it
achieves a notable 0.56% accuracy promotion.

Although [Li et al., 2017] set different pruning rates for dif-
ferent layers manually, they prune filters layer by layer. Our
method breaks the traditional thinking of pruning a model in
the sequential order and works better in practice.

A Fully-connected Network on MNIST
We further validate the effect of our method on multi-layer
perceptrons. We prune a 3-layer fully-connected network
compared with two global pruning methods [Wen et al., 2016;
Liu et al., 2017] as shown in Table 4. Similar to CNNs, the
evaluation of neurons in the current FC layer depends on its
next FC layer. Here we use the accuracy on the validation
set to measure performance. We set λ to 1 × 10−7. After
20 epochs, the optimal network structure emerges with 87%
neurons pruned and only 0.03% accuracy drop.

5 Conclusion
In this paper, we propose a framework to evaluate the impor-
tance of each network layer and to select the most unimpor-
tant layers to prune. Considering the hierarchical structure of
CNNs, we employ LSTM as an evaluation model to generate
the pruning decisions. Besides, the channel-based filter se-
lection method and recovery mechanism are adopted to prune
filters effectively. Experimental results show the superiority
compared to both orderly and global pruning methods and re-
veal the ability to learn the sensitivity of each network layer.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3210



References
[Ba and Caruana, 2014] Jimmy Ba and Rich Caruana. Do

deep nets really need to be deep? In Advances in neural
information processing systems, pages 2654–2662, 2014.

[Baker et al., 2016] Bowen Baker, Otkrist Gupta, Nikhil
Naik, and Ramesh Raskar. Designing neural network ar-
chitectures using reinforcement learning. In ICLR, 2016.

[Cun et al., 1990] Yann Le Cun, John S. Denker, and Sara A.
Solla. Optimal brain damage. In Advances in neural in-
formation processing systems, volume 2, pages 598–605,
1990.

[Denton et al., 2014] Emily L Denton, Wojciech Zaremba,
Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting
linear structure within convolutional networks for efficient
evaluation. In Advances in neural information processing
systems, pages 1269–1277, 2014.

[Girshick, 2015] Ross Girshick. Fast r-cnn. In ICCV, pages
1440–1448, 2015.

[Han et al., 2016] Song Han, Huizi Mao, and William J
Dally. Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman cod-
ing. In ICLR, 2016.

[Hassibi and Stork, 1993] Babak Hassibi and David G Stork.
Second order derivatives for network pruning: Optimal
brain surgeon. In Advances in neural information process-
ing systems, pages 164–171, 1993.

[He et al., 2015] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification.
In ICCV, 2015.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, pages 770–778, 2016.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[Hu et al., 2016] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and
Chi-Keung Tang. Network trimming: A data-driven neu-
ron pruning approach towards efficient deep architectures.
arXiv preprint arXiv:1607.03250, 2016.

[Ioffe and Szegedy, 2015] Sergey Ioffe and Christian
Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In
ICML, pages 448–456, 2015.

[Krizhevsky and Hinton, 2009] Alex Krizhevsky and Geof-
frey Hinton. Learning multiple layers of features from tiny
images. Tech Report, 2009.

[Krizhevsky et al., 2012] Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural in-
formation processing systems, pages 1097–1105, 2012.

[LeCun et al., 1990] Yann LeCun, Bernhard E Boser, John S
Denker, Donnie Henderson, Richard E Howard, Wayne E
Hubbard, and Lawrence D Jackel. Handwritten digit

recognition with a back-propagation network. In Advances
in neural information processing systems, pages 396–404,
1990.

[Li et al., 2017] Hao Li, Asim Kadav, Igor Durdanovic,
Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In ICLR, 2017.

[Liu et al., 2017] Zhuang Liu, Jianguo Li, Zhiqiang Shen,
Gao Huang, Shoumeng Yan, and Changshui Zhang.
Learning efficient convolutional networks through net-
work slimming. arXiv preprint arXiv:1708.06519, 2017.

[Luo et al., 2017] Jian-Hao Luo, Jianxin Wu, and Weiyao
Lin. Thinet: A filter level pruning method for deep neural
network compression. arXiv preprint arXiv:1707.06342,
2017.

[Molchanov et al., 2017] Pavlo Molchanov, Stephen Tyree,
Tero Karras, Timo Aila, and Jan Kautz. Pruning convolu-
tional neural networks for resource efficient transfer learn-
ing. In ICLR, 2017.

[Rastegari et al., 2016] Mohammad Rastegari, Vicente Or-
donez, Joseph Redmon, and Ali Farhadi. Xnor-net: Ima-
genet classification using binary convolutional neural net-
works. In ECCV, pages 525–542. Springer, 2016.

[Scardapane et al., 2017] Simone Scardapane, Danilo Com-
miniello, Amir Hussain, and Aurelio Uncini. Group sparse
regularization for deep neural networks. Neurocomputing,
2017.

[Schroff et al., 2015] Florian Schroff, Dmitry Kalenichenko,
and James Philbin. Facenet: A unified embedding for
face recognition and clustering. In CVPR, pages 815–823,
2015.

[Simonyan and Zisserman, 2015] Karen Simonyan and An-
drew Zisserman. Very deep convolutional networks for
large-scale image recognition. In ICLR, 2015.

[Wen et al., 2016] Wei Wen, Chunpeng Wu, Yandan Wang,
Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In Advances in neural information
processing systems, pages 2074–2082, 2016.

[Williams, 1992] Ronald J Williams. Simple statistical
gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256, 1992.

[Xie and Yuille, 2017] Lingxi Xie and Alan Yuille. Genetic
cnn. arXiv preprint arXiv:1703.01513, 2017.

[Zhang et al., 2017] Xuan Zhang, Hao Luo, Xing Fan,
Weilai Xiang, Yixiao Sun, Qiqi Xiao, Wei Jiang, Chi
Zhang, and Jian Sun. Alignedreid: Surpassing human-
level performance in person re-identification. arXiv
preprint arXiv:1711.08184, 2017.

[Zoph and Le, 2017] Barret Zoph and Quoc V Le. Neural
architecture search with reinforcement learning. In ICLR,
2017.

[Zoph et al., 2017] Barret Zoph, Vijay Vasudevan, Jonathon
Shlens, and Quoc V Le. Learning transferable archi-
tectures for scalable image recognition. arXiv preprint
arXiv:1707.07012, 2017.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3211


