
Scaffold-BPE: Enhancing Byte Pair Encoding for Large Language Models
with Simple and Effective Scaffold Token Removal

Haoran Lian1, Yizhe Xiong2,3, Jianwei Niu1, Shasha Mo1, Zhenpeng Su4,
Zijia Lin2, Hui Chen2,3, Peng Liu5, Jungong Han2, Guiguang Ding2,3,

1Beihang University, 2Tsinghua University, 3BNRist,
4Chinese Academy of Sciences, 5Beijing Institute Of Technology

Correspondence: niujianwei@buaa.edu.cn

Abstract

Byte Pair Encoding (BPE) serves as a founda-
tion method for text tokenization in the Natu-
ral Language Processing (NLP) field. Despite
its wide adoption, the original BPE algorithm
harbors an inherent flaw: it inadvertently in-
troduces a frequency imbalance for tokens in
the text corpus. Since BPE iteratively merges
the most frequent token pair in the text corpus
to generate a new token and keeps all gener-
ated tokens in the vocabulary, it unavoidably
holds tokens that primarily act as components
of a longer token and appear infrequently on
their own. We term such tokens as Scaffold
Tokens. Due to their infrequent occurrences in
the text corpus, Scaffold Tokens pose a learn-
ing imbalance issue. To address that issue, we
propose Scaffold-BPE, which incorporates a
dynamic scaffold token removal mechanism by
parameter-free, computation-light, and easy-to-
implement modifications to the original BPE
method. This novel approach ensures the exclu-
sion of low-frequency Scaffold Tokens from the
token representations for given texts, thereby
mitigating the issue of frequency imbalance and
facilitating model training. On extensive ex-
periments across language modeling and even
machine translation, Scaffold-BPE consistently
outperforms the original BPE, well demonstrat-
ing its effectiveness.

1 Introduction

In recent years, Large Language Models (LLMs)
have become a burgeoning paradigm in handling a
broad array of Natural Language Processing (NLP)
tasks. The tokenization process in most modern
LLMs (Radford et al., 2019; Brown et al., 2020;
Rae et al., 2021; Zhang et al., 2022; Biderman
et al., 2023; Touvron et al., 2023a; Yang et al.,
2023; Achiam et al., 2023; Dubey et al., 2024) em-
ploys Byte Pair Encoding (BPE) (Sennrich et al.,
2015), a method that was originally designed for
data compression (Gage, 1994). BPE consists of

0.00% 18.00% 36.00% 54.00% 72.00% 90.00%

The relative frequency of tokens containing “zona”
Arizona

zona

0.00% 1.40% 2.80% 4.20% 5.60% 7.00%

The relative frequency of tokens containing “ing”
ing

using

being

during

going

following

something

Figure 1: Two types of tokens in original BPE vocabu-
lary on the Pile dataset: one type, such as “ing”, appears
frequently by itself, while the other type, such as “zona”,
mostly appears as a component of “Arizona” and thus
has a low individual occurrence frequency. The value
on the horizontal axis represents the percentage of the
frequency of the token relative to the total frequency of
all tokens containing “ing”/“zona”. For “ing”, we only
visualize the top tokens.

two main stages. In the training stage, BPE itera-
tively merges the most frequent pairs of bytes or
characters in a dataset into a new token and adds
it to the vocabulary until a desired vocabulary size
is reached. And in the encoding stage, the vocabu-
lary is utilized to represent any text. The adoption
of BPE in LLMs is driven by its capability to de-
compose words into smaller, manageable subword
units, thus avoiding out-of-vocabulary words, facil-
itating flexible and semantically complete represen-
tations of input data. Actually, BPE has also been
widely used in traditional NLP tasks, like machine
translation (Provilkov et al., 2019; Xu et al., 2020),
sentence classification (Liu et al., 2019; He et al.,
2020b) and summarization (Wu et al., 2021; Xu
et al., 2022).

Since its inception, BPE has undergone various

1

ar
X

iv
:2

40
4.

17
80

8v
3

 [
cs

.C
L

]
 1

3
N

ov
 2

02
4

mailto:niujianwei@buaa.edu.cn

29000 30000 31000 32000
Token Rank

0

2 × 105

4 × 105

6 × 105

8 × 105
Fr

eq
ue

nc
y

Original BPE
Scaffold-BPE

Figure 2: Sorted token frequencies in descending order
of the original BPE and Scaffold-BPE.

modifications to better suit the needs of complex
NLP tasks, including identifying the optimal vo-
cabulary size for various tasks (Xu et al., 2020;
Gutierrez-Vasques et al., 2021), optimizing the en-
coding paths of tokens to achieve subword regular-
ization (Provilkov et al., 2019; He et al., 2020a),
etc.

However, existing studies have overlooked an
inherent limitation in the BPE method: the iterative
merging process can lead to an imbalance in token
frequencies by including low-frequency tokens in
vocabulary. For example, as illustrated in Figure
1, in the commonly used Pile dataset (Gao et al.,
2020) that is tokenized by the original BPE method
of 32K vocabulary size (as LLaMA series (Tou-
vron et al., 2023a,b)), the token “zona” mostly ap-
pears as a component of the token “Arizona” rather
than as an independent, high-frequency token. De-
spite its lower standalone frequency, BPE includes
“zona” in the final vocabulary because it is the “in-
termediate token” to derive the frequent token “Ari-
zona”. We define such intermediate tokens that
are crucial for constructing longer frequent tokens
but do not appear frequently on their own as Scaf-
fold Tokens. Note that not all subwords are simply
scaffold tokens. For example, “ing" is not identi-
fied as a scaffold token, as there are many words
containing “ing" but are not tokens in the vocab-
ulary. For example, “connecting" is represented
as “connect"+“ing" (2 tokens). Such words help
to keep “ing” a frequent token. Therefore, “ing" is
not a scaffold token. According to our proposed
Scaffold-BPE method, the 32K vocabulary con-
tains about 6.07% of scaffold tokens.

