
 

Accepted Manuscript

Large-Scale Image Retrieval with Sparse Embedded Hashing

Guiguang Ding, Jile Zhou, Yuchen Guo, Zijia Lin, Sicheng Zhao,
Jungong Han

PII: S0925-2312(17)30160-1
DOI: 10.1016/j.neucom.2017.01.055
Reference: NEUCOM 17972

To appear in: Neurocomputing

Received date: 3 July 2016
Revised date: 5 January 2017
Accepted date: 8 January 2017

Please cite this article as: Guiguang Ding, Jile Zhou, Yuchen Guo, Zijia Lin, Sicheng Zhao,
Jungong Han, Large-Scale Image Retrieval with Sparse Embedded Hashing, Neurocomputing (2017),
doi: 10.1016/j.neucom.2017.01.055

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.neucom.2017.01.055
http://dx.doi.org/10.1016/j.neucom.2017.01.055


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Large-Scale Image Retrieval with Sparse Embedded
Hashing

Guiguang Dinga,∗, Jile Zhoua, Yuchen Guoa, Zijia Lina, Sicheng Zhaoa,
Jungong Hanb

aIntelligent Multimedia Group, School of Software, Tsinghua University, Beijing, China
bDepartment of Computer Science and Digital Technologies, Northumbria University,

Newcastle, UK

Abstract

In this paper, we present a novel sparsity-based hashing framework termed

Sparse Embedded Hashing (SEH), exploring the technique of sparse coding.

Unlike most of the existing systems that focus on finding either a better sparse

representation in hash space or an optimal solution to preserve the pairwise sim-

ilarity of the original data, we intend to solve these two problems in one goal.

More specifically, SEH firstly generates sparse representations in a data-driven

way, and then learns a projection matrix, taking sparse representing, affinity

preserving and linear embedding into account. In order to make the learned

compact features locality sensitive, SEH employs the matrix factorization tech-

nique to approximate the Euclidean structures of the original data. The usage of

the matrix factorization enables the decomposed matrix to be constructed from

either visual or textual features depending on which kind of Euclidean struc-

ture is preserved. Due to this flexibility, our SEH framework could handle both

single-modal retrieval and cross-modal retrieval simultaneously. Experimental

evidence shows this method achieves much better performance in both single-

and cross-modal retrieval tasks as compared to state-of-the-art approaches.
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1. Introduction

Nearest Neighbor (NN) retrieval, a method of finding the semantically near-

est item to a query item from a search database, is facing efficiency problem due

to the explosive growth of data on the Internet. Approximate Nearest Neighbor

(ANN) search is a more efficient alternative technique that well balances the5

accuracy and the computational complexity.

As the most notable ANN method, hashing technique aims to convert the

high-dimensional data item to a short code consisting of a sequence of binary

bits while preserving the similarity between the original data points [1, 2, 3,

4, 5]. Hashing can deal with ANN search efficiently because bit XOR and10

bit-count operations are applied when calculating Hamming distance between

binary codes [6]. This technique has shown to be useful for many practical

problems, thus gaining considerable attention in the field of large-scale image

retrieval in the past decade.

Generally, hashing methods can be divided into two categories: single-modal15

hashing (SMH) and cross-modal hashing (CMH). The majority of the existing

works fall into the category of SMH which is designed for uni-modal data. As

the most well-known SMH approach, Locality-Sensitive Hashing (LSH) [7] sim-

ply employs random linear projections to map high-dimensional features into

a binary sequance such that the close features in Euclidean space still remain20

to be close after the transformation. Although this technique has been ex-

ploited in various applications, it is likely to generate ineffective codes due to its

data-independent property [6]. Hence, some machine learning techniques that

learn the data characteristics have been employed to design more effective hash

functions, such as Kernel Learning, Boosting algorithm, Restricted Boltzmann25

Machines, Manifold Learning, Supervised Learning, Linear Discriminant Analy-

sis (LDA), Principal Component Analysis (PCA), which respectively correspond

to Kernelized Hashing [8, 9], Parameter Sensitive Hashing [10], Semantic Hash-

ing [11], Spectral Hashing [12, 13], Supervised Hashing [14], LDA Hashing [15],

PCA Hashing [16] and K-means Hashing [17].30
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At the early stage, hashing methods are only applied to unimodal data. As

the fast growth of multimedia content on the Web, like Wikipedia, Flickr and

Twitter, the cross-modal hashing (CMH), returning semantically relevant results

of the other modalities for a given query from one modality, is in great demand.

For instance, Wikipedia is a popular dataset consisting of images and texts.35

Usually, the system allows users to provide a query text, and it returns relevant

texts as well as pictures. However, users, very often, prefer to provide a query

image without texts but expect the system to return the relevant articles. Such

practical requests thus boost the research in the field of cross-modal content

search [18, 19, 20, 21, 22, 23, 24, 25].40

1.1. Motivation

The key of hashing based data retrieval is to capture salient structures and

meanwhile to preserve the similarity of the original data points. Recently, sparse

coding has been adopted to address large-scale data retrieval problem for both

single modality and cross modalities [26, 27, 28, 29, 30, 31, 32] due to the45

following reasons. First, the natural image can be well described based on a

small number of structural primitives [33, 34, 35, 36]. Second, the sparsity

constraint allows the learned representation to capture salient structures of the

image [37, 38, 39]. Finally, sparse coding can be applied to learn over-complete

bases, which provides sufficient descriptive power for representing low-level fea-50

tures [40, 30].

Despite the increasing research interest from the academia, the results ob-

tained by the existing sparse coding hashing attempts are still far from satisfac-

tory. The major reason is the lack of the solution which could simultaneously

address the following three problems:55

• how to embed sparse representations into a compact space to generate

hash codes?

