
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Hyper-YOLO: When Visual Object Detection
Meets Hypergraph Computation

Yifan Feng, Jiangang Huang, Shaoyi Du, Senior Member, IEEE, Shihui Ying, Jun-Hai Yong, Yipeng Li,
Guiguang Ding, Rongrong Ji, Senior Member, IEEE Yue Gao, Senior Member, IEEE

Abstract—We introduce Hyper-YOLO, a new object detection
method that integrates hypergraph computations to capture the
complex high-order correlations among visual features. Tradi-
tional YOLO models, while powerful, have limitations in their
neck designs that restrict the integration of cross-level features
and the exploitation of high-order feature interrelationships. To
address these challenges, we propose the Hypergraph Compu-
tation Empowered Semantic Collecting and Scattering (HGC-
SCS) framework, which transposes visual feature maps into
a semantic space and constructs a hypergraph for high-order
message propagation. This enables the model to acquire both
semantic and structural information, advancing beyond conven-
tional feature-focused learning. Hyper-YOLO incorporates the
proposed Mixed Aggregation Network (MANet) in its backbone
for enhanced feature extraction and introduces the Hypergraph-
Based Cross-Level and Cross-Position Representation Network
(HyperC2Net) in its neck. HyperC2Net operates across five scales
and breaks free from traditional grid structures, allowing for
sophisticated high-order interactions across levels and positions.
This synergy of components positions Hyper-YOLO as a state-of-
the-art architecture in various scale models, as evidenced by its
superior performance on the COCO dataset. Specifically, Hyper-
YOLO-N significantly outperforms the advanced YOLOv8-N and
YOLOv9-T with 12% APval and 9% APval improvements. The
source codes are at https://github.com/iMoonLab/Hyper-YOLO.

Index Terms—Object Detection, Hypergraph, Hypergraph
Nerual Networks, Hypergraph Computation

I. INTRODUCTION

The YOLO series [1]–[11] stands out as a mainstream
method in the realm of object detection, offering several ad-
vantages that cater to these diverse applications. The architec-
ture of YOLO consists of two main components: the backbone
[7], [12]–[14] and neck [10], [15], [16]. While the backbone
is designed for feature extraction and has been extensively
studied, the neck is responsible for the fusion of multi-scale

Yifan Feng, Jun-Hai Yong, Guiguang Ding, and Yue Gao are with
the School of Software, BNRist, THUIBCS, BLBCI, Tsinghua University,
Beijing 100084, China. E-mail: evanfeng97@gmail.com; {yongjh,dinggg,
gaoyue}@tsinghua.edu.cn;

Jiangang Huang and Shaoyi Du are with Institute of Artificial In-
telligence and Robotics, College of Artificial Intelligence, Xi’an Jiao-
tong University, Xi’an 710049, China. E-mail: mywhy666@stu.xjtu.edu.cn;
dushaoyi@xjtu.edu.cn;

Shihui Ying is with the Department of Mathematics, School of Science,
Shanghai University, Shanghai 200444, China. E-mail: shying@shu.edu.cn;

Yipeng Li is with the Department of Automation, Tsinghua University,
Beijing 100084, China. E-mail: liyipg@gmail.com;

Rongrong Ji is with the Media Analytics and Computing Laboratory,
Department of Artificial Intelligence, School of Informatics, Institute of
Artificial Intelligence, and Fujian Engineering Research Center of Trusted
Artificial Intelligence Analysis and Application, Xiamen University, 361005,
China. E-mail: rrji@xmu.edu.cn;

0 10 20 30

0.35

0.40

0.45

0.50

 (
%

)

Parameters (M)

 YOLOv5
 YOLOv6-3.0
 Gold-YOLO
 YOLOv8
 Hyper-YOLO
 Hyper-YOLO v1.1

Fig. 1. Comparison with other SOTA YOLO series methods on the COCO.

features, providing a robust foundation for the detection of
variously sized objects. This paper places a particular emphasis
on the neck, which is paramount in enhancing the model’s
ability to detect objects across different scales.

Contemporary YOLO models have adopted the PANet [16]
for their necks, which employs top-down and bottom-up
pathways to facilitate a comprehensive fusion of information
across scales. However, the PANet’s capability is predomi-
nantly confined to fusing features between adjacent layers and
does not sufficiently address cross-level feature integration.
In contrast, the gather-distribute neck design, exemplified by
Gold-YOLO [10], promotes inter-layer information exchange
but still falls short of facilitating cross-position interactions
within the feature map. Moreover, it does not thoroughly
explore the potential of feature interrelationships, particularly
those involving high-order correlations. High-order correla-
tions refer to the complex and often non-linear relationships
that exist between features at different scales, positions, and

ar
X

iv
:2

40
8.

04
80

4v
1 

 [
cs

.C
V

] 
 9

 A
ug

 2
02

4

https://github.com/iMoonLab/Hyper-YOLO


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

semantic levels, which are critical for understanding the deeper
context and interactions within visual data. It is noticed that
the synergistic representation of low-level visual features and
their correlations plays a critical role in the object detection
task. The integration of these basic features with high-level
semantic information is crucial for the accurate identification
and localization of objects within a given scene. The explo-
ration of high-order correlations underlying low-level features
for semantic analysis remains a challenging yet essential topic
within many computer vision tasks. This phenomenon, where
the mining of such high-order relationships is commonly
overlooked, may limit the performance of vision tasks.

In practice, hypergraphs [17], [18] are commonly employed
to represent complex high-order correlations due to their
enhanced expressive power over simple graphs. While edges
in a simple graph are limited to connecting only two vertices,
thereby greatly restricting their expressiveness, hyperedges in
a hypergraph can connect two or more vertices, enabling the
modeling of more intricate high-order relationships. Compared
to simple graphs, hypergraphs can capture a richer set of
interactions among multiple entities, which is vital for tasks
that require an understanding of complex and multi-way
relationships, such as object detection in computer vision,
where those cross-level and cross-position correlations among
feature maps are crucial.

Different from most previous works focusing on enhancing
the backbone of feature extraction, we propose the Hypergraph
Computation Empowered Semantic Collecting and Scattering
(HGC-SCS) framework. This framework is ingeniously con-
ceived to enhance the feature maps extracted by the visual
backbone through their transposition into an abstract semantic
space, followed by the construction of an intricate hypergraph
structure. The hypergraph serves as a conduit for enabling
high-order message propagation among the features within this
semantic space. Such an approach equips the visual backbone
with the dual capability of assimilating both semantic and
complex structural information, thereby overcoming the
limitations of conventional semantic feature-focused learning
and elevating performance beyond its traditional bounds.

Building upon the aforementioned HGC-SCS framework,
we introduce Hyper-YOLO, a new YOLO method based on
hypergraph computation. Hyper-YOLO, for the first time,
integrates hypergraph computation within the neck component
of a visual target detection network. By modeling the intricate
high-order associations inherent to feature maps extracted from
the backbone, Hyper-YOLO substantially enhances object
detection performance. In terms of the backbone architecture,
Hyper-YOLO incorporates the Mixed Aggregation Network
(MANet), which amalgamates three distinctive foundational
structures to enrich the flow of information and augment
feature extraction capabilities, building upon the base provided
by YOLOv8. In the realm of the neck, leveraging the proposed
HGC-SCS framework, we achieve a multi-scale feature fusion
neck known as the Hypergraph-Based Cross-Level and Cross-
Position Representation Network (HyperC2Net). In contrast
to conventional neck designs, HyperC2Net fuses features
across five different scales, concurrently breaking away from
the grid structure of visual feature maps to facilitate high-

order message propagation across levels and positions. The
combined enhancements in both the backbone and the neck
position Hyper-YOLO as a groundbreaking architecture. The
empirical results (Figure 1) on the COCO dataset attest to
its significant superiority in performance, substantiating the
efficacy of this sophisticated approach in advancing the field
of object detection. Our contributions can be summarized as:

1) We propose the Hypergraph Computation Empowered
Semantic Collecting and Scattering (HGC-SCS) frame-
work, enhancing visual backbones with high-order in-
formation modeling and learning.

2) Leveraging the proposed HGC-SCS framework, we de-
velop HyperC2Net, an object detection neck that facil-
itates high-order message passing throughout semantic
layers and positions. HyperC2Net markedly elevates the
neck’s proficiency in distilling high-order features.

3) We propose the Mixed Aggregation Network (MANet),
which incorporates three types of blocks to enrich the
information flow, thereby enhancing the feature extrac-
tion capabilities of the backbone.

4) We present Hyper-YOLO, which incorporates hyper-
graph computations to enhance the model’s high-order
information perception capabilities, leading to improve-
ments in object detection. Specifically, our Hyper-
YOLO-N achieves significant improvements in APval,
with a 12% increase compared to YOLOv8-N and a 9%
increase compared to YOLOv9-T on the COCO dataset.

II. RELATED WORK

A. YOLO Series Object Detectors

The YOLO series has been a cornerstone in real-time
object detection, evolving from YOLOv1’s [1] single-stage
detection to YOLOv8’s [8] performance-optimized models.
Each iteration, from YOLOv4’s [3] structural refinements to
YOLOv7’s [7] E-ELAN backbone, has brought significant ad-
vancements. YOLOX [9] introduced anchor-free detection, and
Gold-YOLO [10] enhanced feature fusion with its Gather-and-
Distribute mechanism. Despite the emergence of RT-DETR
[19] and other detectors, the YOLO series remains prevalent,
partly due to its effective use of CSPNet, ELAN [14], and
improved PANet [16] or FPN [15] for feature integration,
coupled with sophisticated prediction heads from YOLOv3
[2] and FCOS [20]. YOLOv9 [21] introduces programmable
gradient information and the Generalized Efficient Layer Ag-
gregation Network to minimize information loss during deep
network transmission. Building upon those YOLO methods,
this paper presents Hyper-YOLO, an advanced approach that
leverages hypergraph computations to enhance the complex
correlation learning capabilities of the YOLO framework.
Hyper-YOLO aims to improve the learning and integration
of hierarchical features, pushing the boundaries of object
detection performance.