As depicted in Figure 2, a natural frequency im-
balance arises between these scaffold tokens and
actual high-frequency tokens. Prior studies (Lin

et al., 2017; Su et al., 2023) have highlighted that
such disparities in token frequencies can result in
imbalanced learning difficulties across different to-
kens. Scaffold tokens, due to their lower individual
occurrence frequencies, are notably harder to learn
for models.

To address that issue, we propose enhancements
to the BPE algorithm, aiming to mitigate the fre-
quency imbalance and ensure a more equitable
learning process for all tokens. Specifically, we
propose the simple and effective Scaffold-BPE
with a dynamic scaffold token removal mechanism,
which is parameter-free, computation-light, easy-
to-implement, and widely effective. Generally, the
proposed Scaffold-BPE maintains an expanded vo-
cabulary compared with the original BPE, which
consists of both normal tokens and scaffold to-
kens. Note that the scaffold tokens are not actual
tokens in the vocabulary and do not appear in the
tokenized sequences after encoding. In the train-
ing stage, Scaffold-BPE dynamically marks tokens
with lower individual occurrence frequencies as
scaffold tokens in each iteration. In the encoding
stage, the Scaffold-BPE firstly utilizes all tokens in
the expanded vocabulary to generate the token rep-
resentations for the given texts, which is termed as
a Scaffolding process. Then, the Scaffold-BPE en-
sures the absence of all scaffold tokens in the token
representation by demolishing them into their short-
est non-scaffold-token sequence, which is termed
as a Demolishing process. Thanks to such modifi-
cations, Scaffold-BPE can remove scaffold tokens
from the final token representations fed into mod-
els, thus enjoying more balanced token occurrences,
leading to more sufficient learning and better per-
formance of models.

We conduct extensive experiments on language
modeling tasks. Results on 9 widely used language
modeling benchmarks demonstrate that Scaffold-
BPE consistently outperforms the original BPE.
Besides, even when extended to machine transla-
tion tasks, Scaffold-BPE proves highly effective.
Furthermore, we show that Scaffold-BPE is orthog-
onal to existing modifications on BPE, like BPE-
Dropout (Provilkov et al., 2019) and can be com-
bined with them to achieve further improvements.

Overall, our contributions are three-fold:

• We observe that the iterative training process
of BPE incorporates low-frequency tokens
into the vocabulary, which we term scaffold
tokens.

2

Scaffold(Ari) ← True
Scaffold(zona) ← True

𝑓 Ari ← 𝑓 Ari − 𝑓 Ari, zona
𝑓 zona ← 𝑓 zona − 𝑓 Ari, zona

merge
pop

··· Ari/zona ···

Arizona

append to 𝐸

··· Arizona ···

merge

Token Pair Frequency↓

(P, ad) 43598

(can, cel) 43597

(Inter, face) 43595
· · ·

(A, ri) 29421
· · ·

(zon, a) 5346
· · ·

push back

if Arizona in 𝑆, then
Scaffold(Arizona) ← False

and continue

update
token pairs

Priority
Queue
𝑄

𝑓 𝑄!"#$

𝑓 Ari < 𝑓 𝑄!"#$
𝑓 zona < 𝑓 𝑄!"#$

Token Pair Frequency↓

(P, ad) 43598

(can, cel) 43597

(Inter, face) 43595
· · ·

(Arizona, to) 763
· · ·

(lead, Arizona) 125
· · ·

Token Pair Frequency↓

(Ari, zona) 43599

(P, ad) 43598

(can, cel) 43597

(Inter, face) 43595

(Prov, ider) 43586

(l, oyal) 43576
· · ·

Token Frequency Scaffold
· · ·

Ari 73020 False
· · ·

zona 48945 False

adata 5407 True

mate 44057 False

Expanded
Vocabulary

𝐸

Iteration N

Text Corpus

Vocabulary 𝑉 = 𝑡 ∈ 𝐸|Scaffold 𝑡 = 𝐹𝑎𝑙𝑠𝑒
Scaffold Vocabulary 𝑆 = 𝑡 ∈ 𝐸|Scaffold 𝑡 = 𝑇𝑟𝑢𝑒

Token Frequency Scaffold
· · ·

Ari 29421 False
· · ·

zona 5346 False

adata 5407 True

mate 44057 False

Arizona 43599 False

Token Frequency Scaffold
· · ·

Ari 29421 True
· · ·

zona 5346 True

adata 5407 True

mate 44057 False

Arizona 43599 False

else

Figure 3: Illustration of one iteration in the Scaffold-BPE training process.

• We propose Scaffold-BPE, which can remove
scaffold tokens from the final token repre-
sentations by dynamically marking scaffold
tokens in the training process and temporar-
ily utilizing scaffold tokens in the encod-
ing process. Scaffold-BPE is parameter-free,
computation-light, easy-to-implement, and
widely effective, preserving the simplicity and
clarity of BPE.

• Extensive experiments demonstrate that
Scaffold-BPE outperforms the original BPE
on language modeling and also machine trans-
lation tasks, proving its effectiveness and ro-
bustness in the NLP field.

2 Related Works

Recently, LLMs have become a popular paradigm
for solving NLP tasks, with BPE serving as the
mainstream tokenizer to split a text into a sequence
of tokens (e.g., subwords/words/phrases). Thus,
enhancing BPE could boost the performance of
LLMs and have positive implications for various
applications.

2.1 Language Models

Language models are designed to maximize the
likelihood of a token sequence. Following GPT-3
(Brown et al., 2020), which features 175 billion
parameters and demonstrates versatility across a
wide range of applications, there has been a sig-
nificant push towards developing large generative
language models like Gopher (Rae et al., 2021),
PaLM (Chowdhery et al., 2023), GaLM (Du et al.,
2022), OPT (Zhang et al., 2022), and LLaMA (Tou-
vron et al., 2023a). Such a surge in development

has greatly advanced the fields of natural language
understanding and generation.