• how to preserve the similarity structures of the original data?
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• how to cope with both single-modal retrieval and cross-modal retrieval in

one system?60

Most existing hashing methods only partially addressed the first two prob-

lems, and they are designed specifically for either single-modality retrieval or

multiple-modality retrieval. For instance, Robust Sparse Hashing [26], Com-

pact Sparse Codes [30] and Sparse Multimodal Hashing [29] advocate the use

of compact codes by encoding sparse codes into a set of integers. Although the65

generated compact codes well preserve the original similarity structure, they are

less efficient than binary codes in terms of the storage space and the searching

cost. Sparse Hashing [27] indeed generates binary codes by setting each non-zero

value of sparse codes to be 1. However, such a simple binarization rule is unable

to generate balanced codes. Compressed Hashing [28] embeds sparse codes us-70

ing the random projection technique, leading to ineffective codes because of its

data-independence nature. In addition, these sparsity-based hashing methods

adopt two-step solutions that separate the sparse codes leaning and embedding,

which can only achieve suboptimal results.

1.2. Contributions75

In this paper, we introduce a novel sparsity-based hashing framework, namely

Sparse Embedded Hashing (SEH), intending to address the above three prob-

lems simultaneously via optimizing an objective funcition that takes all of aboves

into account. Our work differs from existing systems in two aspects. First, in-

stead of using a two-step approach, we consider sparse representing, affinity80

preserving and linear embedding in one objective function when learning the

projection matrix. Second, in order to make the learned compact features local-

ity sensitive, SEH employs the matrix factorization technique to approximate

the Euclidean structures of the original data. We theoretically prove that the

matrix factorization technique relaxes the orthogonality constraints and is bet-85

ter suited to preserve the similarity of data points than commonly used PCA

technique. In addition, the decomposed matrix can be constructed from either
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visual or textual features depending on which kind of similarity structure is pre-

served. Due to this flexibility, our SEH could handle both single-modal retrieval

and cross-modal retrieval in one system.90

The rest of this paper is organized as follows. We formulate several related

cross-modal hashing methods and Canonical Correlation Analysis (CCA) within

the same framework in Section 2. Section 3 presents our proposed method.

Section 4 provides extensive experimental validation on three datasets. The

conclusions are given in Section 5.95

2. Related Work

As our major contribution is a new methodology that incorporates the sparse

coding into image hashing, we focus on explaining sparse coding related image

hashing techniques. Here, we start by presenting the original sparse representa-

tion idea that can be used in a variety of applications such as image classifica-100

tion [41], face recognition [42], image denoising [43] and image restoration [44].

Afterwards, we elaborate the existing sparse hashing algorithms.

2.1. Sparse Coding

Let xi ∈ Rd×1 is the data vector, B = [b1, ...,bD] ∈ Rd×D is the codebook,

where each bi is a basis vector. S = [s1, ..., sn] ∈ RD×n denotes the coefficient

matrix, in which each column is a sparse representation. Given a data point xi,

it can be approximated by linearly combining a small number of (sparse) basis

vectors in the codebook, i.e. xi ≈ Bsi. Typically, `2 norms, i.e. sum of square

value of each entry in matrix or vector, is used for measuring the loss function

of the reconstruction error, which is:

n∑

i=1

‖xi −Bsi‖22.

Then, the objective function of sparse coding can be formulated as follows:

min
B,S

n∑

i=1

‖xi −Bsi‖22 + λ
n∑

i=1

f(si),

5
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where f is a function to measure the sparsity of si, and λ > 0 is the tunable

regularization parameter controlling the sparsity. For example, we can use one

of the following penalty functions [45]:

f(si) =
D∑

j=1





‖sij‖`1 (`1 penalty function)

(s2ij + ε)
1
2 (epsilon `1 penalty function)

log(1 + s2ij) (log penalty function),

where ‖ · ‖`1 denotes `1-norm, i.e. sum of the absolute value of each entry in

a matrix or a vector. In this paper, we concentrate on the case of `1 penalty

function, because it is known to produce sparse coefficients and can be robust

to irrelevant features [46]. Then, the objective function becomes:

min
B,S

n∑

i=1

‖xi −Bsi‖22 + λ
n∑

i=1

‖si‖`1

s.t. ‖bj‖ ≤ 1,∀j ∈ ID,
(1)

where ID = {1, 2, ..., D} is the index set. The constraint on bj is typically

applied to avoid trivial solutions.105

2.2. Locality-sensitive Sparse Coding

Usually, the codebook B is over completed, i.e. D > d. In this case, the

`1 regularization is to ensure that the Eq. (1) has a unique solution. However,

due to the over-completeness of the codebook, the sparse coding process may

find different bases for similar data vectors, thus losing correlations between110

codes [37]. In [47], the authors pointed out that locality is more important

than sparsity under certain assumptions [48]. To this end, generating locality

sensitive sparse codes has been investigated in several works [37, 30, 49, 50, 26],

each being elaborated below.

Graph Laplacian Sparse Coding [49, 50] intends to generate similar

sparse codes for similar local features x ∈ {xi}ni=1. Such an idea can be imple-

mented by adding the following Laplacian regularization into Eq. (1),

1

2

n∑

i,j=1

Wij‖si − sj‖22 =

n∑

i,j=1

Lijs
T
i sj = tr(SLST ). (2)

6
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Here, W ∈ Rn×n is the similarity matrix, in which Wij refers to the similarity

between xi and xj . tr(·) denotes the trace function. L = D−W is the Lapla-

cian matrix, and D is a diagonal degree matrix subject to Dii =
∑n

j=1 Wij .