B. Hypergraph Learning Methods

A hypergraph [17], [18] can be utilized to capture these
complex, high-order associations. Hypergraphs, with their



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

hyperedges connecting multiple nodes, excel in modeling intri-
cate relationships, as evidenced in their application to diverse
domains such as social network analysis [22], [23], drug-target
interaction modeling [24], [25], and brain network analysis
[26], [27]. Hypergraph learning methods have emerged as
a powerful tool for capturing complex and high-order cor-
relations in data, which traditional graph-based techniques
may not adequately represent. The notion of hyperedges, as
discussed in Gao et al. [17], facilitates the modeling of these
intricate relationships by allowing multiple nodes to interact
simultaneously. Hypergraph Neural Networks (HGNN) [28]
exploit these relationships, enabling direct learning from hy-
pergraph structures through spectral methods. Building on
this, General Hypergraph Neural Networks (HGNN+) [18]
introduce spatial approaches for high-order message propa-
gation among vertices, further expanding the capabilities of
hypergraph learning. Despite these advancements, the applica-
tion of hypergraph learning in computer vision tasks remains
relatively unexplored, particularly in the areas of modeling
and learning high-order associations. In this paper, we will
delve into how hypergraph computations can be harnessed
for object detection tasks, aiming to elevate both classification
and localization accuracy by integrating the nuanced relational
information that modeled by the hypergraph.

III. HYPERGRAPH COMPUTATION EMPOWERED SEMANTIC
COLLECTING AND SCATTERING FRAMEWORK

Unlike representation learning in computer vision only pro-
cesses visual features, those hypergraph computation methods
[18], [28] simultaneously process features and high-order
structures. Most hypergraph computation methods rely on
the inherent hypergraph structures, which cannot be obtained
in most computer vision scenarios. Here, we introduce the
general paradigm of hypergraph computation in computer
vision, which includes hypergraph construction and hyper-
graph convolution. Given the feature map X extracted from
the neural networks, the hypergraph construction function
f : X → G is adopted to estimate the potential high-
order correlations among feature points in the semantic space.
Then, the spectral or spatial hypergraph convolution methods
are utilized to propagate high-order messages among feature
points via the hypergraph structure. The generated high-order
features are termed Xhyper. By integrating high-order rela-
tional information into Xhyper, this hypergraph computation
strategy addresses the deficiency of high-order correlations in
the original feature map X. The resultant hybrid feature map,
denoted as X′, emerges from the fusion of X and Xhyper. This
synthesized process culminates in a semantically enhanced
visual representation X′, which provides more comprehensive
visual feature representations from both semantic and high-
order structural perspectives.

Here, we devise a general framework for hypergraph com-
putation in computer vision, named the Hypergraph Compu-
tation Empowered Semantic Collecting and Scattering (HGC-
SCS) framework. Given those feature maps extracted from
CNN [29]–[34] or other backbones, our framework first col-
lects those features and fuses them to construct the mixed

feature bag Xmixed in the semantic space. In the second step,
we estimate those potential high-order correlations to construct
the hypergraph structure in the semantic space. To fully
utilize those high-order structure information, some related
hypergraph computation methods [18], [28] can be employed.
In this way, the high-order aware feature Xhyper can be
generated, which incorporates both the high-order structural
and the semantic information. In the last step, we scatter the
high-order structural information to each input feature map.
The HGC-SCS framework can be formulated as follows:
Xmixed

Collecting←−−−−− {X1,X2, · · · }
Xhyper = HyperComputation(Xmixed) //High-Order Learning

{X ′
1,X

′
2, · · · }

Scattering←−−−−− {ϕ(Xhyper,X1), ϕ(Xhyper,X2), · · · }

,

where {X1,X2, · · · } denotes the basic feature maps generated
from the visual backbone. The “HyperComputation” denotes
the second step, including hypergraph construction and hyper-
graph convolution, which captures those potential high-order
structural information in the semantic space and generates
the high-order aware feature Xhyper. In the last line, ϕ(·)
denotes the feature fusion function. {X ′

1,X
′
2, · · · } denotes

the enhanced visual feature maps. In the following, we will
introduce an instance of our HGC-SCS framework in object
detection named HyperC2Net.

IV. METHODS

In this section, we first introduce preliminaries of YOLO
notations as well as the framework of the proposed Hyper-
YOLO. In the following, we detail the proposed two core
modules, including the basic block (MANet) and neck (Hy-
perC2Net) of our Hyper-YOLO. Finally, we analyze the rela-
tionship between Hyper-YOLO and other YOLO methods.

A. Preliminaries

The YOLO series methods [1]–[5], [7], [8], [21], [35]–[39]
are typically composed of two main components: backbone
and neck. The backbone [40] [13] is responsible for extracting
fundamental visual features, while the neck [15] [16] [19]
facilitates the fusion of multi-scale features for the final object
detection. This paper proposes enhancement strategies specif-
ically targeting these two components. For ease of description
within this paper, we denote the three scale outputs of the
neck as {N3,N4,N5}, corresponding respectively to small-
scale, medium-scale, and large-scale detection. In the feature
extraction phase of the backbone, we further divide it into
five stages: {B1,B2,B3,B4,B5}, which represent features
at different semantic levels. A larger number indicates that the
feature is a higher-level semantic feature extracted by a deeper
layer of the network. More details are provided in section A.

B. Hyper-YOLO Overview

Our Hyper-YOLO framework maintains the overall archi-
tecture of the typical YOLO methods, including the back-
bone and neck, as depicted in fig. S1. Given an image, the
backbone of Hyper-YOLO leverages the proposed MANet
as its core computational module, thereby augmenting the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

1 × 1  Conv

ConvNeck

Concatenation

𝑐𝑐𝑖𝑖𝑖𝑖

𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜

2𝑐𝑐

ConvNeck

⋯
𝑛𝑛

Split

ConvNeck

⋯

𝑐𝑐
𝑐𝑐

𝑐𝑐

𝑐𝑐
𝑐𝑐𝑐𝑐 4𝑐𝑐

2𝑐𝑐
4𝑐𝑐

𝑐𝑐

𝑐𝑐

1 × 1  Conv

4 + 𝑛𝑛 × 𝑐𝑐

2𝑐𝑐 Mixed Aggregation Network 
(MANet)

3 × 3 Conv
𝑐𝑐𝑖𝑖𝑖𝑖 𝑐𝑐 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜

ConvNeck

𝑘𝑘 × 𝑘𝑘 Conv BN
𝑐𝑐𝑖𝑖𝑖𝑖 𝑐𝑐 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜

𝒌𝒌 × 𝒌𝒌  Conv

SiLU
𝑐𝑐

1 × 1  Conv

1 × 1  Point-
wise Conv

𝑘𝑘 × 𝑘𝑘 Deep-
wise Conv

2𝑐𝑐

1 × 1
Conv

𝑐𝑐

3 × 3 Conv

DSConv

Modules

Fig. 2. Illustration of the proposed Mixed Aggregation Network (MANet).

1
1
0
1

⋯
0
1
1
0

⋯

Cross-Level 
Features

Distance-Based Hypergraph Construction

Distance Matrix
HypergraphHypergraph

Incidence Matrix

Distance 
Threshold

𝑑𝑑 < 𝜖𝜖
Distance
Metric

3.2
3.6
5.8
4.3

⋯
5.2
3.6
3.8
4.3

⋯

Fig. 3. Illstration of hypergraph construction.

feature discernment ability of the conventional C2f module
found in YOLOv8 [8]. Diverging from traditional YOLO
architectures, Hyper-YOLO ingests an ensemble of five pri-
mary feature sets {B1,B2,B3,B4,B5}. In a novel stride, the
neck (HyperC2Net) of Hyper-YOLO, grounded in hypergraph
computational theory, integrates cross-level and cross-position
information across these quintuple feature sets, culminating
in the generation of final semantic features {N3,N4,N5}
across three distinct scales. These hierarchically structured
semantic features are subsequently harnessed for the final
object detection task.

C. Mixed Aggregation Network

As for the backbone of our Hyper-YOLO, to augment the
feature extraction prowess of the foundational network, we
devise the Mixed Aggregation Network (MANet), as shown
in fig. 2. This architecture synergistically blends three typi-
cal convolutional variants: the 1 × 1 bypass convolution for
channel-wise feature recalibration, the Depthwise Separable
Convolution (DSConv) for efficient spatial feature processing,
and the C2f module for enhancing feature hierarchy integra-
tion. This confluence produces a more variegated and rich
gradient flow during the training phase, which significantly
amplifies the semantic depth encapsulated within the base

features at each of the five pivotal stages. Our MANet can
be formulated as follows:

Xmid = Conv1(Xin)

X1 = Conv2(Xmid)

X2 = DSConv(Conv3(Xmid))

X3,X4 = Split(Xmid)

X5 = ConvNeck1(X4) +X4

X6 = ConvNeck2(X5) +X5

· · ·
X4+n = ConvNeckn(X3+n) +X3+n

n

, (1)

where the channel number of Xmid is 2c. Whereas each of
X1,X2, . . . ,X4+n features a channel count of c. Finally, we
fuse and compress the semantic information of the three types
of features through a concatenation operation followed by a
1× 1 convolution to generate the Xout with channel number
2c, as follows:

Xout = Convo(X1||X2|| · · · ||X4+n). (2)

D. Hypergraph-Based Cross-Level and Cross-Position Repre-
sentation Network

As for the neck of our Hyper-YOLO, in this subsection, to
comprehensively fuse that cross-level and cross-position infor-



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

𝑩𝑩𝟓𝟓

𝑩𝑩𝟒𝟒

𝑩𝑩𝟑𝟑

𝑩𝑩𝟐𝟐

𝑩𝑩𝟏𝟏 D

D

D

U

C

1 × 1 HyperConv

Distance-Based
Hypergraph 
Construction

D

U

𝑵𝑵𝟓𝟓

𝑵𝑵𝟒𝟒

𝑵𝑵𝟑𝟑

C2f

MANC

C

D

D

Bottom-UpSemantic Collecting

Hypergraph

Semantic ScatteringHypergraph Computation in Semantic Space

Hypergraph-Based Cross-Level and Cross-Position Representation Network (HyperC2Net)

Similar Feature Points 
in Semantic Space

Cross-Position 
Aggregation

Cross-Level 
Feature

Vertex
⇓

Hyperedge

Vertex
⇑

Hyperedge

Details of HyperConv

C

D

UC2f

Channel-wise Concatenation

Down Sampling

Up SamplingBasic Block of YOLOv8

Module Legend

Hyperedge

𝑩𝑩𝒊𝒊

𝑵𝑵𝒊𝒊

Backbone Features

Features for Detection

Input Image

C

C

C

MAN

𝑩𝑩𝟓𝟓

𝑩𝑩𝟒𝟒

𝑩𝑩𝟑𝟑

Vertex

MAN

MAN

1 × 1

MAN MANet of Hyper-YOLO

Fig. 4. Illstration of the proposed Hypergraph-Based Cross-Level and Cross-Position Representation Network (HyperC2Net).

mation from the backbone, we further propose the hypergraph-
based cross-level and cross-position representation network
(HyperC2Net), as shown in fig. 4. HyperC2Net is an imple-
mentation of the proposed HGC-SCS framework, which is
able to capture those potential high-order correlations in the
semantic space.

