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|. Introduction
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Generative Al refers to artificial intelligence systems or models that have the capability
to create new content, such as images, text, or even music, that is original and
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LLM

« Large Language
Models are a type of
Al system that works
with language.

* In the simplest of terms,
LLMs are next-word

« Examples:
OpenAl's GPT-4
Google's PaLM
Meta's LLaMA
Hugging Face -
Bloom

|. Introduction

Foundational Models

“LLMs” specifically refers
to language-focused
systems, while
“foundation model” is
attempting to stake out a
broader function-based
concept, which could
stretch to accommodate
new types of systems in
the future. (Stanford
University)

Al Driven Chat Bots

* UX for LLMs

* Chat GPT stands for
chatbot generative pre-
trained transformer

* They have LLMs behind
them

* Use prompts for
conversation

« Examples:
- Open Al Chat GPT

- Google BARD (multi
modal)

Fine Tunning

* To use LLMs you need
to fine tuning and
distillation

* Fine Tuning

Examples:

- Reinforcement
Learning with Human
Feedback (Open Al)

- Active Learning
(UiPath)




ll. Methodology
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lll. Research & Implementation

» Transformer Model
Architecture:

» Encoder-Decoder Structure:

» Attention Mechanism:

» Multi-Head Attention:
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Figure 1: The Transformer - model architecture.
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Attention(Q,K,V) = softmax

Attention is a communication mechanism with a directed
graph where nodes aggregate information via weighted
sums in a data-dependent manner.

Positional encoding is used to encode node positions, as
attention does not have a notion of space, unlike
convolutional mechanisms.

Examples across the batch dimension do not communicate
with each other.

Encoder blocks enable communication between all nodes,
useful for tasks like sentiment analysis.

Self-attention is used when keys, queries, and values come
from the same source, while cross-attention involves keys
and values from different sets of nodes.
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tensor([18]) the target: 47

tensor([18, 47]) the target: 56

tensor([18, 47, 56]) the target: 57

tensor([18, 47, 56, 57]) the target: 58

tensor([18, 47, 56, 57, 58]) the target: 1

tensor([18, 47, 56, 57, 58, 1]) the target: 15
tensor([18, 47, 56, 57, 58, 1, 15]) the target: 47
tensor([18, 47, 56, 57, 58, 1, 15, 47]) the target: 58

- The transformer is trained to handle variable
length contexts, ranging from small contexts of size
1 to larger contexts of size 8.

- This capability is particularly advantageous during
inference time, allowing the model to adapt to
different input lengths dynamically.
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V. Tools Used Conclusion
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Increasing Model Size

Experimenting with larger
embedding dimensions and more
attention heads can improve the
model's capacity to learn complex
patterns.

Adding More Layers

Stacking multiple self-attention
and feed-forward layers can allow
the model to capture deeper
relationships within the data.

V. Future Plan and
Recommendation
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Different positional
Encoding
While this project used a simple

positional embedding table, other
methods like sinusoidal encodings
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Different Training
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Techniques like gradient clipping

and learning rate scheduling can
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“Although the study wasn’t
able to achieve Shakespeare
due to resource restriction,
the result did show
significant abilities to
capture contextual patterns
and hint towards much
higher performance if
expaned further with proper
resource utilisation”

V. Summary

Shakespeare

Utilized small Shakespeare
dataset for character-level
encoding.

01

Training and validation
02 Data spliting

GPT -- Bigram
Click here to add the text, and
please try to explain your point of
view as succinctly as possible.

05
06

Self-Attention
Multi-Head Attention

Increase the word forecast
accuracy by weighing the
contextual meaning

Feed-Forward Layer

Added a feed-forward layer for
complex information processing.