Therefore, we can get the following objective function of graph Laplacian sparse

coding,

min
B,S
‖X−BS‖2F + λ‖S‖`1 + βtr(SLST )

s.t. ‖bj‖ ≤ 1,∀j ∈ ID,

where β > 0 is the regularization parameter, and ‖ · ‖F is the Frobenius norm.115

Robust Sparse Hashing (RSH) [26], in order to be robust against the

random perturbations, seeks a dictionary such that all points x ∈ UP (x̂) =

{x; ‖P(x − x̂)‖ < 1} tend to have the same hash codes, where P is positive

definite matrix. The objective function of RSH can be described by:

min
B,S
‖X−BS‖2F + λ‖S‖`1

s.t. ‖bj‖ ≤ 1,xi ∈ UP (x̂i),∀j ∈ ID,∀i ∈ In.

Locality-constrained Linear Coding (LLC) [37] utilizes the locality con-

straints to project each descriptor into its local-coordinate system, and the pro-

jected coordinates are regarded as sparse codes. Basically, the LLC code uses

the below criteria:

min
B,S
‖X−BS‖2F + λ

n∑

i=1

‖di � ci‖22

s.t. 1T ci = 1,∀i ∈ In,

where � denotes the element-wise multiplication, and di is defined as:

di = exp(
dE(xi,B)

σ
).

Here, dE(xi,B) = [dE(xi,b1), ..., dE(xi,bD)]T , and dE(xi,bj) is the Euclidean

distance between xi and bj . σ is used for adjusting the weight decay speed for

the locality adapter.

Compact Sparse Codes (CSC) [30] theoretically proves that the sensitiv-

ity of sparse codes is related to the coherence of the dictionary. To this end,
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CSC integrates the incoherence constraint of codebook into the sparse coding

objective function as follows:

min
B,S
‖X−BS‖2F + λ‖S‖`1

s.t. ‖BT
∼kbk‖∞ 6 γ;∀k ∈ In,

where BT
∼k means the codebook B with the k-th column removed, and γ is a

constant; µmin 6 γ 6 1 controls the allowed dictionary coherence, and µmin is120

the minimum coherence of dictionary B; ‖ · ‖∞ corresponds to the maximum

absolute value of entries in an input vector.

2.3. Affinity-preserving Embedding

Similar to the request for locality-sensitive sparse codes, generating compact

features via sparse codes that preserve the affinity of the original data is also125

important, and it has been well recognized by the researchers in this field. Some

representatives proposed recently include [26, 28, 27, 51, 29, 52, 30].

Sparse Hashing [27] and Sparse Multimodal Hashing (SMH) [29] generate

compact binary codes by simply setting each non-zero entry of the sparse codes

to be 1. However, there are two issues attached to this binarization rule. Firstly,130

it fails to build compact binary codes, because over-complete basis (i.e. large

dictionary size D) is always applied in sparse coding for sufficient descriptive

power [40, 30]. Secondly, the `1-norm penalty function guarantees the coeffi-

cients s in Eq. (1) to be sparse. Hence, the number of zero entries is far greater

than the number of non-zero entries in a sparse representation (empirically, more135

than 90% entries are zero in s), which leads to unbalanced binary codes.

RSH [26] and CSC [30] encode sparse codes into a set of integers, which are

composed of non-zero indexes J(x) = {j; sj(x) 6= 0, j ∈ ID}, where sj(x) is

the j-th atom in sparse code of x. The similarity between index set Ji and Jj

is measured by Jacard distance, which is |Ji ∩ Jj |/|Ji ∪ Jj |. In reality, Jacard140

distance can be approximated by using Min-Hash [53]. Apparently, the index set

does not have the advantages of efficient storage and bitwise operations anymore

as compared against binary codes.

8
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Sparse-Coded Features (SCF) [51] and CH [28] embed sparse representation

s(x) into a low-dimensional space by a reduction matrix P ∈ Rk×D which

satisfies k < D:

z(x) = Ps(x). (3)

Here, SCF constructs P by selecting the largest k eigenvalues of covariance ma-

trix SST (i.e. PCA) whereas CH independently samples each entry Pij from

a Gaussian distribution N (0, 1/k). Similar to PCA, SCF embeds sparse codes

into compact features space but tries to preserve global Euclidean structures

of the sparse space. The details will be discussed in section 3.2.3. Also, ac-

cording to Restricted Isometry Property (RIP), for any integer t > 0, if t/D

is small enough and k = ctlog(D/t), where c is a constant, there exists a posi-

tive constant δt < 1 such that with an overwhelming probability, the following

inequality holds for any s ∈ RD with at most t non-zero entries [28]

(1− δt)‖s‖22 ≤
D

k
‖z‖22 ≤ (1 + δt)‖s‖22. (4)

Inequality in Eq. (4) shows that RIP assures to preserve its Euclidean struc-

tures when mapping the sparse code s. Actually, these methods firstly learn145

local sparse codes, and then embed them into a compact space by an affinity-

preserving transformation. Such a two-step solution gives rise to suboptimal

results. In contrast to these methods, we simultaneously consider sparse coding

and affinity-preserving embedding in order to seek the best trade-off.

At the last stage of hash function learning, several quantization algorithms150

(such as Graph Hashing [54], ITQ [55, 56], Double Bit Hashing [57] and K-means

Hashing [17]) can be selected to quantify the embedded compact features into

binary space. However, this is not the focus of our work. Therefore, we simply

regard quantization strategy as a sign function, in which sign(v) = 1 if v ≥ 0,

and −1 otherwise.155

3. Sparse Embedded Hashing

A flowchart of our Sparse Embedded Hashing framework is given in Fig. 1.

Given a new query x∗, SEH obtains its binary hash codes h(x∗) by pre-trained

9
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Figure 1: Flowchart of SEH, where circle and square denote image and text respec-

tively, illustrated with toy data. Top) SEH deals with single-modal retrieval (SMR).