1) Hypergraph Construction.: As illustrated in fig. S1,
our backbone is segmented into five discrete stages.
The feature maps from these stages are represented as
{B1,B2,B3,B4,B5}. In an effort to harness hypergraph
computation for elucidating the intricate high-order relation-
ships among foundational features, we initiate the process by
executing a channel-wise concatenation of the quintet of base
features, thereby synthesizing cross-level visual features. A
hypergraph G = {V, E} is conventionally defined by its vertex
set V and hyperedge set E . In our approach, we deconstruct
the grid-based visual features to constitute the vertex set V of
a hypergraph. To model the neighborhood relationships within
the semantic space, a distance threshold is used to construct an
ϵ-ball from each feature point, which will serve as a hyperedge,
as illustrated fig. 3. An ϵ-ball is a hyperedge that encompasses
all feature points within a certain distance threshold from a
central feature point. The construction of the overall hyperedge
set can be defined as E = {ball(v, ϵ) | v ∈ V}, where
ball(v, ϵ) = {u | ||xu − xv||d < ϵ, u ∈ V} indicate the
neighbor vertex set of the specified vertex v. ||x − y||d is
the distance function. In computations, a hypergraph G is
commonly represented by its incidence matrix H .

2) Hypergraph Convolution.: To facilitate high-order mes-
sage passing on the hypergraph structure, we utilize a typical
spatial-domain hypergraph convolution [18] with extra residual

connection to perform high-order learning on vertex features
as follows: 

xe =
1

|Nv(e)|
∑

v∈Nv(e)
xvΘ

x′
v = xv +

1

|Ne(v)|
∑

e∈Ne(v)
xe

, (3)

where Nv(e) and Ne(v) are two neighbor indicate functions,
as defined in [18]: Nv(e) = {v | v ∈ e, v ∈ V} and
Ne(v) = {e | v ∈ e, e ∈ E}. Θ is a trainable parameter.
For computational convenience, the matrix formulation of the
two-stage hypergraph message passing can be defined as:

HyperConv(X,H) = X +D−1
v HD−1

e H⊤XΘ, (4)

where Dv and De represent the diagonal degree matrices of
the vertices and hyperedges, respectively.

3) An Instance of HGC-SCS Framework.: By combining
the previously defined hypergraph construction and convo-
lution strategies, we introduce a streamlined instantiation of
the HGC-SCS framework, termed hypergraph-based cross-
level and cross-position representation network (HyperC2Net),
whose overarching definition is as follows:
Xmixed = B1||B2||B3||B4||B5

Xhyper = HyperConv(Xmixed,H)

N3,N4,N5 = ϕ(Xhyper,B3), ϕ(Xhyper,B4), ϕ(Xhyper,B4)

,

where ·||· denotes the matrix concatenation operation. ϕ is
the fusion function as illustrated in fig. 4 (semantic scattering
module and bottom-up module). In our HyperC2Net, Xmixed

intrinsically contains cross-level information, as it is a fusion
of backbone features from multiple levels. Additionally, by



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

deconstructing grid features into a set of feature points within
the semantic space and constructing hyperedges based on
distances, our approach permits high-order message passing
among vertices at varying positions within the point set. This
capability facilitates the capture of cross-position information,
enriching the model’s understanding of the semantic space.

E. Comparison and Analysis

Advancements in the YOLO series mainly concentrate on
refinements to the backbone and neck components, with a
specific focus on the backbone as a pivotal element of evo-
lution with each successive YOLO iteration. For instance, the
seminal YOLO [1] framework introduced the DarkNet back-
bone, which has since undergone a series of enhancements, as
exemplified by the ELAN (Efficient Layer Aggregation Net-
work) module introduced in YOLOv7 [7] and the C2f (Cross
Stage Partial Connections with Feedback) module unveiled in
YOLOv8 [8]. These innovations have critically promoted the
visual feature extraction prowess of the backbone architecture.

In contrast, our Hyper-YOLO model pivots the innovation
axis towards the neck component’s design. In the realm of
neck architecture, leading-edge iterations such as YOLOv6
[5], YOLOv7 [7], and YOLOv8 [8] have consistently incor-
porated the PANet [16] (Path Aggregation Network) structure.
Simultaneously, Gold-YOLO [10] has adopted an inventive
gather-distribute neck paradigm. In the following, we will
compare HyperYOLO’s HyperC2Net with these two classical
neck architectures.

The PANet architecture, despite its efficacy in fusing multi-
scale features via top-down and bottom-up pathways, remains
constrained to the fusion of information across immediately
contiguous layers. This adjacency-bound fusion modality in-
herently restricts the breadth of information integration within
the network. HyperC2Net, on the other hand, transcends this
limitation by enabling direct fusion across the quintuple levels
of features emanating from the backbone. This approach
engenders a more robust and diversified information flow,
curtailing the connectivity gap between features of varying
depths. Notably, while the gather-distribute neck mechanism
introduced by Gold-YOLO exhibits the capacity to assimilate
information across multiple levels, it does not inherently
account for cross-positional interactions within the feature
maps. The ingenuity of HyperC2Net lies in its utilization
of hypergraph computations to capture the intricate high-
order associations latent within feature maps. The hypergraph
convolutions in the semantic domain facilitate a non-grid-
constrained flow of information, empowering both cross-
level and cross-positional high-order information propagation.
Such a mechanism breaks the constrain of conventional grid
structures, enabling a more nuanced and integrated feature
representation.

The feature representations generated by HyperC2Net re-
flect a comprehensive consideration of both the semantic fea-
tures provided by the original data backbone and the potential
high-order structural features. Such an enriched feature repre-
sentation is instrumental in achieving superior performance in
object detection tasks. The ability of HyperC2Net to harness

these intricate high-order relationships offers a significant
advantage over conventional neck architectures like PANet
and even recent innovations like the gather-distribute neck,
underscoring the value of high-order feature processing in
advancing the state-of-the-art in computer vision.

V. EXPERIMENTS

A. Experimental Setup

1) Datasets: The Microsoft COCO dataset [41], a bench-
mark for object detection, is employed to assess the efficacy of
the proposed Hyper-YOLO model. In particular, the Train2017
subset is utilized for training purposes, while the Val2017
subset serves as the validation set. The performance evaluation
of Hyper-YOLO is carried out on the Val2017 subset, with the
results detailed in table I.

2) Compared Methods: We select those advanced YOLO
series methods, including YOLOv5 [4], YOLOv6-3.0 [5],
YOLOv7 [7], YOLOv8 [8], Gold-YOLO [10], and YOLOv9
[21] for comparison. The default parameter configurations of
their reported are adopted in our experiments.

3) Our Hyper-YOLO Methods: Our Hyper-YOLO is de-
veloped based on the four scales of YOLOv8 (-N, -S, -M,
-L). Therefore, we modified the hyperparameters (number
of convolutional layers, feature dimensions) for each stage
of the Hyper-YOLO architecture, as shown in table S2,
resulting in Hyper-YOLO-N, Hyper-YOLO-S, Hyper-YOLO-
M, and Hyper-YOLO-L. Considering that our Hyper-YOLO
introduces high-order learning in the neck, which increases
the number of parameters, we further reduced the parameters
on the basis of Hyper-YOLO-N to form Hyper-YOLO-T.
Specifically, in Hyper-YOLO-T’s HyperC2Net, the last C2f
in the Bottom-Up stage is replaced with a 1× 1 convolution.
Additionally, we noted that the latest YOLOv9 employs a new
programmable gradient information transmission and prunes
paths during inference to reduce parameters while main-
taining accuracy. Based on YOLOv9, we developed Hyper-
YOLOv1.1. Specifically, we replaced the neck of YOLOv9
with the HyperC2Net from Hyper-YOLO, thereby endowing
YOLOv9 with the capability of high-order learning.

4) Other Details: To ensure an equitable comparison, we
excluded the use of pre-training and self-distillation strategies
for all methods under consideration, as outlined in [5] and [10].
Furthermore, recognizing the potential influence of input im-
age size on the evaluation, we standardized the input resolution
across all experiments to 640× 640 pixels, a common choice
in the field. The evaluation is based on the standard COCO
Average Precision (AP) metric. Additional implementation
specifics are provided in section A and section C.

B. Results and Discussions

The results of object detection on the COCO Val2017 vali-
dation set, as shown in table I, lead to four main observations.

Firstly, the proposed Hyper-YOLO method outperforms
other models across all four scales. For instance, in terms
of the APval metric, Hyper-YOLO achieves a performance
of 41.8% at the -N scale, 48.0% at the -S scale, 52.0% at
the -M scale, and 53.8% at the -L scale. Compared to the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

TABLE I
COMPARISON OF STATE-OF-THE-ART YOLO METHODS. THE TERM “#PARA.” REFERS TO THE “NUMBER OF PARAMETER” WITHIN A MODEL. BOTH
FRAMES PER SECOND (FPS) AND LATENCY WERE BENCHMARKED UNDER FP16 PRECISION USING A TESLA T4 GPU, CONSISTENT ACROSS ALL

MODELS WITH TENSORRT 8.6.1. DURING OUR PRACTICAL SPEED EVALUATIONS, A NOTABLE OBSERVATION WAS THAT TENSORRT DOES NOT FULLY
OPTIMIZE THE DISTANCE COMPUTATION (torch.cdist()), A CRUCIAL STEP IN HYPERGRAPH CONSTRUCTION. TO MAINTAIN A FAIR COMPARISON WITH

OTHER YOLO VARIANTS, WE PRESENT ADDITIONAL RESULTS THAT ISOLATE IMPROVEMENTS TO THE BACKBONE ARCHITECTURE ALONE, INDICATED
BY THE SYMBOL †.