2.2 Byte Pair Encoding
Early neural models had difficulty managing rare
words due to limited vocabulary sizes. BPE (Sen-
nrich et al., 2015) effectively addresses that by gen-
erating a subword vocabulary. Initially, a corpus is
split into characters or bytes, which act as initial
tokens. The algorithm iteratively finds the most
frequent token pair in the sequence, merges them
into a new token, and adds it to the vocabulary until
it reaches a predetermined size. The vocabulary is
then utilized during the encoding phase to represent
any text. Recent advancements like BPE-dropout
(Provilkov et al., 2019) and optimal vocabulary size
search (Xu et al., 2020; Gowda et al., 2020; Salesky
et al., 2020) continue to enrich BPE developments.

However, previous works did not take into ac-
count a fundamental flaw of BPE: the iterative train-
ing process of BPE incorporates low-frequency
tokens into the vocabulary, hindering the inclu-
sion of other actual high-frequency tokens, thus
resulting in an imbalance of token frequencies and
wastage of the vocabulary. To address that issue,
here we propose Scaffold-BPE, which has a dy-
namic scaffold token removal mechanism that en-
sures the tokens fed into models are always actual
high-frequency tokens.

3 Methodology

To enhance the original BPE, we propose Scaffold-
BPE to remove the scaffold tokens introduced by
the original BPE. Our Scaffold-BPE is simple yet
effective. In the training process, the Scaffold-BPE
dynamically marks scaffold tokens in the vocabu-

3

lary at each iteration, and finally yields an expanded
vocabulary consisting of both normal tokens with
the amount equaling the predetermined vocabu-
lary size and several scaffold tokens. In the encod-
ing process, apart from using the normal tokens,
Scaffold-BPE temporarily uses scaffold tokens as
intermediate tokens to merge into longer normal
tokens.

3.1 Training Process
The original BPE is trained on a text corpus C with
a predefined vocabulary size N . After training,
BPE returns a vocabulary V consisting of N tokens.
For simplicity, C is firstly split into a sequence
of smallest unit tokens (denoted as L), with each
token being a single character/byte. We define a, b
as two tokens, (a, b) as a token pair, and f(·) as the
frequency of a token or token pair within L. BPE is
trained iteratively. In each iteration, BPE identifies
the token pair with the highest frequency:

(a, b) = arg max
(x,y)∈L

f((x, y)) (1)

BPE then merges (i.e., concatenates) them into
a new token t, and includes t in V . Then BPE
updates L via replacing all (a, b) with t, and restarts
the process again.

The iterative process of identifying the most fre-
quent token pair (a, b) can be accelerated using a
priority queue Q. At the beginning of the train-
ing process, all token pairs in L are pushed into Q
with a descending order of frequency. And after
the token pair (a, b) is merged into t in each iter-
ation, BPE updates the frequencies and the ranks
of token pairs related to all indexed occurrences
of (a, b). For instance, given (a, b) in a context
of “. . . , u, a, b, v, . . ." in L, when (a, b) is replaced
with t, the frequency of (u, a) or (b, v) would de-
crease by 1, and meanwhile that of (u, t) or (t, v)
would increase by 1. With the occurrences of all to-
ken pairs being indexed, there is no need to scan L
again and re-count the frequencies of all candidate
token pairs for a new iteration. After updating the
adjacent token pairs related to (a, b) (i.e, t), the fre-
quencies of token pairs like (u, a) or (b, v) would
be updated in Q, and meanwhile the new candidate
token pairs (u, t) and (t, v) would also be pushed
into Q with their frequencies.

The Scaffold-BPE expands the vocabulary V to
an expanded vocabulary E, and assigns an attribute
(denoted as Scaffold(·)) to each token in the vocab-
ulary indicating whether it is a scaffold token or

Algorithm 1 Scaffold-BPE Training Algorithm

Require: Text Corpus C, Vocabulary Size N
1: Initialize an expanded vocabulary E, consist-

ing of a normal-token vocabulary V and a
scaffold-token vocabulary S

2: Split C into a characters/bytes list L
3: Initialize a priority queue Q storing token pairs

within L, arranged in reverse order of fre-
quency

4: while |V | < N do
5: (a, b)← pop Qhead

6: Merge pair (a, b) into a new token t
7: if t in S then
8: /* t may be a previously marked scaffold

token */
9: Scaffold(t)← False

10: continue
11: end if
12: Add t to E as a normal token
13: Replace all of (a, b) in L with t
14: Update Q
15: /** Scaffold-BPE Modification Begins **/
16: for each t′ in {a, b} do
17: f(t′)← f(t′)− f(t)
18: if t′ in V and f(t′) < f(Qhead) then
19: Scaffold(t′)← True
20: Push t′ back to Q
21: end if
22: end for
23: /** Scaffold-BPE Modification Ends **/
24: end while
25: return E (with V and S both included)

not. Thus, the expanded vocabulary E comprises
two types of tokens, i.e., normal ones and scaffold
ones. We denote all the non-scaffold tokens by
V , which, as with the original BPE, are the tokens
actually used in representing texts for NLP model
training:

V = {t ∈ E | Scaffold(t) = False} (2)

Additionally, we denote all the scaffold tokens by
S, which are not fed into the model, nor do they
appear in any token representations after encoding:

S = {t ∈ E | Scaffold(t) = True} (3)

They only serve as intermediate tokens to aid in the
training and encoding processes of Scaffold-BPE.
Therefore, when calculating vocabulary size, the
count of scaffold tokens is not included; only the
number of tokens in V is considered.