Bottom) SEH learns unified hashcodes for each modality of data in the task of cross-

modal retrieval (CMR).

hash function h, then scans over the hash table linearly, and eventually returns

similar results for the given mapped query (Fig. 1 Top). If the semantic text160

feature yi ∈ Rd is available, e.g. a sample consisting of an image and its

surrounding text (oi = (xi,yi), i ∈ In), SEH could learn an integrated binary

code for both modalities. As illustrated in Fig. 1 Bottom, SEH maps a query

(image or text) to a common Hamming space, then returns semantically relevant

results of the other modalities, facilitating cross-modal retrieval. SEH is suitable165

for an online large-scale data search task, since only bit XOR operations are

performed when calculating Hamming similarities between binary codes.

3.1. Problem Formulation

Let us now introduce a set of notations. Assume that O = {oi}ni=1 is a

set of samples with xi ∈ Rm being the i-th image descriptor of O. Given the

hash code length k, the purpose of SEH is to learn hash functions {hj}kj=1,

which map original data in Rm to a Hamming space1 {0, 1}k with h(x) =

[h1(x), h2(x), ..., hk(x)]T . Actually, the function h can be decomposed as follows:

h(x) = q[g(x)],

1It is equivalent to denote {−1, 1}k as Hamming space via a linear transformation.

10
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where g : Rm → Rk is the real-valued embedding function, and q : Rk → {0, 1}k

is the quantization function. As mentioned above, we simply set q(x) = sign(x).170

3.2. Objective Function

The core of hashing based image retrieval is the goal of preserving similarity

of original data and capturing salient structures of image. Hence, SEH generates

sparse codes si for each image descriptor xi via over-complete bases so as to

sufficiently capture structural primitives of image. However, the learned sparse175

codes {si}ni=1 are neither compact nor locality-sensitive. Our SEH solves this

problem using two different approaches. On the one hand, in order to obtain

compact feature zi, SEH considers the embedding projection of the form as

suggested in Eq. (3), i.e. zi = g(xi) = Pxi. On the other hand, in order

to make the learned compact features (i.e. Z = [z1, ..., zn]) locality-sensitive,180

SEH uses matrix factorization to approximate the Euclidean structures of the

original data (i.e. X = [x1, ...,xn]). Different from existing two-step sparsity-

based hashing methods that only achieve suboptimal results, SEH integrates

sparse coding, compact embedding and similarity preserving together and solves

these three problems in one objective function. An iterative strategy is designed185

to explore the optimal solution for SEH. Finally, the hash code is obtained by

quantization function q(zi). Before presenting our overall objective function,

we first look into these three subproblems separately.

3.2.1. Sparse Coding

Data-dependent sparse coding, describing each sample based on only several190

active vectors of trained dictionary, has been popularly utilized as an effective

image representation in many applications. As mentioned above, we concentrate

on the case of `1 regularization to control the sparsity as shown in Eq. (1), and

rewrite it to the matrix form as follows:

Lsc(B,S) = ‖X−BS‖2F + λ‖S‖`1 . (5)

We let B be over-complete (i.e. D > d), because it provides sufficient de-195

scriptive power for low-level features of image [40, 30]. Actually, the optimal

11
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solution S∗ in Eq. (1) is sparse but perturbation sensitive [49]. Next, we will

present how to embed S∗ into compact space while preserving the similarity

structures of the original data.

3.2.2. Compact Embedding200

We consider the embedding projection of the form as suggested in Eq. (3),

and reformulate it using matrix form:

Z = PS. (6)

It may end up with infinitely many solutions P satisfying the Eq. (6) (given Z

and S ), because S is not reversible. Fortunately, P can be approximated by

minimizing the following quadratic equation,

Lem(P) = ‖Z−PS‖2F . (7)

The smaller Lem(P) usually means the better approximation solution, and

the optimization problem minP{Lem(P)} can be easily solved through matrix

derivative operation.

3.2.3. Similarity Preserving

As mentioned above, preserving the similarity structures of the original data

is a key issue in the process of hash function learning. Normally, PCA, the

most notable low-dimensional embedding technique, is employed to preserve

the global structures of original data, which can be briefly recapped below.

Denote wt and λt as the t-th eigenvector and eigenvalue of XXT respectively,

According to the definition of eigenvector and eigenvalue, we have,

XXTwt = λtwt. (8)

Suppose W = [w1,w2, ...,wd], we can get the following formula,

‖WT (xi − xj)‖22 = (xi − xj)
TWWT (xi − xj)

= ‖xi − xj‖22.
(9)

12
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Eq. (9) holds because W is orthogonal2, i.e. WTW = WWT = I. The

largest k eigenvectors are selected as principal components in PCA. With W1 =

[w1,w2, ...,wk], the PCA embedding is performed as

Z = WT
1 X or X = W1Z. (10)

Now we’d like to investigate the global structure preserving of PCA. According

to Eq. (9) and Eq. (10) above, we have

‖xi − xj‖22 = ‖WT
1 (xi − xj)‖22 + ‖WT

2 (xi − xj)‖22
= ‖zi − zj‖22 + ‖WT

2 (xi − xj)‖22,
(11)

where W2 = [wk+1, ...,wd]. Obviously, by the triangle inequality and non-

negativity properties of norm, we can get the following inequalities,

0 ≤ ‖WT
2 (xi − xj)‖22 ≤ ‖WT

2 xi‖22 + ‖WT
2 xj‖22. (12)

Denote εi = ‖WT
2 xi‖22, and substitute Eq. (12) into Eq. (11), then we can get

the bounds of ‖zi − zj‖2 as:

‖xi − xj‖22 − (εi + εj) ≤ ‖zi − zj‖22 ≤ ‖xi − xj‖22. (13)

It’s necessary to analyze the expectation of εi in depth. Assume that each

descriptor xi is sampled uniformly, hence we have

E(ε) ≈
∑

i

εi/n =
∑

i

‖WT
2 xi‖22/n

=

d∑

t=k+1

∑

i

(wT
t xi)

2/n

=

d∑

t=k+1

wT
t XXTwt/n.