Method Input Size APval APval
50 #Params. FLOPs FPS[bs=1] FPS[bs=32] Latency[bs=1]

YOLOv5-N [4] 640 28.0% 45.7% 1.9 M 4.5 G 763 1158 1.3 ms
YOLOv5-S [4] 640 37.4% 56.8% 7.2 M 16.5 G 455 606 2.2 ms
YOLOv5-M [4] 640 45.4% 64.1% 21.2 M 49.0 G 220 267 4.6 ms
YOLOv5-L [4] 640 49.0% 67.3% 46.5 M 109.1 G 133 148 7.5 ms

YOLOv6-3.0-N [5] 640 37.0% 52.7% 4.7 M 11.4 G 864 1514 1.2 ms
YOLOv6-3.0-S [5] 640 44.3% 61.2% 18.5 M 45.3 G 380 581 2.6 ms
YOLOv6-3.0-M [5] 640 49.1% 66.1% 34.9 M 85.8 G 198 263 5.1 ms
YOLOv6-3.0-L [5] 640 51.8% 69.2% 59.6 M 150.7 G 116 146 8.6 ms

Gold-YOLO-N [10] 640 39.6% 55.7% 5.6 M 12.1 G 694 1303 1.4 ms
Gold-YOLO-S [10] 640 45.4% 62.5% 21.5 M 46.0 G 331 530 3.0 ms
Gold-YOLO-M [10] 640 49.8% 67.0% 41.3 M 87.5 G 178 243 5.6 ms
Gold-YOLO-L [10] 640 51.8% 68.9% 75.1 M 151.7 G 107 139 9.3 ms

YOLOv8-N [8] 640 37.3% 52.6% 3.2 M 8.7 G 713 1094 1.4 ms
YOLOv8-S [8] 640 44.9% 61.8% 11.2 M 28.6 G 395 564 2.5 ms
YOLOv8-M [8] 640 50.2% 67.2% 25.9 M 78.9 G 181 206 5.5 ms
YOLOv8-L [8] 640 52.9% 69.8% 43.7 M 165.2 G 115 127 8.7 ms

YOLOv9-T [21] 640 38.3% 53.1% 2.0 M 7.7 G 420 796 2.4 ms
YOLOv9-S [21] 640 46.8% 63.4% 7.1 M 26.4 G 292 464 3.4 ms
YOLOv9-M [21] 640 51.4% 68.1% 20.0 M 76.3 G 165 199 6.1 ms
YOLOv9-C [21] 640 53.0% 70.2% 25.3 M 102.1 G 148 170 6.6 ms

Hyper-YOLO-T 640 38.5% 54.5% 3.1 M 9.6 G 404/692† 644/1029† 2.5/1.4† ms
Hyper-YOLO-N 640 41.8% 58.3% 4.0 M 11.4 G 364/554† 460/710† 2.7/1.8† ms
Hyper-YOLO-S 640 48.0% 65.1% 14.8 M 39.0 G 212/301† 257/343† 4.7/3.3† ms
Hyper-YOLO-M 640 52.0% 69.0% 33.3 M 103.3 G 111/145† 132/154† 9.0/6.9† ms
Hyper-YOLO-L 640 53.8% 70.9% 56.3 M 211.0 G 73/97† 83/105† 13.7/10.3† ms
Hyper-YOLOv1.1-T 640 40.3% 55.6% 2.5 M 10.8 G 345 530 2.9 ms
Hyper-YOLOv1.1-S 640 48.0% 64.5% 7.6 M 29.9 G 241 330 4.1 ms
Hyper-YOLOv1.1-M 640 51.9% 69.1% 21.2 M 87.4 G 140 162 7.1 ms
Hyper-YOLOv1.1-C 640 53.2% 70.4% 29.8 M 115.5 G 121 136 8.3 ms

Gold-YOLO, Hyper-YOLO shows an improvement of 2.2, 2.6,
2.2, and 2.0, respectively. When compared to YOLOv8, the
improvements are 4.5, 3.1, 1.8, and 0.9, respectively. Com-
pared to the YOLOv9, Hyper-YOLO shows an improvement
of 3.5, 1.2, 0.6, and 0.8, respectively. These results validate
the effectiveness of the Hyper-YOLO method.

Secondly, it is noteworthy that our method not only im-
proves performance over Gold-YOLO but also reduces the
number of parameters significantly. Specifically, there is a
reduction of 28% at the -N scale, 31% at the -S scale, 19% at
the -M scale, and 25% at the -L scale. The main reason for
this is our HGC-SCS framework, which further introducs high-
order learning in the semantic space comapred with the Gold-
YOLO’s gather-distribute mechanism. This allows our method
to utilize the diverse information extracted by the backbone,
including cross-level and cross-position information, more
efficiently with fewer parameters.

Thirdly, considering that Hyper-YOLO shares a similar
underlying architecture with YOLOv8, we found that the
proposed Hyper-YOLO-T, compared to YOLOv8-N, achieved
higher object detection performance (37.3 → 38.5 in terms
of AP val) with fewer parameters (3.2M → 3.1M). This
demonstrates that the proposed HyperC2Net can achieve better
feature representation learning through high-order learning,

thereby enhancing detection performance. Similarly, we com-
pared Hyper-YOLOv1.1 with YOLOv9, as both use the same
backbone architecture, with the only difference being that
Hyper-YOLOv1.1 employs the hypergraph-based HyperC2Net
as the neck. The results show that our Hyper-YOLOv1.1
demonstrated significant performance improvements: Hyper-
YOLOv1.1-T outperformed YOLOv9-T by 2.0 APval, and
Hyper-YOLOv1.1-S outperformed YOLOv9-S by 1.2 APval.
This fair comparison using the same architecture at the same
scale validates the effectiveness of the proposed high-order
learning method in object detection tasks.

Finally, we observe that, compared to YOLOv8, the im-
provements brought by our Hyper-YOLO become more sig-
nificant (from 0.9 to 4.5) as the model scale decreases (from
-L to -N). This is because a smaller model scale weakens the
feature extraction capability and the ability to obtain effective
information from visual data. At this point, high-order learning
becomes necessary to capture the latent high-order correlations
in the semantic space of the feature map, enriching the features
ultimately used for the detection head. Furthermore, high-order
message propagation based on hypergraphs in the semantic
space allows direct information flow between different posi-
tions and levels, enhancing the feature extraction capability of



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

the base network with limited parameters.

C. Ablation Studies on Backbone
In this and the next subsection, taking into account the

model’s scale, we select the Hyper-YOLO-S to conduct ab-
lation studies on the backbone and neck.

1) On Basic Block of Backbone.: We conduct ablation
experiments on the proposed MANet to verify the effectiveness
of the mixed aggregation mechanism proposed in the basic
block, as shown in table II. To ensure a fair comparison, we
utilize the same PANet [16] as the neck, used in YOLOv8 [8],
so that the only difference between the two methods lies in
the basic block. The experimental results clearly show that the
proposed MANet outperforms the C2f module under the same
neck across all metrics. This superior performance is attributed
to the mixed aggregation mechanism, which integrates three
classic structures, leading to a richer flow of information and
thus demonstrating enhanced performance.

TABLE II
ABLATION STUDY ON DIFFERENT BASIC BLOCKS IN THE BACKBONE.

APval APval
50 APs APm APl

(%) (%) (%) (%) (%)

C2f(YOLOv8-S) 44.9 61.7 25.9 49.7 61.0
MANet(Ours) 46.4 63.4 28.1 51.7 62.3

2) On Kernel Size of Different Stages.: We further con-
ducted ablation experiments on the size of the convolutional
kernels, an essential factor in determining the receptive field
and the ability of a network to capture spatial hierarchies
in data. In our experiments, ki represents the kernel size
of the MANet used at the i-th stage. Since our MANet
begins to utilize mixed aggregation starting from the second
stage, the configuration of k in our experiments is denoted as
[k2, k3, k4, k5]. Experimental results are presented in table III.
The experimental results indicate that increasing the size of
the convolutional kernels from 3 to 5 can indeed enhance the
model’s accuracy. However, for small-scale and medium-scale
object detection, the accuracy does not necessarily improve
compared to a mixture of different kernel sizes, and it also
results in a larger number of parameters. Therefore, taking
into account a balance between performance and the number of
parameters, our Hyper-YOLO ultimately selects the [3, 5, 5, 3]
configuration as the optimal setting for the convolutional
kernel sizes in our MANet.

TABLE III
ABLATION STUDY ON DIFFERENT KERNEL SIZE SETTINGS.

[k2, k3, k4, k5]
APval APval

50 APs APm APl

(%) (%) (%) (%) (%)

[3, 3, 3, 3] 46.3 63.3 27.2 51.1 62.6
[5, 5, 5, 5] 46.6 63.5 27.5 51.6 63.1
[3, 5, 5, 3] 46.4 63.4 28.1 51.7 62.3

D. Ablation Studies on Neck
1) High-Order vs. Low-Order Learning in HGC-SCS

Framework: The core of the HGC-SCS framework lies in the

semantic space’s Hypergraph Computation, which allows for
high-order information propagation among feature point sets.
We conduct ablation studies to evaluate its effectiveness by
simplifying the hypergraph into a graph for low-order learning,
as shown in table IV. In this case, the graph is constructed by
connecting the central node with its neighbors within an ϵ-
ball. The graph convolution operation used [42] is the classic
one: Â = D

−1/2
v AD

−1/2
v + I , where Dv is the diagonal

degree matrix of the graph adjacency matrix A. Additionally,
we include a configuration with no correlation learning at all:
“None”. The experimental results, as presented in table IV,
reveal that high-order learning demonstrates superior perfor-
mance compared to the other two methods. Theoretically, low-
order learning can be considered a subset [43] of high-order
learning but lacks the capability to model complex correlation.
High-order learning, on the other hand, possesses a more
robust correlation modeling capability, which corresponds with
a higher performance ceiling. As a result, it tends to achieve
better performance more easily.

