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Abstract
To enhance the transferability of object detection models in real-world scenarios where data is sampled from disparate
distributions, considerable attention has been devoted to domain adaptive object detection (DAOD). Researchers have also
investigated multi-source DAOD to confront the challenges posed by training samples originating from different source
domains. However, existing methods encounter difficulties when source data is unavailable due to privacy preservation
policies or transmission cost constraints. To address these issues, we introduce and address the problem of Multi-source-free
Domain Adaptive Object Detection (MSFDAOD), which seeks to perform domain adaptation for object detection usingmulti-
source-pretrained models without any source data or target labels. Specifically, we propose a novel Divide-and-Aggregate
Contrastive Adaptation (DACA) framework. First, multiple mean-teacher detection models perform effective knowledge
distillation and class-wise contrastive learning within each source domain feature space, denoted as “Divide”. Meanwhile,
DACA integrates proposals, obtains unified pseudo-labels, and assigns dynamic weights to student prediction aggregation,
denoted as “Aggregate”. The two-step process of “Divide” and “Aggregate” enables our method to efficiently leverage
the advantages of multiple source-free models and aggregate their contributions to adaptation in a self-supervised manner.
Extensive experiments are conducted on multiple popular benchmark datasets, and the results demonstrate that the proposed
DACA framework significantly outperforms state-of-the-art approaches for MSFDAOD tasks.

Keywords Domain adaptive object detection · Multi-source domain adaptation · Source-free domain adaptation · Contrastive
learning
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1 Introduction

In the last decade, deep learning has significantly advanced
computer vision, benefiting various real-world applications.
Notably, with the success of deep neural network archi-
tectures such as convolutional neural networks (CNNs)
(Krizhevsky et al., 2012; He et al., 2016) and vision trans-
formers (ViTs) (Dosovitskiy et al., 2021), recent achieve-
ments in deep learning have convincingly demonstrated their
effectiveness and substantial potential in various visual tasks,
such as image classification (Krizhevsky et al., 2012; Huang
et al., 2017; Szegedy et al., 2017; He et al., 2016), object
detection (Girshick, 2015; Redmon et al., 2016; Tian et al.,
2019), and semantic segmentation (Long et al., 2015; Chen
et al., 2017). As a prominent subject of research, object
detection (OD) primarily aims to identify visual instances
belonging to predefined object categories (Zou et al., 2023).
Deep learning innovations have catalyzed the development
and implementation of diverse object detectors, such as two-
stage detectors (Girshick, 2015; He et al., 2015; Ren et al.,
2015; Lin et al., 2017a, 2023) and one-stage detectors (Red-
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mon et al., 2016; Liu et al., 2016; Tian et al., 2019; Carion
et al., 2020). Recently, researchers have endowed object
detection with a novel set prediction paradigm, including
transformer (Vaswani et al., 2017)-based detection mod-
els (Carion et al., 2020; Zhu et al., 2021; Liu et al., 2022) and
a latest successful approachDiffusionDet (Chen et al., 2023),
which is inspired by the diffusion model (Ho et al., 2020) to
detect objects by diffusing bounding boxes. The notewor-
thy achievements of these object detection models manifest
when trained on high-quality datasets equippedwith accurate
annotations.

Recent developments in complexmodel designs, increased
storage, and enhanced computing power have highlighted the
need for large-scale, high-quality data in computer vision.
This data, often difficult and costly to gather and label,
is crucial for improving model performance and general-
ization. Particularly in real-world settings, there is a clear
risk of affecting model generalization ability due to domain
shift (Sun et al., 2016;Amodei et al., 2016; Zhao et al., 2021c,
2022, 2024), i.e., the training and testing data often differ in
distribution. To address this challenge, domain adaptation
(DA) has become a prominent research task in various com-
puter vision tasks (Zhao et al., 2019a, 2020, 2021b, 2022,
2023).Among various extensively studiedDAsettings, unsu-
pervised DA (UDA), i.e., DA with no target data labels as
supervised information (Wilson & Cook, 2020), has gained
substantial attention.With the success of deep neural network
architectures, researchers havemade crucial attempts in deep
visual UDA, encompassing both theoretical analysis (Long
et al., 2017; Sun & Saenko, 2016; Li et al., 2017) and algo-
rithm design (Liu & Tuzel, 2016; Ganin & Lempitsky, 2015;
Tzeng et al., 2017; Zhao et al., 2019b, 2021a).

Domain adaptive object detection (DAOD), a branch
within the realm of deep visual domain adaptation, aiming
at addressing domain shift inherent in object detection tasks,
has also been the subject of extensive investigation (Chen et
al., 2018; Inoue et al., 2018; Saito et al., 2019;Cai et al., 2019;
He et al., 2023; Zhang et al., 2023a; Lang et al., 2022; Xu et
al., 2023; He and Zhang, 2020). However, these conventional
unsupervised DAOD algorithmsmay encounter several chal-
lenges under real-world scenarios. Firstly, primarily designed
for single-source scenarios, these algorithms face challenges
in accommodating data from multiple source domain distri-
butions (Sun et al., 2015; Zhao et al., 2024; Lin et al., 2021).
Secondly, their reliance on high-quality labeled source data
for effective knowledge transfer proves impractical in the
real-world context where data privacy protection and trans-
mission cost issues come to the forefront (Fang et al., 2022;
Yu et al., 2023). In response to these limitations, two distinct
DAOD tasks are proposed: multi-source domain adaptive
object detection (MSDAOD) and source-free domain adap-
tive object detection (SFDAOD).MSDAOD(Yaoet al., 2021;
Wu et al., 2022; Zhang et al., 2022) employs knowledge from

multiple source domains to enhance adaptation, whereas
SFDAOD (Li et al., 2021; Huang et al., 2021; Li et al., 2022a;
Xiong et al., 2021; Vibashan et al., 2023; Chu et al., 2023)
operates under constraints where source data and labels are
inaccessible during adaptation, relying on a single pretrained
model. However, current methods are not yet adept at effec-
tively managing scenarios that require both multi-source and
source-free scenarios simultaneously.