(14)

Substituting Eq. (8) into Eq. (14) will lead to:

E(ε) ≈
d∑

t=k+1

λtw
T
t wt/n ∝

d∑

t=k+1

λt. (15)

2Because the eigenvector of symmetrical matrix XXT is orthogonal, i.e. wT
i wj =

δij , i, j ∈ Id, where δij is Kronecker delta, and it is 1 if the variables are equal, and 0

otherwise.

13
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Eq. (15) implies that the approximated expectation of ε is proportional to205

the summation of the last d − k eigenvalue of XXT . Actually, Eq. (15) also

reveals that selecting the largest k eigenvectors as the principal components

(PCA technique) essentially minimizes the approximate expectation of ε.

However, Wang et al. prove that the orthogonality of embedding matrix (i.e.

WT
1 W1 = I) actually degrades the performance of a CBIR system, because the

low-variance directions will be picked up when a long code is required [58].

Hence, in our algorithm, we relax the orthogonality constraints in PCA em-

bedding Eq. (10), allowing successive projections to capture more of the data

variance. Analogous to Eq. (7) mentioned in the previous section, Eq. (10)

can be approximated by minimizing the following quadratic equation without

an orthogonality regularization, so

L(X)
ap (W,Z) = ‖X−WZ‖2F , (16)

where W ∈ Rd×k is the embedding matrix. Again, it is required to investigate

whether the global structure can be preserved by solving Eq. (16). Here, W210

tends to be a full rank matrix because usually k � d, and if the factorization is

perfect (i.e. X = WZ), we could obtain two important inequalities as follows,

‖W‖−1‖xi − xj‖22 ≤ ‖zi − zj‖22 ≤ ‖Ŵ‖‖xi − xj‖22, (17)

where Ŵ is the left inverse of W, i.e. ŴW = I. Compared to inequalities in

Eq. (13), the inequalities described in Eq. (17) control the bounds of ‖zi−zj‖22
through ‖xi−xj‖22 multiplied by a constant3. Minimizing Eq. (16) would reduce215

the reconstruction error of matrix factorization (usually, not equal to 0) which

affects the bounds significantly. Empirically, we investigate the distribution of

reconstruction error of matrix factorization based on two large datasets. The

results in section 4.2 also reveal that the error is always small in real applications.

Furthermore, we compare SEH with several state-of-the-arts hashing methods220

on a public dataset (SIFT1M), which is usually used to evaluate the ANN

3Actually, Inequalities (17) is known as bi-Lipschitz continuity in mathematical analysis.

14



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

search performances [59]. The results consistently reflect the superior ability of

similarity-preserving of SEH.

In addition, if the semantic text yi is available, we can also use Z to approx-

imate the structures of Y = [y1, ...,yn], which may be more precise. Similarly,

we have

L(Y )
ap (W,Z) = ‖Y −WZ‖2F . (18)

In fact, each column vector z∗i of the optimal solution in Eq. (18) is the k-

dimensional representation in latent semantic space [60, 61]. There is an intu-225

itive interpretation about combining Eq. (6) and Eq. (18) together, which is

actually a latent concept described by several image salient structures [24].

To sum up, either Eq. (16) or Eq. (18) is able to control Euclidean structure

approximating in the proposed approach, i.e. similarity preserving. To our

best knowledge, this is the first attempt to explore the matrix factorization for230

similarity preserving.

3.2.4. Overall Objective Function

The overall objective function, combining the sparse representing, affinity

preserving and linear embedding together, is defined by:

min
B,P,W,Z,S

L(B,P,W,Z,S) = Lsc + µLem + γL(·)
ap

s.t.‖bi‖22 ≤ 1, ‖pj‖22 ≤ 1, ‖wt‖22 ≤ 1, i, j ∈ ID, t ∈ Ik,
(19)

where µ, γ > 0 are the fixed weight parameters and we will experimentally

investigate how system performance will behave when varying those parameters

in section 4.5. L(·)
ap denotes either L(X)

ap or L(Y )
ap , and ‖·‖22 ≤ 1 is applied to avoid235

trivial solution.

3.3. Optimization Algorithm

Optimizing Eq. (19) is basically a non-convex problem, because there are

five matrix variables B,Z,P,W,S. Fortunately, it becomes convex with respect

to any one of the five variables while fixing the other four. Therefore, the240

optimization problem can be solved by the following listed steps iteratively
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until its convergence. Actually, no matter what type of L(·)
ap is, the solution for

optimizing Eq. (19) is essentially identical, therefore we only take L(Y )
ap as an

example.

Step1: Learning sparse representations S by fixing the other variables, then

Eq. (19) w.r.t. S is written as follows

min
S
L(S) = ‖X−BS||2F + λ‖S‖`1 + γ||Z−PS‖2F

= ‖


 X
√
γZ


−


 B
√
γP


S‖2F + λ‖S‖`1 .

(20)

We solve the `1-norm regularized least square problem by SLEP (Sparse Learn-245

ing with Efficient Projections) package4.

Step2: Again, learning compact embedded features Z by fixing the others

variables, then Eq. (19) is rewritten as:

min
Z
L(Z) = µ‖Y −WZ‖2F + γ‖Z−PS‖2F . (21)

By taking the derivative of Eq. (21) with respect to Z,

∂L(Z)

∂Z
= 2µWT (Y −WZ) + 2γ(Z−PS), (22)

and setting Eq. (22) to 0, we can obtain the close-form solution, which is

Z = (WTW +
γ

µ
I)−1(

γ

µ
PS + WTY). (23)

Step3: Learning B,P,W respectively using the Lagrange dual [45]. In fact,

the learning problem w.r.t. B,P,W is essentially identical, hence we only show

how to optimize B as the example. Fixing other variables, the Eq. (19) becomes

the least squares problem with quadratic constraints:

min
B
‖X−BS‖2F

s.t.‖bi‖22 ≤ 1, i ∈ ID.
(24)

4http://parnec.nuaa.edu.cn/jliu/largeScaleSparseLearning.htm
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Algorithm 1 Sparse Embedded Hashing

Input:

Training matrix X,Y, parameters λ, µ, γ, bit number k

Output:

Hash codes H, matrix variables B,W,Z.