TABLE IV
ABLATION STUDY ON DIFFERENT ENHANCEMENT STRATEGIES.

Hypergraph Computation APval APval
50 APs APm APl

(%) (%) (%) (%) (%)

None 46.4 63.4 28.1 51.7 62.3
Low-Order Learning 47.6 64.8 29.1 53.1 63.7
High-Order Learning 48.0 65.1 29.9 53.2 64.6

2) On the Semantic Collecting Phase: The first phase
of the HGC-SCS framework is Semantic Collecting, which
determines the total amount of information fed into the
semantic space for hypergraph computation. We performed
ablation studies on this phase, as shown in table V, using three
different configurations that select 3, 4, or 5 levels of feature
maps for input. The experimental results reveal that a greater
number of feature maps can bring more abundant semantic
space information. This enhanced information richness allows
the hypergraph to fully exploit its capability in modeling
complex correlation. Consequently, the input configuration
with 5 feature maps achieved the best performance. This
outcome suggests that the model can benefit from a more com-
prehensive representation of the input data when more levels
of feature maps are integrated. The inclusion of more feature
maps likely introduces a broader range of semantic meaning
and details from the visual input, enabling the hypergraph to
establish higher-order connections that reflect a more complete
understanding of the scene. Therefore, the configuration that
incorporates 5 feature maps is preferred for maximizing the
potential of hypergraph-based complex correlation modeling.

TABLE V
ABLATION STUDY ON THE NUMBER OF INPUT LEVELS.

Semantic Collecting Set APval APval
50 (%) APs APm APl

(%) (%) (%) (%) (%)

{B3,B4,B5} 47.5 64.6 28.9 52.6 63.8
{B2,B3,B4,B5} 47.8 65.0 28.4 53.1 64.2
{B1,B2,B3,B4,B5} 48.0 65.1 29.9 53.2 64.6



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

3) On Hypergraph Construction of Hypergraph Compu-
tation Phase: Further ablation experiments are conducted
to examine the effect of the distance threshold used in the
construction of the hypergraph, with the results shown in
table VI. Compared to the configuration “None” where hyper-
graph computation is not introduced, the introduction of hyper-
graph computation leads to a significant overall performance
improvement. It is also observed that the performance of the
target detection network is relatively stable across a range
of threshold values from 7 to 9, with only minor variations.
However, there is a performance decline at the thresholds of
6 and 10. This decline can be attributed to the number of
connected nodes directly affecting the smoothness of features
in the semantic space. A higher threshold may lead to a
more connected hypergraph, where nodes are more likely to
share information, potentially leading to over-smoothing of
the features. Conversely, a lower threshold may result in a
less connected hypergraph that cannot fully exploit the high-
order relationships among features. Therefore, our Hyper-
YOLO uses the distance threshold 8 for construction. The
precise value would be determined based on empirical results,
balancing the need for a richly connected hypergraph against
the risk of over-smoothing or under-connecting the feature
representation.

TABLE VI
ABLATION STUDY ON THE THRESHOLD OF HYPERGRAPH CONSTRUCTION.

Distance Threshold APval APval
50 APs APm APl

(%) (%) (%) (%) (%)

None 46.3 63.5 26.9 51.6 62.6
6 47.6 64.6 28.6 52.7 64.2
7 47.8 65.0 29.4 53.3 64.0
8 48.0 65.1 29.9 53.2 64.6
9 47.8 64.9 29.2 53.4 64.5

10 47.7 65.1 28.2 53.0 63.7

E. More Ablation Studies

In this subsection, we conduct thorough ablation studies
to assess the impact of backbone and neck enhancements in
Hyper-YOLO across four different model scales, with detailed
results presented in table VII. The baseline performance of
YOLOv8 is placed at the top of the table. The middle part of
the table introduces our HyperYOLO models that incorporate
only the backbone enhancement. At the bottom, we feature
the fully augmented HyperYOLO models, which benefit from
both backbone and neck enhancements. Based on experimental
results in table VII, we have three observations.

Firstly, the adoption of both individual and combined en-
hancements significantly boosts performance for the -N, -S,
and -M models, validating the effectiveness of our proposed
modifications. Secondly, the impact of each enhancement
appears to be scale-dependent. As we progress from -N to -S,
-M, and -L models, the incremental performance gains due
to the backbone improvement gradually decrease from 2.6 to
1.5, 0.8, and finally 0.1. In contrast, the neck enhancement
consistently contributes more substantial improvements across
these scales, with respective gains of 1.9, 1.6, 1.0, and 0.8.

This suggests that while the benefits of an expanded receptive
field and width scaling in the backbone are more pronounced
in smaller models, the advanced HyperC2Net neck provides a
more uniform enhancement by enriching the semantic content
and boosting object detection performance across the board.
Thirdly, when focusing on small object detection (APs), the
HyperYOLO-L model with both backbone and neck enhance-
ments achieves a notable increase of 1.6, whereas just the
backbone enhancement leads to a 0.6 improvement. This
underscores the potential of hypergraph modeling, particularly
within the neck enhancement, to capture the complex relation-
ships among small objects and significantly improve detection
in these challenging scenarios.

F. More Evaluation on Instance Segmentation Task

We extend the application of Hyper-YOLO to the instance
segmentation task on the COCO dataset, ensuring a direct
comparison with its predecessor, YOLOv8, by adopting a
consistent approach in network modification: replacing the
detection head with a segmentation head. Experimental results
are shown in table VIII.

The empirical results clearly illustrate that Hyper-YOLO
attains remarkable performance enhancements. For APbox,
Hyper-YOLO shows an impressive increase of 4.7 AP for the
-N variant, 3.3 AP for the -S variant, 2.2 AP for the -M variant,
and 1.4 AP for the -L variant. Similarly, for APmask, Hyper-
YOLO exhibits significant improvements, with gains of 3.3
AP for -N, 2.3 AP for -S, 1.3 AP for -M, and 0.7 AP for -L.
These results underscore the effectiveness of the advancements
integrated into Hyper-YOLO.

G. Visualization of High-Order Learning in Object Detection

In our paper, we have provided a mathematical rationale
explaining how the hypergraph-based neck can transcend the
limitations of traditional neck designs, which typically rely
on grid-like neighborhood structures for message propagation
within feature maps. This design enables advanced high-
order message propagation across the semantic spaces of
the features. To further substantiate the effectiveness of our
hypergraph-based neck, we have included visualizations in
the revised manuscript, as shown in fig. 5. These visualiza-
tions compare feature maps before and after applying our
HyperConv layer. It is evident from these images that there
is a consistent reduction in attention to semantically similar
backgrounds, such as skies and grounds, while maintaining fo-
cus on foreground objects across various scenes. This demon-
strates that HyperConv, through hypergraph computations, aids
the neck in better recognizing semantically similar objects
within an image, thus supporting the detection head in making
more consistent decisions.

VI. CONCLUSION

In this paper, we presented Hyper-YOLO, a groundbreaking
object detection model that integrates hypergraph computa-
tions with the YOLO architecture to harness the potential
of high-order correlations in visual data. By addressing the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

TABLE VII
ABLATION STUDIES ON DIFFERENT SCALE MODELS.

Method APval APval
50 APs APm APl #Params. FLOPs FPS [bs=1] FPS [bs=32] Latency [bs=1]

YOLOv8-N 37.3% 52.3% 18.7% 40.9% 53.3% 3.2 M 8.7 G 713 1094 1.4 ms
YOLOv8-S 44.9% 61.7% 25.9% 49.7% 61.0% 11.2 M 28.6 G 395 564 2.5 ms
YOLOv8-M 50.2% 67.1% 32.3% 55.6% 66.5% 25.9 M 78.9 G 181 206 5.5 ms
YOLOv8-L 52.9% 69.6% 35.1% 57.9% 69.8% 43.7 M 165.2 G 115 127 8.7 ms

Backbone Enhancement

HyperYOLO-N 39.9% 56.2% 20.8% 44.3% 55.5% 3.5 M 9.8 G 554 710 1.8 ms
HyperYOLO-S 46.4% 63.4% 28.1% 51.7% 62.3% 12.7 M 32.6 G 301 343 3.3 ms
HyperYOLO-M 51.0% 67.9% 32.7% 56.8% 67.9% 28.2 M 86.8 G 145 154 6.9 ms
HyperYOLO-L 53.0% 70.0% 35.7% 58.8% 69.5% 46.4 M 177.8 G 97 105 10.3 ms

Backbone&Neck Enhancement

HyperYOLO-N 41.8% 58.3% 22.2% 46.4% 58.7% 4.0 M 11.4 G 364 460 2.7 ms
HyperYOLO-S 48.0% 65.1% 29.9% 53.2% 64.6% 14.8 M 39.0 G 212 257 4.7 ms
HyperYOLO-M 52.0% 69.0% 34.6% 57.9% 68.7% 33.3 M 103.3 G 111 132 9.0 ms
HyperYOLO-L 53.8% 70.9% 36.7% 59.9% 70.2% 56.3 M 211.0 G 73 83 13.7 ms

TABLE VIII
EXPERIMENTAL RESULTS ON INSTANCE SEGMENTATION TASK.

Methods APbox APmask Params. FLOPs
(%) (%) (M) (G)

YOLOv8-N-seg 36.7 30.5 3.4 12.6
YOLOv8-S-seg 44.6 36.8 11.8 42.6
YOLOv8-M-seg 49.9 40.8 27.3 110.2
YOLOv8-L-seg 52.3 42.6 46.0 220.5

HyperYOLO-N-seg 41.4 33.8 4.3 15.3
HyperYOLO-S-seg 47.9 39.1 15.5 53.0
HyperYOLO-M-seg 52.1 42.1 34.7 134.6
HyperYOLO-L-seg 53.7 43.3 58.6 266.3

Feature Maps after
High-Order Learning

Feature Maps before
High-Order Learning

Image for 
Object Detection

Fig. 5. Visualization of feature maps before and after high-order learning.

inherent limitations of traditional YOLO models, particularly
in the neck design’s inability to effectively integrate features
across different levels and exploit high-order relationships,
we have significantly advanced the SOTA in object detection.
Our contributions set a new benchmark for future research
and development in object detection frameworks and pave the
way for further exploration into the integration of hypergraph
computations within visual architectures based on our HGC-
CSC framework.