4

Initially, a token pair is merged and added to
E due to its high frequency. Similarly, Scaffold-
BPE marks a token as a scaffold token when its
frequency decreases too much. Throughout the en-
tire training process of BPE, f(a) and f(b) only
decrease when the token pair (a, b) is merged into a
new token t. Therefore, as presented in Algorithm
1, Scaffold-BPE introduces an additional step at the
end of each iteration, utilizing the decreased f(a)
and f(b) to evaluate whether a and b remain high-
frequency. If they are no longer considered high-
frequency, they would be marked as scaffold tokens.
Naturally, the token pair at the head of the priority
queue Q (denoted as Qhead) is the next candidate
to be added to the vocabulary. Then f(Qhead) is a
natural frequency delimiter between in-vocabulary
and out-of-vocabulary tokens. Therefore, if f(a)
(or f(b)) < f(Qhead), a (or b) is marked as a scaf-
fold token, which means it is not included in V :

Scaffold(a) =

{
True, if f(a) < f(Qhead)

False, otherwise
(4)

Notably, such an additional step leverages the in-
herent mechanism of BPE without introducing any
additional hyper-parameters, maintaining the sim-
plicity and clarity of BPE. Moreover, f(Qhead) is
dynamically adjusted in each iteration, ensuring
that Scaffold-BPE can adaptively identify scaffold
tokens at any iteration step. Furthermore, scaf-
fold tokens are not permanently marked. They
are pushed back into Q, reserving the possibility
of being ranked top at the priority queue and re-
integrated into V in a future iteration.

3.2 Encoding Process

The encoding process of the original BPE encodes a
text T into a token representation (i.e., R) using the
vocabulary V generated by BPE training. Firstly,
R is a sequence of smallest unit tokens (i.e., char-
acter/byte tokens), obtained by splitting T . And
then, following the ranks of tokens in V as merg-
ing priority (i.e., tokens added earlier have higher
frequency and thus are assigned higher priority to
be merged into), token pairs in R are iteratively
merged to build the final representation.

Similarly, the modifications of Scaffold-BPE in
the encoding process are straightforward. Com-
pared to the original BPE, the expanded vocabulary
E is utilized. In each iteration, the token t to be
merged would be selected from both normal tokens

Algorithm 2 Scaffold-BPE Encoding Algorithm

Require: A Text T , Expanded Vocabulary E
1: Split T into a character/byte token representa-

tion (denoted as R)
2: while True do
3: /******** Scaffolding Begins ********/
4: Identify all possible merges M using E, ig-

noring token types
5: /********* Scaffolding Ends *********/
6: if M is empty then
7: break
8: end if
9: Select m which is ranked before the others

in E from M
10: Apply m to R
11: end while
12: /******** Demolishing Begins ********/
13: Demolish all scaffold tokens in R into its short-

est non-scaffold child token sequence
14: /********* Demolishing Ends *********/
15: return R

and scaffold tokens:

t = argmin
t∈E

rankE(t) (5)

where rankE(·) denotes the rank of a token in E.
Consequently, during the encoding process, the
count of different tokens used actually exceeds the
predefined vocabulary size (i.e., N). And scaf-
fold tokens are employed as intermediate tokens to
merge into longer tokens. We term such a mecha-
nism as Scaffolding, as shown in Algorithm 2.

When no more token pairs can be merged in
R, the original BPE returns R as the final result.
However, due to the introduction of the Scaffolding
mechanism in Scaffold-BPE, R may contain scaf-
fold tokens from S, potentially increasing the vari-
ety of tokens beyond the predefined vocabulary size
and exceeding the range of word embeddings that
the model can map. To address it, Scaffold-BPE
adds one additional step termed as Demolishing at
the end of the encoding process. Scaffold-BPE de-
molishes all scaffold tokens in R into their shortest
non-scaffold child token sequences, ensuring that
R only consists of tokens from V . For example, as
shown in Figure 4, the remaining “zona” in R is
demolished into “zon” and “a”. The demolishing
step can be formulated as follows:

t =

{
t, if Scaffold(t) = False
(a, b), otherwise

(6)

5

Token Scaffold

ri False

on False

zon False

Ari False

zona True

Arizona False

··· ···

··· z/o/n/a ··· A/r/i/z/o/n/a ···

··· z/o/n/a ··· A/ri/z/o/n/a ···

··· z/on/a ··· A/ri/z/on/a ···

··· zon/a ··· A/ri/zon/a ···

··· zon/a ··· Ari/zon/a ···

··· zona ··· Ari/zona ···

··· zona ··· Arizona ···

··· zon/a ··· Arizona ···

Scaffolding

Demolishing

Expanded Vocabulary 𝐸 Token Representation 𝑅

Figure 4: The encoding process (i.e., Scaffolding and
Demolishing) for the word “zona" and “Arizona".

where a and b are the components of the scaffold to-
ken t. The formula above would be recursively ap-
plied to a and b to derive the shortest non-scaffold
child token sequence for t. After the Demolishing
step, Scaffold-BPE returns the final token sequence
representation (i.e., R) for T . Since the shortest
non-scaffold child token sequences for all scaffold
tokens can be precomputed during the training pro-
cess, the time complexity of demolishing one token
is O(1), making its impact on encoding efficiency
negligible.

4 Experiments

We employ the recently well-attended language
modeling tasks to validate the effectiveness of the
Scaffold-BPE.

4.1 Experimental Setup

4.1.1 Datasets.
Our models are trained on the Pile (Gao et al., 2020)
dataset, an 825.18 GiB English text dataset de-
signed for training LLMs. The data distribution
for our model training is identical to that of the
original work (Gao et al., 2020).