1: Initialize Z,W,P and B by random matrices respectively, and normalizing

each column of X by `2 norm.

2: repeat

3: Fix Z,P,B and W, update S as illustrated in Step1;

4: Fix W,P,B and S, update Z by Equation (23);

5: Fix W,P,W and S, update B as illustrated in Step3;

6: Fix Z,B,W and S, update P by optimizing:

min
P
‖Z−PS‖2F

s.t. ‖pi‖22 ≤ 1, i ∈ ID

7: Fix P,B,Z and S, update W by optimizing:

min
W
‖Y −WZ‖2F

s.t. ‖wi‖22 ≤ 1, i ∈ Ik

8: until convergency.

9: H = sign(Z).

Consider the Lagrangian:

L(B, ~θ) = ‖X−BS‖2F +
n∑

i=1

θi(‖bi‖22 − 1), (25)

where θi > 0 is the Lagrange multipliers. Setting the derivative of Eq. (25)

w.r.t. B to be zero, the close form solution for Eq. (24) is

B = XST (SST + Θ)−1, (26)

where Θ is a diagonal matrix with diagonal entry being Θii = θi, which can be
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obtained by optimizing the following Lagrange dual problem

min
Θ

tr(XST (SST + Θ)−1SXT ) + tr(Θ).

s.t. Θii ≥ 0, i ∈ ID
(27)

Eq. (27) can be solved by using Newtons method or conjugate gradient. The

complete algorithm is summarized in Alg. 1.250

3.4. Computational Complexity Analysis

Typically, solving (20) and (21) requires O(nM2)5 and O(d3) respectively.

The Lagrange dual (27), which is independent to n, can be solved by using New-

tons method or conjugate gradient, which show better efficiency than steepest

gradient descent [45]. In a word, the total time complexity of training SEH is255

linear to n, which is really scalable for large-scale datesets compared with most

existing data-dependent hashing.

4. Experiments

In this section, we evaluate the ANN search performances in similarity-

preserving, single- and cross-modal retrieval tasks, respectively.260

4.1. Experiment Settings

4.1.1. Evaluation Metrics

First of all, we introduce two basic metrics that we used to measure the

system performance, which are:

Precision =
#relevant instance retrieved

#retrieved instance

Recall =
#relevant instance retrieved

#all relevant instance
.

(28)

Based on them, we adopt mean Average Precision (mAP) to evaluate the

algorithm effectiveness in our experiment. This metric has been widely used

5The complexity of lasso algorithms is O(nM2 +M3), but usually, n�M .
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in the literatures including [17], [62] due to its good discriminative power and

stability to evaluate the performance of the similarity search. Basically, a large

mAP indicates better performance that similar instances have high ranks. More

specifically, given a query x∗ and a set of R retrieved instances, the Average

Precision (AP) is defined as:

AP(x∗) =
1

L

R∑

r=1

Pr(x∗)Ir(x∗),

where L is the number of relevant instances in retrieved set; Pr, the precision

of top r retrieved instances, refers to the ratio between the number of relevant

instance retrieved and the number of retrieved instance r. Ir is an indicator265

function, which is equal to 1 if the r-th retrieved instance is relevant or 0 oth-

erwise. The APs for all queries are averaged to obtain mAP.

In addition to mAP, we also use Recall-N to measure the similarity-preserving

as suggested in [17] on SIFT1M [59] dataset. Let Sd
k(x,Ω) be k-nearest neigh-

bors of x in space Ω using metric d, and let dE and dH denote the Euclidean

and Hamming distance metric respectively. For example, given a query x∗,

SdE
10 (x∗,X) denotes the top 10 nearest neighbors of that query in Euclidean

space. SdE
10 (x∗,X) is obtained by a brute force search and is regarded as the

ground truth in our experiment. Therefore, Recall-N(x∗) is computed by:

Recall-N(x∗) =
|SdH

N (h(x∗), h(X)) ∩ SdE
10 (x∗,X)|

10
,

where SdH

N (h(x∗), h(X)) denotes the query’s N nearest neighbors in Hamming

space. Recall-N is obtained by averaging the Recall-N(·) over all queries.

Moreover, we also report two additional types of performance curves that are270

used in the prior arts. One is the precision-recall curve showing the precision

at different recall level, and the other one is topN-precision curve reflecting the

change of precision with respect to the number of retrieved instances.

4.1.2. Implementation Details

We first apply PCA technique to reduce the feature dimension to 64. which275

can also alleviate the influence of noise. Afterwards, the length of sparse codes,
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Figure 2: The reconstruction error of matrix factorization.

i.e., the size of dictionary B, is set to 512, and the sparse parameter λ is set to

0.2. SEH has two model parameters: µ and γ. The former controls the com-

pression of sparse coding while the latter determines the similarity-preserving

of compressed features. When comparing SEH with the baseline methods, we280

fix µ and γ to be 1 in all experiments. For the baseline methods, we perform

a grid search to tune their parameters and report the best results. Moreover,

we set R = 100, and all the results are averaged over 10 runs to remove any

randomness.