REFERENCES

[1] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–
788.

[2] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
ArXiv Preprint ArXiv:1804.02767, 2018.

[3] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal
speed and accuracy of object detection,” ArXiv, vol. abs/2004.10934,
2020.

[4] G. Jocher, “Ultralytics YOLOv5,” 2020. [Online]. Available: https:
//github.com/ultralytics/yolov5

[5] C. Li, L. Li, Y. Geng, H. Jiang, M. Cheng, B. Zhang, Z. Ke, X. Xu,
and X. Chu, “YOLOv6 v3.0: A full-scale reloading,” ArXiv, vol.
abs/2301.05586, 2023. [Online]. Available: https://api.semanticscholar.
org/CorpusID:255825915

[6] C. Li, L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke, Q. Li, M. Cheng,
W. Nie et al., “YOLOv6: A single-stage object detection framework for
industrial applications,” ArXiv Preprint ArXiv:2209.02976, 2022.

[7] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 7464–7475.

[8] G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics YOLOv8,” 2023.
[Online]. Available: https://github.com/ultralytics/ultralytics

[9] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “YOLOX: Exceeding yolo
series in 2021,” ArXiv, vol. abs/2107.08430, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:236088010

[10] C. Wang, W. He, Y. Nie, J. Guo, C. Liu, Y. Wang, and K. Han, “Gold-
YOLO: Efficient object detector via gather-and-distribute mechanism,”
in Thirty-seventh Conference on Neural Information Processing Systems,
2023.

[11] S. Xu, X. Wang, W. Lv, Q. Chang, C. Cui, K. Deng, G. Wang,
Q. Dang, S. Wei, Y. Du, and B. Lai, “PP-YOLOE: An evolved
version of yolo,” ArXiv, vol. abs/2203.16250, 2022. [Online]. Available:
https://api.semanticscholar.org/CorpusID:247793126

[12] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in International Conference on Machine
Learning. PMLR, 2019, pp. 6105–6114.

[13] X. Ding, X. Zhang, N. Ma, J. Han, G. Ding, and J. Sun, “Repvgg: Mak-
ing vgg-style convnets great again,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
13 733–13 742.

[14] C.-Y. Wang, H.-Y. M. Liao, and I.-H. Yeh, “Designing network
design strategies through gradient path analysis,” ArXiv Preprint
ArXiv:2211.04800, 2022.

[15] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 2117–2125.

https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://api.semanticscholar.org/CorpusID:255825915
https://api.semanticscholar.org/CorpusID:255825915
https://github.com/ultralytics/ultralytics
https://api.semanticscholar.org/CorpusID:236088010
https://api.semanticscholar.org/CorpusID:247793126


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

[16] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network
for instance segmentation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 8759–8768.

[17] Y. Gao, Z. Zhang, H. Lin, X. Zhao, S. Du, and C. Zou, “Hypergraph
learning: Methods and practices,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 44, no. 5, pp. 2548–2566, 2020.

[18] Y. Gao, Y. Feng, S. Ji, and R. Ji, “HGNN+: General hypergraph
neural networks,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 45, pp. 3181–3199, 2023.

[19] C. Lyu, W. Zhang, H. Huang, Y. Zhou, Y. Wang, Y. Liu, S. Zhang, and
K. Chen, “RTMDet: An empirical study of designing real-time object
detectors,” 2022.

[20] Z. Tian, C. Shen, H. Chen, and T. He, “FCOS: Fully convolutional one-
stage object detection,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 9627–9636.

[21] C.-Y. Wang, I.-H. Yeh, and H.-Y. M. Liao, “Yolov9: Learning what you
want to learn using programmable gradient information,” arXiv preprint
arXiv:2402.13616, 2024.

[22] J.-G. Young, G. Petri, and T. P. Peixoto, “Hypergraph reconstruction
from network data,” Communications Physics, vol. 4, no. 1, p. 135,
2021.

[23] D. Yang, B. Qu, J. Yang, and P. Cudré-Mauroux, “Lbsn2vec++: Het-
erogeneous hypergraph embedding for location-based social networks,”
IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 4,
pp. 1843–1855, 2020.

[24] S. Jin, Y. Hong, L. Zeng, Y. Jiang, Y. Lin, L. Wei, Z. Yu, X. Zeng, and
X. Liu, “A general hypergraph learning algorithm for drug multi-task
predictions in micro-to-macro biomedical networks,” PLOS Computa-
tional Biology, vol. 19, no. 11, p. e1011597, 2023.

[25] R. Viñas, C. K. Joshi, D. Georgiev, P. Lin, B. Dumitrascu, E. R.
Gamazon, and P. Liò, “Hypergraph factorization for multi-tissue gene
expression imputation,” Nature Machine Intelligence, vol. 5, no. 7, pp.
739–753, 2023.

[26] L. Xiao, J. Wang, P. H. Kassani, Y. Zhang, Y. Bai, J. M. Stephen,
T. W. Wilson, V. D. Calhoun, and Y.-P. Wang, “Multi-hypergraph
learning-based brain functional connectivity analysis in fMRI data,”
IEEE Transactions on Medical Imaging, vol. 39, no. 5, pp. 1746–1758,
2019.

[27] C. Zu, Y. Gao, B. Munsell, M. Kim, Z. Peng, Y. Zhu, W. Gao, D. Zhang,
D. Shen, and G. Wu, “Identifying high order brain connectome biomark-
ers via learning on hypergraph,” in MICCAI 2016. Springer, 2016, pp.
1–9.

[28] Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao, “Hypergraph neural
networks,” in Proceedings of the Thirty-Third AAAI Conference on
Artificial Intelligence, 2019.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770–778.

[30] ——, “Identity mappings in deep residual networks,” in Computer
Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11–14, 2016, Proceedings, Part IV 14. Springer,
2016, pp. 630–645.

[31] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.

[32] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A
convnet for the 2020s,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, pp. 11 976–11 986.

[33] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, 2016,
pp. 2818–2826.

[34] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp.
1492–1500.

[35] Y. Chen, X. Yuan, R. Wu, J. Wang, Q. Hou, and M.-M. Cheng, “YOLO-
MS: Rethinking multi-scale representation learning for real-time object
detection,” ArXiv Preprint ArXiv:2308.05480, 2023.

[36] X. Xu, Y. Jiang, W. Chen, Y. Huang, Y. Zhang, and X. Sun, “DAMO-
YOLO: A report on real-time object detection design,” ArXiv Preprint
ArXiv:2211.15444, 2022.

[37] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Scaled-YOLOv4:
Scaling cross stage partial network,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
13 029–13 038.

[38] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 7263–7271.

[39] L. Huang, W. Li, L. Shen, H. Fu, X. Xiao, and S. Xiao, “YOLOCS:
Object detection based on dense channel compression for feature spatial
solidification,” ArXiv Preprint ArXiv:2305.04170, 2023.

[40] Y. Lee, J.-w. Hwang, S. Lee, Y. Bae, and J. Park, “An energy and gpu-
computation efficient backbone network for real-time object detection,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition workshops, 2019, pp. 0–0.

[41] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European Conference on Computer Vision. Springer
International Publishing, 2014, pp. 740–755.

[42] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in International Conference on Learning Rep-
resentations, 2017.

[43] Y. Feng, S. Ji, Y.-S. Liu, S. Du, Q. Dai, and Y. Gao, “Hypergraph-
based multi-modal representation for open-set 3d object retrieval,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2023.

Yifan Feng received the BE degree in computer sci-
ence and technology from Xidian University, Xi’an,
China, in 2018, and the MS degree from Xiamen
University, Xiamen, China, in 2021. He is currently
working toward the PhD degree from the School
of Software, Tsinghua University, Beijing, China.
His research interests include hypergraph neural
networks, machine learning, and pattern recognition.

Jiangang Huang received the BE degree in software
engineering from Xi’an Jiaotong University, Xi’an,
China, in 2022. He is currently working toward
the master’s degree in the same field from Xi’an
Jiaotong University. His research interests include
object detection, software engineering, and artificial
intelligence.

Shaoyi Du received double Bachelor degrees in
computational mathematics and in computer science
in 2002 and received his M.S. degree in applied
mathematics in 2005 and Ph.D. degree in pattern
recognition and intelligence system from Xi’an Jiao-
tong University, China in 2009. He is a professor at
Xi’an Jiaotong University. His research interests in-
clude computer vision, machine learning and pattern
recognition.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

Shihui Ying (M’11) received the B.Eng. degree
in mechanical engineering and the Ph.D. degree in
applied mathematics from Xi’an Jiaotong University,
Xi’an, China, in 2001 and 2008, respectively. He
is currently a Professor with the Department of
Mathematics, School of Science, Shanghai Univer-
sity, Shanghai, China. His current research interests
include geometric theory and methods for machine
intelligence and medical image analysis.

Jun-Hai Yong received the B.S. and Ph.D. degrees
in computer science from Tsinghua University, Bei-
jing, China, in 1996 and 2001, respectively. He held
a visiting researcher position with the Department
of Computer Science, Hong Kong University of
Science and Technology in 2000. He was a Post-
Doctoral Fellow with the Department of Computer
Science, University of Kentucky, from 2000 to 2002.
He is currently a Professor with the School of
Software, Tsinghua University. His main research
interests include computer-aided design and com-

puter graphics. He received a lot of awards, such as the National Excellent
Doctoral Dissertation Award, the National Science Fund for Distinguished
Young Scholars, the Best Paper Award of the ACM SIGGRAPH Eurographics
Symposium on Computer Animation, the Outstanding Service Award as an
Associate Editor of the Computers and Graphics journal by Elsevier, and
several National Excellent Textbook Awards.

Yipeng Li received the B.S. and M.S. degrees in
electronic engineering from the Harbin Institute of
Technology, Harbin, China, and the Ph.D. degree
in electronic engineering from Tsinghua University,
Beijing, China, in 2003, 2005, and 2011, respec-
tively. He is currently an Assistant Researcher with
the Department of Automation, Tsinghua University.
His current research interests include UAV vision-
based autonomous navigation, 3-D reconstruction of
natural environment, complex systems theory, and
Internet applications analysis.