4.1.2 Tokenizer.
We train two 32K vocabularies (size applied by
LLaMA series (Touvron et al., 2023a,b)) using
the original BPE and Scaffold-BPE, respectively.
Similar to GPT-2 (Radford et al., 2019), pre-
tokenization was employed to prevent the merging
of tokens from different character categories. And
following (Touvron et al., 2023a), we split numbers
into individual digits.

4.1.3 Model.
We train three language models with 468M, 1.2B,
and 6.7B parameters, respectively. Specifically, the
architectures of the 468M and the 1.2B models are

identical to those of the 410M and the 1.0B models
outlined in Pythia (Biderman et al., 2023). The
minor differences in parameter sizes are attributed
to the variations in vocabulary size in the embed-
ding and output layer. As for the 6.7B model, its
architecture is identical to LLaMA-7B (Touvron
et al., 2023a).

4.1.4 Training.

Following the pretraining settings of previous
works (Xie et al., 2023; Su et al., 2024; Xiong et al.,
2024) and limited by our computation budget, by
default all models are pretrained with 100B tokens.
Note that the volume of corresponding text data
contained in an equal amount of tokens is slightly
different between the two tokenizers. Considering
model training efficiency and commonly used crite-
ria (i.e., the token amount) of computation budget
in LLM training, we compare experiments in the
setting of an equal amount of training tokens. In
the Section 4.3.5, we further analyze both tokeniz-
ers in the setting of an equal amount of training
text volume.

4.2 Experimental Results

4.2.1 Common Sense Reasoning.

Our analysis incorporates 7 benchmarks recognized
for evaluating common sense reasoning, includ-
ing BoolQ (Clark et al., 2019), HellaSwag (Zellers
et al., 2019), OpenBookQA (Mihaylov et al., 2018),
PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019),
StoryCloze (Mostafazadeh et al., 2016), and Wino-
grande (Sakaguchi et al., 2021). We present the
performance of all models in terms of average ac-
curacy in 0-shot and 5-shot settings.

As shown in Table 1, we can observe that the
Scaffold-BPE consistently outperforms the original
BPE on different setups with different model sizes.
Notably, the 6.7B model trained with Scaffold-BPE
can achieve a significant 2.08pp (percent point) im-
provement on BoolQ and a 2.90pp improvement on
OpenBookQA. We conduct a t-test, and all metrics
have p-values less than 0.01, indicating that the
results are statistically significant.

Such results clearly demonstrate that although
the modifications are simple, our proposed
Scaffold-BPE is convincingly effective. We at-
tribute it to that Scaffold-BPE can encode text into
tokens with a more balanced frequency distribution,
which can help language models to learn all tokens
more thoroughly.

6

BoolQ HellaSwag OpenBookQA PIQA SIQA StoryCloze Winogrande

468M
Original BPE 58.64 40.78 30.50 66.57 43.40 62.77 53.00
Scaffold-BPE 60.52 41.68 32.20 68.69 44.09 63.04 54.22

1.2B
Original BPE 60.86 47.25 31.70 68.55 44.09 65.61 55.52
Scaffold-BPE 62.26 48.07 32.90 69.86 45.34 67.02 56.00

6.7B
Original BPE 62.87 60.57 35.10 73.69 46.98 71.43 60.97
Scaffold-BPE 64.95 61.19 38.00 74.54 47.49 72.26 61.76

Table 1: At varying model scales, the average accuracy on 0/5-shot common sense reasoning benchmarks (p-value
< 0.01).

TriviaQA WebQuestions

Original BPE 15.63 8.56
Scaffold-BPE 18.86 9.89

Table 2: The average exact match performance on 0/5-
shot closed-book question-answering benchmarks of the
6.7B-parameter models (p-value < 0.01).

32K 64K 128K
Vocabulary Size

0

2 × 105

4 × 105

6 × 105

8 × 105

Fr
eq

ue
nc

y

Scaffold Tokens
Actual High-Frequency Tokens

Figure 5: The average frequencies of the scaffold tokens
and the new actual high-frequency tokens that replace
the scaffold tokens in vocabularies of 32K, 64K and
128K.

4.2.2 Closed Book Question Answering.

For the task of closed book question answering
(Brown et al., 2020; Touvron et al., 2023a), we eval-
uate the performance of the largest 6.7B-parameter
models with different tokenizers on 2 benchmark
datasets, i.e., TriviaQA (Joshi et al., 2017) and
WebQuestions (Berant et al., 2013). We report
the exact match performance for the zero-shot and
few-shot settings in Table 2. It can be seen that
the model trained with the proposed Scaffold-BPE
can achieve a 3.23pp improvement on TriviaQA
and a 1.33pp improvement on WebQuestions, with
both p-values less than 0.01. All results above
demonstrate that Scaffold-BPE can enhance model

64K 128K
Orig. BPE Scaffold-BPE Orig. BPE Scaffold-BPE

BoolQ 58.01 59.71 56.67 59.43
HellaSwag 41.82 42.06 42.70 42.91

OpenBookQA 30.90 31.10 31.10 32.30
PIQA 67.95 69.26 67.68 68.82
SIQA 43.47 43.86 43.83 44.14

StoryCloze 64.19 65.02 64.11 65.26
Winogrande 53.67 54.34 53.91 55.09

Table 3: At varying vocabulary sizes, the average accu-
racy on 0/5-shot common sense reasoning benchmarks
(p-value < 0.01).

performance across different types of downstream
tasks.

4.3 Discussion

4.3.1 Various Vocabulary Size.
Depending on the size of the training corpus, the
diversity of the languages, the size of the model,
and the types of tasks, different vocabulary sizes are
set in practice. Therefore, to validate the robustness
of Scaffold-BPE across various vocabulary sizes,
in addition to the 32K vocabulary (Touvron et al.,
2023a), we also trained two vocabularies sized at
64K (Baichuan, 2023b,a) and 128K (Yang et al.,
2023). The experimental setup is identical to that
of the 468M-parameter model mentioned before.