4.2. Similarity-Preserving Task285

4.2.1. Reconstruction Error of Matrix Factorization

We investigate the reconstruction error of inequalities in Eq. (17) based

on two public datasets. The first dataset is CIFAR-10 [63], in which 60, 000

images have been manually grouped into 10 ground-truth classes. Each image

is represented by a 512-dimension GIST [64] descriptor and is assigned to one290

class. The second dataset is MNIST6, which is made up of 70, 000 hand-written

digits from 0 to 9. Each image in this dataset is represented by a 784-dimension

feature with gray-scale values. We randomly select 10, 000 pairs to draw the

reconstruction error histogram. In order to eliminate the influence caused by

different data dimensions, the original features are normalized, i.e. we have295

6http://yann.lecun.com/exdb/mnist
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Figure 3: The recall curve on SIFT1M dataset

‖xi‖ = 1. The statistical distribution is shown in Fig. 2. As can be seen, more

than 95% reconstruction errors fall into the range of [0, 0.2], which means that

reconstruction errors of MF are indeed small, and the bounds in inequalities

(Eq.17) are tight.

4.2.2. Euclidean Similarity-Preserving300

Euclidean Similarity-preserving requires that the hash methods should map

features that are close in Euclidean space to the binary codes that are similar

in Hamming space. Here, Recall-N suggested by [17] is measured based on

SIFT1M [59] dataset, which contains 1 million 128-dimension SIFT features

and 10, 000 independent queries. To highlight the superiority of our algorithm,305

we compare it with the following state-of-the-art unsupervised hashing methods:

• Locality Sensitive Hashing [7] (LSH)7,

• PCA Hashing [16] (PCAH)7,

• Spectral Hashing [12] (SpH)8,

• Kernelized Locality-sensitive Hashing[8](KLSH)8,310

• K-means Hashing[17](KMH)8,

7We implemented it ourselves because the code is not publicly available.
8The source code is kindly provided by the authors.
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Table 1: Single-modal retrieval mAP comparison on three datasets.

Task
CIFAR-10 MNIST NUS-WIDE

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

LSH 0.1492 0.1841 0.2181 0.3821 0.5826 0.7018 0.3982 0.4589 0.4732

PCAH 0.2273 0.2439 0.2442 0.6890 0.7710 0.7813 0.4400 0.4761 0.4668

SpH 0.2152 0.2280 0.2405 0.6887 0.7759 0.8057 0.3712 0.4096 0.4626

KLSH 0.1781 0.1830 0.2094 0.5826 0.7484 0.7869 0.3631 0.4216 0.4435

KMH 0.2747 0.2756 0.3037 0.7348 0.8101 0.8228 0.4325 0.5012 0.5054

CH 0.2496 0.2686 0.2984 0.5659 0.8022 0.8234 0.4171 0.4642 0.4934

SEH 0.2956 0.3288 0.3619 0.8038 0.8969 0.9157 0.5015 0.5434 0.5523

• Compressed Hashing[28](CH)7.

The curves shown on Fig. 3 reveal that our method consistently outperforms all

the other competitors when required bit number is varying. It can be observed

that LSH is far behind of the other approaches in terms of the performance,315

because it is a data-independent method. PCAH performs well in the case of

32 bits hash, but it is inferior when a long-bit code is required. The reason

might be that very low-variance directions will be picked up as the increased

code length [58]. KMH, an affinity-preserving quantization method, performs

very well with 64 bits, but it has a significant performance drop when a short320

code length is required.

4.3. Single-modal Retrieval Task

We evaluate the performance of conducting single-modal retrieval task on

CIFAR-10, MNIST and NUS-WIDE9. CIFAR-10 is described in section 4.2.1,

and 50, 000 images are selected as the database and the rest forms the query set.325

Images are considered to be relevant if they share the same label. Similarly, 60,

000 images from MNIST are chosen as the database and the rest are supposed to

be the query set. Images are considered to be relevant only if they are the same

digit. NUS-WIDE [65] contains 10 concepts and each image is adhered to at least

9http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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Figure 4: PR-curves of conducting single-modal retrieval task on CIFAR-10, MNIST

and NUS-WIDE with different code lengths.

one of them. Each image is represented by a 500-dimension SIFT histogram. We330

select 5, 000 images as the query set and the remaining constitutes the database.

Images are assumed to be relevant if they share at least one concepts.

Unlike the test of preserving the similarity, Single-modal Retrieval Task is

used to verify the capability of retrieving semantically related results. Again,

we compare our SEH with LSH, PCAH, SpH, KLSH, KMH and CH. The mAP335

values achieved by different approaches are listed in Table 1 and the correspond-
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ing PR curves are shown in Fig. 4. Again, our algorithm consistently performs

the best over three test datasets, though some methods such as KMH and CH

are pretty close to our algorithm at certain situations with respect to the per-

formance. To some extent, the results reflect the property of the algorithm.340

For instance, the performance of Spectral hashing drops when the code length

increases to 128. This is due to the fact that it uses eigenvalue decomposition

on affinity matrix to learn hash functions, leading to orthogonality constraints.

4.4. Cross-modal Retrieval Task

As we mentioned before, SEH is able to handle the cross-modal retrieval. To345

test it, we conduct experiments on three commonly used real-world datasets.

The first dataset is Wiki10, which is a collection of 2,866 Wikipedia multimedia

documents. Each document contains 1 image and at least 70 words, where the

image is represented by a 128-dimension SIFT histogram and the text is repre-

sented by a 10-dimension topic vector generated by LDA model [66]. Totally 10350

categories are included in this dataset and each document (image-text pair) is

labeled by one of them. The second dataset is LabelMe11, which is made up of

2688 images. Each image is annotated by several tags depending on the objects

in this image. Tags occurred in less than 3 images are discarded and eventually

245 unique tags are remained. This dataset is divided into 8 unique outdoor355

scenes with the constraint that each image belongs to one scene. The image is

represented by a 512-dimension GIST [64] feature and the text is represented

by an index vector of selected tags. The last dataset is NUS-WIDE, which is

already introduced before. Note that all these three datasets consist of text

and images, and we alternately use text and image as queries to search their360

semantically counterparts in this cross-modal retrieval task. Pairs of image and

text are considered to be relevant if they share at least one same concept.