Guiguang Ding is currently a Distinguished Re-
searcher with the School of Software, Tsinghua
University; a Ph.D. Supervisor; an Associate Dean
of the School of Software, Tsinghua University;
and the Deputy Director of the National Research
Center for Information Science and Technology. His
research interests mainly focus on visual perception,
theory and method of efficient retrieval and weak
supervised learning, neural network compression of
vision task under edge computing and power lim
ited scenes, visual computing systems, and platform

developing. He was the Winner of the National Science Fund for Distinguished
Young Scholars.

Rongrong Ji is currently a Professor and the Direc-
tor of the Intelligent Multimedia Technology Lab-
oratory, School of Informatics, Xiamen University,
Xiamen, China. His work mainly focuses on innova-
tive technologies for multimedia signal processing,
computer vision, and pattern recognition, with over
100 papers published in international journals and
conferences. He serves as an Associate/Guest Editor
for international journals and magazines, such as
Neurocomputing, Signal Processing, and Multimedia
Systems.

Yue Gao is an associate professor with the School
of Software, Tsinghua University. He received the
B.S. degree from the Harbin Institute of Technology,
Harbin, China, and the M.E. and Ph.D. degrees from
Tsinghua University, Beijing, China.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

Conv
𝑘𝑘 = 3, 𝑠𝑠 = 2,𝑝𝑝 = 1 𝑩𝑩𝟏𝟏

Conv
𝑘𝑘 = 3, 𝑠𝑠 = 2,𝑝𝑝 = 1 -

MANNet
shortcut=true
n = 1,𝑘𝑘 = 3

𝑩𝑩𝟐𝟐

Conv
𝑘𝑘 = 3, 𝑠𝑠 = 2,𝑝𝑝 = 1 -

Conv
𝑘𝑘 = 3, 𝑠𝑠 = 2,𝑝𝑝 = 1 -

MANNet
shortcut=true
n = 2, 𝑘𝑘 = 5

𝑩𝑩𝟑𝟑

MANNet
shortcut=true
n = 2,𝑘𝑘 = 5

𝑩𝑩𝟒𝟒

Conv
𝑘𝑘 = 3, 𝑠𝑠 = 2,𝑝𝑝 = 1 -

MANNet
shortcut=true
n = 1,𝑘𝑘 = 3

-

SPPF 𝑩𝑩𝟓𝟓

320 × 320 × 32

640 × 640 × 3

160 × 160 × 64

160 × 160 × 64

80 × 80 × 128

80 × 80 × 128

40 × 40 × 256

40 × 40 × 256

20 × 20 × 512

20 × 20 × 512

20 × 20 × 512

Detect

Detect

Detect

HyperConv

MAN
shortcut=true

n = 1

Concat

Concat

ConcatConcat

Semantic
Collecting

Semantic
Scattering

Concat

Concat

MANet
shortcut=false

n = 1
𝑷𝑷𝟑𝟑

MANet
shortcut=false

n = 1
𝑷𝑷𝟒𝟒

𝟏𝟏 × 𝟏𝟏Up
Sample

Down
Sample

Down
Sample

Down
Sample

MANet
shortcut=false

n = 1
𝑵𝑵𝟒𝟒

C2f
shortcut=false

n = 1
𝑵𝑵𝟓𝟓

Down
Sample

Down
Sample

Down
Sample

Up
Sample

𝑩𝑩𝟓𝟓

𝑩𝑩𝟒𝟒

𝑩𝑩𝟑𝟑

Backbone Neck Head

𝟏𝟏 × 𝟏𝟏

Hypergraph 
Computation 

𝑷𝑷𝟓𝟓

Hyper-YOLO-S

1 × 1  Conv

ConvNeck

Concatenation

𝑐𝑐𝑖𝑖𝑖𝑖

𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜

2𝑐𝑐

ConvNeck

⋯
𝑛𝑛

Split

ConvNeck

⋯

𝑐𝑐
𝑐𝑐

𝑐𝑐

𝑐𝑐
𝑐𝑐𝑐𝑐 4𝑐𝑐

2𝑐𝑐
4𝑐𝑐

𝑐𝑐

𝑐𝑐

1 × 1  Conv

4 + 𝑛𝑛 × 𝑐𝑐

2𝑐𝑐

Mixed Aggregation Network
(MANet)

1 × 1  Conv

ConvNeck

Concatenation

𝑐𝑐𝑖𝑖𝑖𝑖

𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜

2𝑐𝑐

ConvNeck

⋯
𝑛𝑛

Split

ConvNeck

⋯

𝑐𝑐
𝑐𝑐

𝑐𝑐

𝑐𝑐
𝑐𝑐

𝑐𝑐

𝑐𝑐

1 × 1  Conv

2 + 𝑛𝑛 × 𝑐𝑐

C2f

1 × 1  Conv

1 × 1  Point-
wise Conv

𝑘𝑘 × 𝑘𝑘 Deep-
wise Conv

2𝑐𝑐

1 × 1
Conv

𝑐𝑐

DSConv

HyperConv

HGNN+ 
Convolution

ℎ × 𝑤𝑤 × 𝑐𝑐𝑖𝑖𝑖𝑖

Reshape

𝑁𝑁 × 𝑐𝑐𝑖𝑖𝑖𝑖

Distance
Computation

𝑁𝑁 × 𝑐𝑐𝑖𝑖𝑖𝑖

𝑁𝑁 × 𝑁𝑁

Distance
Threshold

< 𝝐𝝐

𝑁𝑁 = ℎ × 𝑤𝑤

𝑁𝑁 × 𝑁𝑁

𝑁𝑁 × 𝑐𝑐𝑖𝑖𝑖𝑖

Reshape
ℎ × 𝑤𝑤 × 𝑐𝑐𝑖𝑖𝑖𝑖

𝟑𝟑 × 𝟑𝟑
Conv

𝟑𝟑 × 𝟑𝟑
Conv

𝑐𝑐𝑖𝑖𝑖𝑖 𝑐𝑐 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜

ConvNeck (if shortcut=true)

𝒌𝒌 × 𝒌𝒌
Conv BN

𝑐𝑐𝑖𝑖𝑖𝑖 𝑐𝑐 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜

𝒌𝒌 × 𝒌𝒌  Conv

SiLU
𝑐𝑐

St
ag

e 
1

St
ag

e 
2

St
ag

e 
3

St
ag

e 
4

St
ag

e 
5

40 × 40 × 128

40 × 40 × 512

40 × 40 × 992

20 × 20 × 256

80 × 80 × 256

20 × 20 × 768

40 × 40 × 256

20 × 20 × 512

20 × 20 × 256

20 × 20 × 76820 × 20 × 512

40 × 40 × 64

40 × 40 × 32

40 × 40 × 256

40 × 40 × 256

40 × 40 × 256 40 × 40 × 512 40 × 40 × 256 40 × 40 × 384

40 × 40 × 256

80 × 80 × 384 80 × 80 × 128

80 × 80 × 128

80 × 80 × 128

40 × 40 × 25640 × 40 × 256

40 × 40 × 128

Fig. S1. The detailed configuration of our Hyper-YOLO-S.

APPENDIX A
IMPLEMENTAL DETAILS OF HYPER-YOLO

In this section, we detail the implementation of our
proposed models: Hyper-YOLO-N, Hyper-YOLO-S, Hyper-
YOLO-M, and Hyper-YOLO-L. These models are developed
upon the PyTorch1. In line with the configuration established
by YOLOv8 [8], our models share analogous architectures and
loss functions, with the notable exception of incorporating
MANet and HyperC2Net. An efficient decoupled head has
been integrated for precise object detection. The specific
configurations of the Hyper-YOLO-S are depicted in fig. S1.

A. Backbone

The backbone of HyperYOLO, detailed in table S1, has
been updated from its predecessor, with the C2f module being
replaced by the MANet module, maintaining the same number
of layers as in YOLOv8 [8], structured as [3, 6, 6, 3]. The
channel counts for each stage are kept consistent with those
in YOLOv8, with the only change being the module swap.

1https://pytorch.org/

TABLE S1
CONFIGURATION OF HYPER-YOLO’S BACKBONE. THE STAGE 1− 5

REFER TO FIG. S1.

MANet
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
n k n k n k n k n k

Hyper-YOLO-N - - 1 3 2 5 2 5 1 3
Hyper-YOLO-S - - 1 3 2 5 2 5 1 3
Hyper-YOLO-M - - 2 3 4 5 4 5 2 3
Hyper-YOLO-L - - 3 3 6 5 6 5 3 3

The MANet employs depthwise separable convolutions with
an increased channel count, where a 2c input is expanded to
a 4c output (with 2c equivalent to cout).

In addition to these adjustments, the hyperparameters k
and n for the four stages are set to [3, 5, 5, 3] and [3, 6, 6, 6]
× depth, respectively. The depth multiplier varies across the
different scales of the model, being set to 1/3, 1/3, 2/3,
and 1 for the Hyper-YOLO-N, Hyper-YOLO-S, Hyper-YOLO-
M, and Hyper-YOLO-L, respectively. This means that the
actual count of n at each stage of the models is [3, 6, 6, 6]

https://pytorch.org/


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

TABLE S2
DETAILED CONFIGURATION OF HYPER-YOLO’S NECK. Cin AND Cout

DENOTE THE NUMBER OF INPUT AND OUTPUT CHANNELS OF
HYPERCONV, RESPECTIVELY. ϵ DENOTES THE PREDETERMINED DISTANCE

THRESHOLD FOR HYPERGRAPH CONSTRUCTION.

Channel of Feature HyperConv
B1 B1 B3 B4 B5 Cin Cout ϵ

Hyper-YOLO-N 16 32 64 128 256 128 128 6
Hyper-YOLO-S 32 64 128 256 512 256 256 8
Hyper-YOLO-M 48 96 192 384 576 384 384 10
Hyper-YOLO-L 64 128 256 512 512 512 512 10

multiplied by the corresponding depth factor for that scale.
These specifications ensure that each scale of the HyperYOLO
model is equipped with a backbone that is finely tuned for its
size and complexity, enabling efficient feature extraction at
multiple scales.