As shown in Figure 5, Scaffold-BPE can replace
scaffold tokens in vocabularies with actual high-
frequency tokens, which significantly increases the
average frequencies of those tokens. The frequency
improvements are 76.40%, 68.58%, and 58.99%
for the 32K, 64K, and 128K vocabulary sizes, re-
spectively. The enhancement in token frequency
distribution effectively promotes the learning of
those tokens, which can contribute to better model
performance across various tasks.

Moreover, as shown in Table 3, the results
demonstrate that Scaffold-BPE consistently outper-
forms the original BPE across all vocabulary sizes,

7

Original BPE Scaffold-BPE

BoolQ 58.21 61.62
HellaSwag 45.10 46.03

OpenBookQA 31.10 33.50
PIQA 68.63 69.86
SIQA 43.78 44.73

StoryCloze 65.53 66.54
Winogrande 53.67 56.12

Table 4: At 300B training tokens, the average accuracy
on 0/5-shot common sense reasoning benchmarks (p-
value < 0.01).

which indicates that the superiority of Scaffold-
BPE is not sensitive to vocabulary size. Its algorith-
mic design enables it to adaptively remove scaffold
tokens across any vocabulary size, without the need
for manually designed or heavily-tuned hyperpa-
rameters.

4.3.2 More Training Tokens.
According to the Scaling Law, the loss scales as
a power-law with model size, dataset size, and
the amount of training computation (Kaplan et al.,
2020). To demonstrate the effectiveness of our
Scaffold-BPE with more training tokens, we con-
tinue training the 468M models up to 300B tokens
(Zhang et al., 2022; Biderman et al., 2023).

As shown in Table 4, the results demonstrate that
Scaffold-BPE consistently outperforms the original
BPE at 300B training tokens, well indicating that
in the era of increasingly large training datasets for
LLMs, our Scaffold-BPE can effectively enhance
the capabilities of those models through simple
modifications to the original BPE.

4.3.3 Applicable for Other Tasks, Languages,
Model Architectures and Compatible
with Other BPE Enhancements.

Although the development of LLMs is burgeoning,
some applications still prefer using conventional
models due to their lower training and inference
costs. In the NLP field, BPE was initially combined
with transformer models and applied to machine
translation tasks (Sennrich et al., 2015), which typ-
ically face an open vocabulary challenge and in-
volve substantial textual variations between two
languages. Therefore, to validate the versatility of
the Scaffold-BPE method, we additionally conduct
evaluations on machine translation tasks with iden-
tical experimental setup on WMT’14 En-De and
En-Fr dataset in the prior work (Ott et al., 2018).

En-De En-Fr

Original BPE 29.31 43.20
+ BPE-Dropout 29.50 43.44

Scaffold-BPE 29.76 43.81
+ BPE-Dropout 29.78 43.83

Table 5: BLEU on WMT’14 En–De and En–Fr.

Pile En-De En-Fr

Original BPE 3.879 4.830 5.012
Scaffold-BPE 3.889 4.861 5.042

Table 6: Compression Rate (the average number of bytes
per token) on the Pile dataset and the WMT dataset.

As shown in Table 5, Scaffold-BPE outper-
forms the original BPE in machine translation tasks,
which demonstrates that Scaffold-BPE is not spe-
cific to language modeling tasks and can be applied
to a wider range of tasks.

Besides, experiments conducted with En-De and
En-Fr language pairs demonstrate that Scaffold-
BPE is language insensitive. Scaffold-BPE is capa-
ble of identifying and removing the scaffold tokens
introduced by the original BPE across different
languages.

Moreover, previous experiments on language
modeling tasks are carried out on the decoder-only
architecture. For the machine translation tasks, we
utilize the encoder-decoder architecture (Vaswani
et al., 2017). The exceptional performance of
Scaffold-BPE confirms its architecture insensitiv-
ity, indicating its applicability across a wider range
of neural network architectures.

Finally, Scaffold-BPE is orthogonal to and can
be combined with existing enhancements to BPE,
like BPE-Dropout (Provilkov et al., 2019). As
shown in Table 5, Scaffold-BPE with BPE-Dropout
achieves further improvements on BLEU, well in-
dicating the compatibility of Scaffold-BPE.

4.3.4 Higher Compression Rate.
Besides the performance of models on downstream
NLP tasks, the compression rate for a given text
corpus is a metric to measure the effectiveness of
a tokenizer. A higher compression rate means that
fewer tokens are required to represent the same cor-
pus. As shown in Table 6, Scaffold-BPE, utilizing
a scaffold tokens removal mechanism, retains more
actual high-frequency tokens in the final vocabu-
lary, and thus it achieves a higher compression rate

8

Original BPE Scaffold-BPE

BoolQ 58.72 60.55
HellaSwag 40.84 41.69

OpenBookQA 30.55 32.22
PIQA 66.58 68.78
SIQA 43.40 44.13

StoryCloze 62.85 63.08
Winogrande 53.07 54.25

Table 7: At exactly 388 GiB training text, the average
accuracy on 0/5-shot common sense reasoning bench-
marks (p-value < 0.01).

on all the corpus in our experiments.

4.3.5 Experiments under Same Corpus Size
As mentioned before, considering model training
efficiency and commonly used criteria (i.e., the to-
ken amount) of computation budget in LLM train-
ing, experiments above are compared in the setting
of an equal amount of training tokens. To elim-
inate the impact of different amounts of training
text caused by different compression rates on ex-
periment results, we additionally train two 468M-
parameter models on exactly 388 GiB training text
(≈ 100B tokens). As shown in Table 7, Scaffold-
BPE consistently outperforms the original BPE,
demonstrating that the effectiveness of Scaffold-
BPE is not merely obtained by allowing models to
digest more data in the same computation budget.
Our Scaffold-BPE also alleviates the issue of token
frequency imbalance, allowing models to learn all
tokens more sufficiently and evenly, thus achieving
better performance.

