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1. SITUATION

e E-commerce current situation In
emerging countries

e Some of e-Commerce technologies

e Challenges faced by eCommerce

e E-commerce security threats
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RETAIL ECOMMERCE IN DEVELOPED VS
EMERGING COUNTRIES (2017-2027)
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Source: Euromonitor report, 2023



SOME ECOMMERCE TECHNOLOGIES

o

Payment technology Logistics technology Security technology

iy

Database systems Web server




Ecommerce is still facing different challenges, espcially in terms of safety & security concerns...

Where Do Consumers Encounter Fraudulent Activities?
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The annual
cost of fraud in
the global economy

Source: Crowe, 2019
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Consumer concerns about unfamiliar websites
are still at a high point

. Very Concernec - yomewhat ncernet Mot Concerned
--II I

How concerned are you about providing personal information (e.g., credit card, address, phone number)

when shopping online at each of the following types of websites? Survey Monkey Audiences, 2022



2. ANALYSIS

e What is E-commerce fraud?
e Types of E-commerce fraud

e Fraud Statistics
e Prevent E-commerce fraud
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WHAT IS ECOMMERCE FRAUD
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E-commerce fraud, where
criminals use stolen or
fake cards to purchase
online, is on the rise.
Unlike physical theft,
online fraud thrives on
new technologies. E-
commerce fraud
detection uses algorithms
to analyze transactions
and flag suspicious
activity, reducing manual
reviews over time.



TYPES OF ECOMMERCE FRAUD

E-commerce fraudsters use various  Triangulation Fraud: Setting up a fake store to steal
tricks to steal money. Here are some customer card details and then buying from a
common ones: legitimate shop with those details.

e Classic Fraud: Stealing credit card
details to make unauthorized
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e Card Testing Fraud: Trying stolen CuEtomar "\ A Py el

card details on a website to see if
they're valid before using them
elsewhere.
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TYPES OF ECOMMERCE FRAUD (cont.)

 Digital Payment Fraud: Criminals using stolen e Merchant App Fraud: Criminals
card details for online transactions. hacking merchant apps or using
stolen cards to make purchases.

Online Payment Fraud 1S e Sign-up Fraud: Creating fake
GrOWing Annua“y accounts with stolen data to

exploit promotions
e Interception fraud: Creating an

50 : order with the correct billing and
iimm A 100% increase e ke
in a few short shipping address, then stealing the

$26 years. package after delivery.

Billion

2019 2024

Source: Online Fraud Will Cause $200 Billion in Losses in 4
Years, Frank on Fraud



FRAUD STATISTICS
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Cost of E-commerce Fraud Statistics

Artificial Intelligence (Al) for Energizing the E-commerce

E-commerce is booming, with sales projected to reach $4.9 trillion by 2021. However, this growth
is accompanied by a surge in payment fraud, with costs expected to hit $40.62 billion by 2027.
Fraud attempts are increasing, with successful rates rising by 43% for some retailers. The financial
impact is significant, costing businesses billions globally.



Quarterly US retailecommerce growthin millions
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COVID-19 sparked the greatest e-commerce growth

Overall, fraud attempts and losses
rose significantly, with businesses
experiencing a higher volume of
attacks and fraudsters targeting
expensive items.
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COVID-19 fueled a surge in e-
commerce, but also fraud. Account
takeovers and phishing scams
skyrocketed, while contactless
payments led to more CNP fraud.

Phishing websites Fraud attempt rate Fraud loss volume

Artificial Intelligence (Al) for Energizing the E-commerce



PREVENT ECOMMERCE FRA

The problem: E-commerce fraud is a growing concern, with costs rising significantly.

The solution: Implement a multi-layered approach to fraud prevention.

e Use Al and machine learning

e |Integrate data from multiple sources

e Apply different levels of authentication
e Maintain PCl compliance

e Train staff

e Keep software and systems up-to-date
e Conduct regular audits



3. SOLUTION

e Al & Machine learning
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CONVENTIONAL RULE-BASED FRAUD DETECTION FLOW
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BENEFITS OF ML IN FRAUD PREVENTION

Real-Time fraudulent
detection

Algorithms can consider
changes in real-time and
act on a fraudulent
attempt, in some cases,
even before the attack.
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Improvement in
accuracy of ML models
over time

A constantly learning ML
system is good at finding
hidden correlations beyond
human capabilities.

It is keen on finding new
scenarios from discovered
threat and preventing them

Fast, affordable setup
and easy ongoing
management of ML
models

It can leverage Big Data,
saving the money required
to have a large team of
analysts

Greater speed in risk
assessment by efficient
pattern identification in
data.



A FEW FRAUD DETECTION MACHINE LEARNING ALGORITHMS

Logistic Regression

Logistic regression, a basic yet robust ML algorithm,
predicts binary outcomes by fitting data to a logistic
function.

N R T Y

Threshold Value

y=0.3
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Decision trees

Decision trees categorize data using learned rules, offering
simplicity in explanation. While their rules can form a rules-based
system, slight data changes can lead to entirely different rules.
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A FEW FRAUD PREVENTION MACHINE LEARNING ALGORITHMS (CONT.)

Random Forests

Random forests, a machine learning algorithm, boost classification
accuracy by amalgamating multiple decision trees and averaging
their outputs. They excel with large datasets but are less
interpretable than decision trees due to multiple rule sets.
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K-Nearest Neighbors

KNN stores all cases and classifies new ones based on a majority
vote from its k best neighbors, using a distance function. Unlike
other ML algorithms, it doesn't create a model but classifies on the
fly, making it computationally more intensive for fraud detection..
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