B. Neck

Compared to the neck design in YOLOv8, the Hyper-
YOLO model introduces the HyperC2Net (Hypergraph-Based
Cross-level and Cross-position Representation Network) as its
neck component, detailed in fig. 4. This innovative structure
is an embodiment of the proposed HGC-SCS framework,
specifically engineered to encapsulate potential high-order
correlations existing within the semantic space.

The HyperC2Net is designed to comprehensively fuse cross-
level and cross-position information emanating from the back-
bone network. By leveraging the hypergraph architecture,
it effectively captures the complex interdependencies among
feature points across different layers and positions. This allows
the model to construct a more intricate and enriched repre-
sentation of the input data, which is particularly useful for
identifying and delineating subtle nuances within the images
being processed. In the context of the Hyper-YOLO model’s
varying scales, the neck plays a critical role in maintaining the
consistency of high-order correlation representation. Since the
spatial distribution of feature points can significantly differ be-
tween models like Hyper-YOLO-N and Hyper-YOLO-L, with
the latter typically having a more dispersed distribution, the
HyperC2Net adjusts its approach accordingly by employing
different distance thresholds for each model scale, as outlined
in table S2, to ensure that the network captures the appropriate
level of high-order correlations without succumbing to over-
smoothing. The HyperC2Net’s ability to dynamically adapt
its threshold values based on the model scale and feature
point distribution is a testament to its sophisticated design.
It strikes a fine balance between the depth of contextual
understanding and the need to preserve the sharpness and
granularity of the feature space, thereby enhancing the model’s
overall performance in detecting and classifying objects within
varied and complex visual environments.

APPENDIX B
VISUALIZATIONS OF RESULTS

In this section, we further provide visualizations of the
Hyper-YOLO on two tasks: object detection and instance
segmentation, as shown in fig. S2 and fig. S3, respectively.

TABLE S3
DETAILED CONFIGURATION OF DIFFERENT HYPER-YOLO VARIATIONS

FOR TRAINING.

Hyperparameter N S M L

Epochs 500 500 500 500
Optimizer SGD SGD SGD SGD
lr0 0.01 0.01 0.01 0.01
lrf 0.02 0.01 0.1 0.1
lr decay linear linear linear linear
Momentum 0.937 0.937 0.937 0.937
Weight decay 0.0005 0.0005 0.0005 0.0005
Warm up epochs 3.0 3.0 3.0 3.0
Warm up momentum 0.8 0.8 0.8 0.8
Warm up bias learning rate 0.1 0.1 0.1 0.1
Box loss gain 7.5 7.5 7.5 7.5
Class loss gain 0.5 0.5 0.5 0.5
DFL loss gain 1.5 1.5 1.5 1.5
HSV hue augmentation 0.015 0.015 0.015 0.015
HSV saturation augmentation 0.7 0.7 0.7 0.7
HSV value augmentation 0.4 0.4 0.4 0.4
Translation augmentation 0.1 0.1 0.1 0.1
Scale augmentation 0.5 0.6 0.9 0.9
Mosaic augmentation 1.0 1.0 1.0 1.0
Mixup augmentation 0.0 0.0 0.1 0.1
Copy & Paste augmentation 0.0 0.0 0.0 0.1
Close mosaic epochs 10 10 20 20
Hypergraph threshold 6 8 10 10

A. Object Detection

The results depicted in fig. S2 illustrate that our Hyper-
YOLO model exhibits superior object recognition capabilities,
as demonstrated in figures (b) and (c). Moreover, owing to the
usage of a hypergraph-based neck in its architecture, Hyper-
YOLO possesses a certain degree of class inference ability.
This is most evident in figure (a), where Hyper-YOLO is
capable of inferring with high confidence that if one bird is
detected, the other two entities are also birds. Additionally, as
observed in figure (e), it is common for humans to play with
dogs using a frisbee. Even though only a glove is visible in
the image, our Hyper-YOLO is still able to recognize it as
part of a human.

B. Instance Segmentation

Results from fig. S3 indicate that, compared to YOLOv8,
Hyper-YOLO achieves significant improvements in both cat-
egorization and boundary delineation for segmentation tasks.
Despite the ground truth annotation in figure (a) not being
entirely accurate, our Hyper-YOLO still manages to provide
precise boundary segmentation. Figures (c), (d) and (e) depict
more complex scenes, yet our Hyper-YOLO continues to
deliver accurate instance segmentation results, ensuring that
not a single cookie is missed.

APPENDIX C
TRAINING DETAILS OF HYPER-YOLO

The training protocol for Hyper-YOLO was carefully de-
signed to foster consistency and robustness across varying
experiments. Each GPU was allocated a uniform batch size
of 20 to maintain a consistent computational environment,
utilizing a total of 8 NVIDIA GeForce RTX 4090 GPUs.
To assess the learning efficacy and generalization capacity, all



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

Ground Truth YOLOv8-S Hyper-YOLO-S

(a)

(b)

(c)

(d)

(e)

Fig. S2. Results comparison of YOLOv8-S and Hyper-YOLO-S in the Object
Detection task. Red boxes highlight objects detected with incorrect labels.

Ground Truth YOLOv8-S Hyper-YOLO-S

(a)

(b)

(c)

(d)

(e)

Fig. S3. Results comparison of YOLOv8-S and Hyper-YOLO-S in the Instance
Segmentation task. Red boxes denote mis-detected or partially segmented.

variants of Hyper-YOLO, including -N, -S, -M, and -L, were
trained from the ground up. The models underwent 500 epochs
of training without relying on pre-training from large-scale
datasets like ImageNet, thereby avoiding potential biases. The
training hyperparameters were fine-tuned to suit the specific
needs of the different sizes of the model. table S3 summarizes
the key hyperparameters for each model scale.

Those core parameters, such as the initial learning rate and
weight decay, were uniformly set across all scales to standard-
ize the learning process. The hypergraph threshold, however,
was varied according to the model scale and batch size. This
threshold was configured with a batch size of 20 per GPU
in mind, implying that if the batch size were to change, the
threshold would need to be adjusted accordingly. Generally, a
larger batch size on a single GPU would necessitate a lower
threshold, whereas a larger model scale correlates to a higher
threshold.

Most hyperparameters remained consistent across the differ-
ent model scales; nonetheless, parameters such as the learning
rate, scale augmentation, mixup augmentation, copy & paste
augmentation, and the hypergraph threshold were tailored for
each model scale. Data augmentation hyperparameters were
set in accordance with YOLOv5’s configuration, with certain
modifications for Hyper-YOLO. For instance, the N and S
models employed lower levels of data augmentation, with
specific adjustments made for the N model’s final learning rate
(lrf=0.02) and the S model’s scale augmentation (scale=0.6).

The M and L models, on the other hand, utilized moderate
and high levels of data augmentation, respectively, with both
scales having the same setting for close mosaic epochs (20).

It should be emphasized that the hypergraph threshold is set
under the premise of a batch size of 20 per GPU. Alterations
to the batch size should be accompanied by corresponding
adjustments to the threshold, following the trend that a larger
single-GPU batch size should lead to a smaller relative thresh-
old. Similarly, larger model scales require higher thresholds.
Most hyperparameters are consistent across different model
scales, with the exception of a few like lrf, scale augmenta-
tion, mixup augmentation, copy & paste augmentation, and
hypergraph threshold, which are tailored to the specific scale
of the model. Data augmentation parameters are largely based
on the YOLOv5 settings, with some values being distinct to
accommodate the different requirements of the Hyper-YOLO
model.

APPENDIX D
DETAILS OF SPEED TEST

The speed benchmarking for our Hyper-YOLO model
adopts a two-group approach. The first group comprises mod-
els requiring reparameterization, such as YOLOv6-3.0 and
Gold-YOLO. The second group includes YOLOv5, YOLOv8,
and HyperYOLO. Notably, during the conversion process to
ONNX format, the HyperYOLO model encounters issues with
the ‘torch.cdist’ function, leading to large tensor sizes that



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 16

cause errors at batch sizes of 32. To address this and ensure
accurate speed measurements, we replace the ‘torch.cdist’
function with a custom feature distance function during testing.
In addition, we also test the speed of a variant with only an
enhanced backbone.

The benchmarking process involves converting the models
to ONNX format, followed by conversion to TensorRT en-
gines. The tests are performed twice, under batch sizes of
1 and 32, to assess performance across different operational
contexts. Our test environment is controlled, consisting of
Python 3.8.16, Pytorch 2.0.1, CUDA 11.7, cuDNN 8.0.5,
TensorRT 8.6.1, and ONNX 1.15.0. All tests are carried out
with a fixed input size of 640× 640 pixels.


	Introduction
	Related Work
	YOLO Series Object Detectors
	Hypergraph Learning Methods

	Hypergraph Computation Empowered Semantic Collecting and Scattering Framework
	Methods
	Preliminaries
	Hyper-YOLO Overview
	Mixed Aggregation Network
	Hypergraph-Based Cross-Level and Cross-Position Representation Network
	Hypergraph Construction.
	Hypergraph Convolution.
	An Instance of HGC-SCS Framework.

	Comparison and Analysis

	Experiments
	Experimental Setup
	Datasets
	Compared Methods
	Our Hyper-YOLO Methods
	Other Details

	Results and Discussions
	Ablation Studies on Backbone
	On Basic Block of Backbone.
	On Kernel Size of Different Stages.

	Ablation Studies on Neck
	High-Order vs. Low-Order Learning in HGC-SCS Framework
	On the Semantic Collecting Phase
	On Hypergraph Construction of Hypergraph Computation Phase

	More Ablation Studies
	More Evaluation on Instance Segmentation Task
	Visualization of High-Order Learning in Object Detection

	Conclusion
	References
	Biographies
	Yifan Feng
	Jiangang Huang
	Shaoyi Du
	Shihui Ying (M'11)
	Jun-Hai Yong
	Yipeng Li
	Guiguang Ding
	Rongrong Ji
	Yue Gao

	Appendix A: Implemental Details of Hyper-YOLO
	Backbone
	Neck

	Appendix B: Visualizations of Results
	Object Detection
	Instance Segmentation

	Appendix C: Training Details of Hyper-YOLO
	Appendix D: Details of Speed Test