5 Conclusions

In this paper, we present our observation of tokens
with imbalanced frequencies in BPE vocabulary,
which we term scaffold tokens. Those scaffold
tokens, while integral to the formation of longer
tokens, do not represent actual frequent tokens and
affect the performance of LLMs negatively. To ad-
dress that, we propose Scaffold-BPE, which can
remove scaffold tokens from the final token rep-
resentations by dynamically marking scaffold to-
kens in the training process and temporarily utiliz-
ing them in the encoding process. The Scaffold-
BPE is parameter-free, computation-light, easy-to-
implement, and widely effective, well preserving
the simplicity and clarity of BPE. Through exten-
sive experiments, including varying model sizes,

vocabulary sizes and more training tokens, etc.,
Scaffold-BPE demonstrates its robustness and su-
periority over the original BPE.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Baichuan. 2023a. Baichuan-13b. https://github.
com/baichuan-inc/Baichuan-13B.

Baichuan. 2023b. Baichuan-7b. https://github.
com/baichuan-inc/Baichuan-7B.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
conference on empirical methods in natural language
processing, pages 1533–1544.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023.
Pythia: A suite for analyzing large language mod-
els across training and scaling. In International
Conference on Machine Learning, pages 2397–2430.
PMLR.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432–7439.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong,
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. 2022.
Glam: Efficient scaling of language models with
mixture-of-experts. In International Conference on
Machine Learning, pages 5547–5569. PMLR.

9

https://github.com/baichuan-inc/Baichuan-13B
https://github.com/baichuan-inc/Baichuan-13B
https://github.com/baichuan-inc/Baichuan-7B
https://github.com/baichuan-inc/Baichuan-7B

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Philip Gage. 1994. A new algorithm for data compres-
sion. C Users Journal, 12(2):23–38.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The pile: An 800gb dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Gowda et al. 2020. Finding the optimal vocabulary
size for neural machine translation. arXiv preprint
arXiv:2004.02334.

Ximena Gutierrez-Vasques, Christian Bentz, Olga Sozi-
nova, and Tanja Samardzic. 2021. From characters to
words: the turning point of bpe merges. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 3454–3468.

He et al. 2020a. Dynamic programming encoding for
subword segmentation in neural machine translation.
arXiv preprint arXiv:2005.06606.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020b. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. arXiv preprint arXiv:1705.03551.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollár. 2017. Focal loss for dense object
detection. In Proceedings of the IEEE international
conference on computer vision, pages 2980–2988.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. arXiv preprint arXiv:1809.02789.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A cor-
pus and evaluation framework for deeper under-
standing of commonsense stories. arXiv preprint
arXiv:1604.01696.

Myle Ott, Sergey Edunov, David Grangier, and Michael
Auli. 2018. Scaling neural machine translation. In
Proceedings of the Third Conference on Machine
Translation: Research Papers, pages 1–9, Brussels,
Belgium. Association for Computational Linguistics.

Provilkov et al. 2019. Bpe-dropout: Simple and
effective subword regularization. arXiv preprint
arXiv:1910.13267.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, et al. 2021. Scaling language models:
Methods, analysis & insights from training gopher.
arXiv preprint arXiv:2112.11446.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

Elizabeth Salesky, Andrew Runge, Alex Coda, Jan
Niehues, and Graham Neubig. 2020. Optimizing
segmentation granularity for neural machine transla-
tion. Machine Translation, 34(1):41–59.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
LeBras, and Yejin Choi. 2019. Socialiqa: Com-
monsense reasoning about social interactions. arXiv
preprint arXiv:1904.09728.

Sennrich et al. 2015. Neural machine translation of
rare words with subword units. arXiv preprint
arXiv:1508.07909.

Zhenpeng Su, Zijia Lin, Xue Bai, Xing Wu,
Yizhe Xiong, Haoran Lian, Guangyuan Ma, Hui
Chen, Guiguang Ding, Wei Zhou, et al. 2024.
Maskmoe: Boosting token-level learning via rout-
ing mask in mixture-of-experts. arXiv preprint
arXiv:2407.09816.

10

https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.18653/v1/W18-6301

Zhenpeng Su, Xing Wu, Xue Bai, Zijia Lin, Hui Chen,
Guiguang Ding, Wei Zhou, and Songlin Hu. 2023.
Infoentropy loss to mitigate bias of learning difficul-
ties for generative language models. arXiv preprint
arXiv:2310.19531.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Tongzhou Wang and Phillip Isola. 2020. Understanding
contrastive representation learning through alignment
and uniformity on the hypersphere. In International
conference on machine learning, pages 9929–9939.
PMLR.

Wenhao Wu, Wei Li, Xinyan Xiao, Jiachen Liu,
Ziqiang Cao, Sujian Li, Hua Wu, and Haifeng
Wang. 2021. Bass: Boosting abstractive summa-
rization with unified semantic graph. arXiv preprint
arXiv:2105.12041.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du,
Hanxiao Liu, Yifeng Lu, Percy Liang, Quoc V Le,
Tengyu Ma, and Adams Wei Yu. 2023. Doremi:
Optimizing data mixtures speeds up language model
pretraining. arXiv preprint arXiv:2305.10429.

Yizhe Xiong, Xiansheng Chen, Xin Ye, Hui Chen, Zi-
jia Lin, Haoran Lian, Jianwei Niu, and Guiguang
Ding. 2024. Temporal scaling law for large language
models. arXiv preprint arXiv:2404.17785.

Jingjing Xu, Hao Zhou, Chun Gan, Zaixiang Zheng, and
Lei Li. 2020. Vocabulary learning via optimal trans-
port for neural machine translation. arXiv preprint
arXiv:2012.15671.