SEH(LSSH)12 is compared with the following state-of-the-art cross-modal

10http://www.svcl.ucsd.edu/projects/crossmodal/
11http://people.csail.mit.edu/torralba/code/spatialenvelope/
12It is worth mentioning that Latent Semantic Sparse Hashing (LSSH) [24], published on
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Table 2: Cross-modal retrieval mAP comparison on three datasets.

Method
Wiki LabelMe NUS-WIDE

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

CVH 0.1984 0.1490 0.1182 0.4704 0.3694 0.2667 0.4694 0.4656 0.4705

Img IMH 0.1922 0.1760 0.1572 0.3593 0.2865 0.2414 0.4564 0.4566 0.4589

to DFH 0.2097 0.1995 0.1943 0.4994 0.4213 0.3511 0.4774 0.4677 0.4674

Txt CHMIS 0.1942 0.1852 0.1796 0.4894 0.4010 0.3414 0.3596 0.3652 0.3565

SEH 0.2330 0.2340 0.2387 0.6692 0.7109 0.7231 0.4933 0.5006 0.5069

CVH 0.2590 0.2042 0.1438 0.5778 0.4403 0.3174 0.4800 0.4688 0.4636

Txt IMH 0.3717 0.3319 0.2877 0.4346 0.3323 0.2771 0.4600 0.4581 0.4653

to DFH 0.2692 0.2575 0.2524 0.5800 0.4310 0.3200 0.5174 0.5077 0.4974

Img CHMIS 0.1942 0.1852 0.1796 0.4894 0.4010 0.3414 0.3596 0.3652 0.3565

SEH 0.5571 0.5743 0.5710 0.6790 0.7004 0.7097 0.6250 0.6578 0.6823

hash methods, which include:

• Cross-view Hashing[19](CVH)7 ,365

• Data Fusion Hashing [21] (DFH)8 ,

• Inter-media Hashing [23](IMH)7 ,

• Composite Hashing with Multiple Information Sources [18] (CHMIS)8 .

The mAPs achieved by different methods are shown in Table 2, and their

corresponding performance curves are presented in Fig. 5 and Fig. 6. It can370

be seen that SEH significantly outperforms all baseline methods on both cross-

modal similarity search tasks. When closely looking at the results, it is noticed

that the semantic gap between two views of Wiki is quite large. In this case, it

seems that the text has better capability to describe the topic than the image.

This potentially interprets why the performance becomes much better when the375

query is a text, compared to the case if the query is an image. Additionally, SEH

can reduce the semantic gap between modalities in database since the relevant

text and image share the same hash codes (same as CHMIS). That is why SEH

can improve mAP by 18%, compared to the best baseline algorithm.

SIGIR, is the cross-modal retrieval version of our proposed framework.
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Figure 5: PR-curves of conducting cross-modal retrieval task on Wiki(Left), La-

belMe(Middle) and NUS-WIDE(Right) with different code lengths.

It is worth pointing out that the PR curves of several methods look irregular.380

For example, the PR curve of CVH when querying from text to image at 64

bits shows that it behaves like a random guess. This phenomenon was also

reported in [62] and [22]. A reasonable explanation given by [16] is the hash

codes will be dominated by bits with very low-variance as the increased code

length. Consequently, these indiscriminative hash bits may force the method to385

make a random guess. However, SEH performs better even for longer length of
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Figure 6: TopN-precision-curves of conducting cross-modal retrieval task on

Wiki(Left), LabelMe(Middle) and NUS-WIDE(Right) with different code lengths.

hash codes because SEH can learn more precise descriptions with more latent

concepts.

4.5. Parameter Sensitivity Analysis

Moreover, we conduct an empirical analysis on parameter sensitivity over390

all datasets, because it is important to know how the algorithm behaviors when

changing the parameters. Our idea is that we keep the other parameters fixed to
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Figure 7: Parameter sensitivity analysis

the settings mentioned in section 4.1.2 when analyzing one particular parameter.

Due to limited space, we only present the results at 64 bits on all datasets

in Fig. 7. The dashed lines are the best performance of baselines with all395

experiment settings. For instance, the red dashed line in the first figure shows

the result of DFH at 16 bits, which, as be observed from Tab. 2, is the best

result of all baselines varying code length for ‘Image to Text’ task.

The parameter µ leverages the power of images and texts. Actually, utilizing

the information from both modals can lead to better results. When µ is too400

small, e.g., µ < 0.05, our model just focuses on images while ignoring texts.

When µ is too large, e.g., µ > 10, our model prefers information from texts.

Specifically, it is easy to choose a proper value for µ because we can observe

that SEH shows stable and superior performance when µ ∈ [0.05, 10].

The parameter γ controls the connection of latent semantic spaces. If γ405
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is too small, the connection between different modals is weak with imprecise

projection in Eq. (18), which will lead to poor performance for cross-modal

similarity search. However, if γ is too large, the strong connection twill make

the learning of latent representations of images and texts, i.e., Sparse Coding

and Matrix Factorization, to be quite imprecise. Because images and texts are410

represented by imprecise features, it is reasonable that the performance will

degrade. Fortunately, it is also effortless to choose proper γ from the range

[0.005, 10].

5. Conclusion

In this paper, we have proposed a Sparse Embedded Hashing technique,415

which is inspired by the excellent capability of sparse coding for image represen-

tation. The major difference between traditional algorithms and our algorithm

lies in the fact that we implement the sparse representing, affinity preserving

and linear embedding in one objective function. Moreover, matrix factorization

technique is employed to preserve visual or text (if available) global similarity420

structure of the original data points. The flexibility of this technique enables us

to handle single-modal retrieval and cross-modal retrieval in one system. Ex-

tensive evaluations on both single- and cross-modal retrieval tasks reveal that

our SEH provides significant advantages over state-of-the-art hashing methods

for CBIR.425
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