Shusheng Xu, Xingxing Zhang, Yi Wu, and Furu Wei.
2022. Sequence level contrastive learning for text
summarization. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 36, pages
11556–11565.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang,
Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian Wang,
Dong Yan, et al. 2023. Baichuan 2: Open large-scale
language models. arXiv preprint arXiv:2309.10305.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

11

A Additional Discussion

A.1 Higher Entropy, Lower Redundancy
Scaffold-BPE can alleviate the imbalance in token
frequency, which can lead to an increase in infor-
mation entropy. We measure Shannon Entropy and
Redundancy (Gutierrez-Vasques et al., 2021) over
token representations of texts obtained with the
original BPE and our Scaffold-BPE. Both take as
input a text T with a vocabulary of (normal) tokens
V = {t1, t2, ..., tV } of size |V |.

Entropy H is a measure of the average infor-
mation. Where the probability of a token p(t)
is estimated using the so-called maximum likeli-
hood method (i.e., its relative frequency in the text).
Higher values of Entropy indicate higher complex-
ity (less predictability).

H(T) = −
V∑
i=1

p(ti) log2 p(ti) (7)

The Redundancy R quantifies how close the empir-
ically estimated entropy is to the maximum value
it can take.

R(T) = 1− H(T)

max{H(T)}
= 1− H(T)

log2 |V |
(8)

As shown in Table 8, taking the 32K vocabu-
lary as an example, our Scaffold-BPE can encode
Pile dataset (Gao et al., 2020) with higher Entropy
and lower Redundancy. Consequently, tokens in
the vocabulary of our Scaffold-BPE have more bal-
anced appearing probabilities. According to Su
et al. (2023), our vocabulary with balanced token
occurrences mitigates the learning imbalance prob-
lem, resulting in more sufficient learning towards
the text corpus, thus achieving better performance.

A.2 Better Uniformity of Learned
Embeddings

Prior works have analyzed the embedding space
learned by a model (Provilkov et al., 2019) and
found that better uniformity prefers a token em-
bedding space that preserves maximal informa-
tion (Wang and Isola, 2020). To demonstrate
our Scaffold-BPE can mitigate token frequency
distribution imbalance, thus leading to a better-
learned token embedding space with better uni-
formity, we visualize the token embeddings in the
6.7B-parameter models, following Provilkov et al.
(2019).

As shown in Figure 6, the embeddings of scaf-
fold tokens learned via the original BPE are more

(a) The Original BPE

(b) The Scaffold-BPE

Figure 6: Visualization of the learned embeddings of
tokens in the respective vocabulary generated by the
original BPE and Scaffold-BPE.

Entropy↑ Redundancy↓

Original BPE 11.2382 0.2491
Scaffold-BPE 11.2443 0.2487

Table 8: Entropy and Redundancy on tokenized Pile
dataset.

clustered, which means they are not well learned.
On the contrary, the embeddings of new tokens
introduced by Scaffold-BPE after removing scaf-
fold tokens have better uniformity, which are more
evenly distributed across the semantic space. There-
fore, models trained with Scaffold-BPE can achieve
better performance.

B Further Experiment Details

B.1 Model Training Hyper-Parameters

We train three language models with 468M, 1.2B,
and 6.7B parameters, respectively. Specifically,
the architectures are listed in Table 9. Follow-
ing LLaMA (Touvron et al., 2023a), we use the
AdamW optimizer (Loshchilov and Hutter, 2017)
with a learning rate of 3.0×10−4, 2k warmup steps,

12

model size dimension n heads n layers batch size seq length

468M 1024 16 24 1024 1024
1.2B 2048 8 16 2048 1024
6.7B 4096 32 32 2048 2048

Table 9: Model sizes and architectures.

Package Version

absl-py 1.4.0
accelerate 0.21.0
datasets 2.14.3
deepspeed 0.10.0
ninja 1.11.1
protobuf 4.23.4
pytorch-triton 2.1.0+e6216047b8
scikit-learn 1.3.0
scipy 1.11.1
torch 2.1.0.dev20230807+cu121
torchaudio 2.1.0.dev20230807+cu121
torchinfo 1.8.0
torchvision 0.16.0.dev20230807+cu121
triton 2.0.0
wandb 0.15.7
flash-attn 2.0.4
zstandard 0.21.0
seaborn 0.12.2
gradio 3.39.0

Table 10: Versions of used packages.

and a cosine learning rate decay schedule.

B.2 Evaluation
For fair comparisons, we utilize the open-source
pipeline lm-evaluation-harness (Gao et al.,
2023) for evaluation. We reported the average eval-
uation results of the last five checkpoints.

B.3 Computing Infrastructure
The experiments were conducted using a cluster of
16 servers, each equipped with 8 NVIDIA H800
GPUs. The total memory available on each server
is 600 GB, and each server is powered by a 70-
core CPU. The operating system running on these
servers is Ubuntu 20.04.6 LTS. We report the ver-
sion numbers of used packages in Table 10.

13

	Introduction
	Related Works
	Language Models
	Byte Pair Encoding

	Methodology
	Training Process
	Encoding Process

	Experiments
	Experimental Setup
	Datasets.
	Tokenizer.
	Model.
	Training.

	Experimental Results
	Common Sense Reasoning.
	Closed Book Question Answering.

	Discussion
	Various Vocabulary Size.
	More Training Tokens.
	Applicable for Other Tasks, Languages, Model Architectures and Compatible with Other BPE Enhancements.
	Higher Compression Rate.
	Experiments under Same Corpus Size

	Conclusions
	Additional Discussion
	Higher Entropy, Lower Redundancy
	Better Uniformity of Learned Embeddings

	Further Experiment Details
	Model Training Hyper-Parameters
	Evaluation
	Computing Infrastructure