Considering the aforementioned limitations, we propose
a novel unresolved DA setting:Multi-Source-Free Domain
Adaptive Object Detection (MSFDAOD). The goal of
MSFDAOD is to adapt the object detection model to tar-
get domains for multi-source and source-free conditions
under open-world scenarios, which aligns well with the
Aim and Scope of https://link.springer.com/journal/11263/
updates/25233244. To better illustrate MSFDAOD task,
Fig. 1 shows the differences among the four aforementioned
settings: DAOD, SFDAOD, MSDAOD, and MSFDAOD.
To our knowledge, there is currently no algorithm specif-
ically designed for MSFDAOD tasks. Here we showcase
one concrete example of a practical application scenario
of MSFDAOD: To train an effective car detector for sandy
weather, an organization requests several other institutions
for large-scale training data (mostly in non-sandy weather)
for superior MSDAOD performance. However, some of the
institutions need to protect the citizens’ privacy like faces
and licenses, and other institutions think it is inconvenient
and expensive to transmit data, so they can only provide pre-
trained models to the organization. Then it is essential for the
organization to apply the MSFDAOD approach to leverage
multiple pretrainedmodels to perform adaptation, and finally
obtain superior performance on the target domain i.e., sandy
weather.

To design a particular algorithm for MSFDAOD, an
intuitive approach is to directly transfer existing MSFDA
approaches focusing primarily on classification or segmenta-
tion tasks to detection tasks. However, this intuitive approach
may face several challenges: (1) Task specificity. Image clas-
sification or semantic segmentation tasks aim to perform
accurate classification result at a fixed scale, i.e., image-level
or pixel-level, respectively. In contrast, object detection tasks
require not only accurate classificationoutcomes but also pre-
cise localization results. (2) Cross-model variability. Object
detection models exhibit varying bounding box prediction
results for the same image during an iteration, depending
on different source models. This variability is not a concern
in image classification tasks, where only category repre-
sentations are needed. (3) Object feature discriminability.
MSFDA for image classification or semantic segmenta-
tion tasks focuses on learning discriminative image-level
or instance-level features, while MSFDAOD tasks demand
high-quality discriminative object-level feature learning.
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Fig. 1 Illustration of DAOD, SFDAOD, MSDAOD, and the proposed
MSFDAOD. In unsupervised DAOD, both source and target images are
available, while source labels are available and target labels are unavail-
able. In SFDAOD, during the adaptation stage, the source data remains
unseen considering data transmission costs and ensuring data privacy
protection. In MSDAOD, images are sampled from multiple source
domains for adaptation purposes. MSFDAOD can be conceptualized as

a fusion of MSDAOD and SFDAOD. It lacks access to multiple source
domain data and only provides multiple source-pretrained models for
adaptation. The image in “Source Data” and “Source Data i” is from
Bdd100k (Yu et al., 2020) daytime. The image in “Source Data j” is
from Bdd100k night. The image in “Target Data” is from Bdd100k
dawn/dusk

In addressing the aforementioned challenges in MSF-
DAOD, we introduce a novel Divide-and-Aggregate Con-
trastive Adaptation (DACA) framework, which is built upon
a Multi-Source Mean Teacher (MSMT) architecture with a
Unified Proposal (UniP) approach. Additionally, two integral
components, namely Multi-Source Probabilistic Bounding
Box Ensemble (MSPE) and Memory Bank Consensus Con-
trastive Learning (MBCL), complement the MSMT frame-
work. MSMT, an extension of the mean-teacher framework
to MSFDAOD tasks, is designed to handle task specificity. It
incorporates a dynamic exponential moving average (EMA)
frequency to facilitate stable and effective mutual learn-
ing between teacher–student pairs, progressively enhancing
classification and localization ability. To tackle cross-model
variability, UniP and MSPE are developed to produce
unified proposals and pseudo-labels, respectively. UniP gen-
erates unified proposals within the same image for distinct
source models, providing a consistent training and weight-
ing objective for the MSMT framework. MSPE enhances
pseudo-label quality by fusing multi-teacher predictions into
a unified pseudo-label set, offering more convincing infor-
mation through boosted consensus predictions. Additionally,
we propose MBCL to address object feature discriminabil-
ity. By utilizing the popular contrastive learning approach,
MBCL systematically learns high-quality object-level fea-
tures, improving the discriminability of detection model.
To fully utilize gradually learned representations, a mem-

ory bank is employed to augment contrastive samples across
varied image backgrounds. A comprehensive array of exper-
iments is conducted to validate the efficacy of DACA. The
results, including both quantitative analyses and visualiza-
tion results, robustly demonstrate the superior performance
of DACA.

In summary, our contributions are threefold:

– We propose to adapt multi-source-pretrained object
detection models to the target domain, named Multi-
Source-Free Domain Adaptive Object Detection (MSF-
DAOD). This topic addresses comprehensively the more
realistic challenges and constraints of real-world scenar-
ios, particularly addressing issues such as data privacy
concerns and the assumption of multi-source distribu-
tions. To the best of our knowledge, this is the first work
to explore MSFDAOD.

– To address theMSFDAODproblem effectively, we intro-
duce a novel framework termed Divide-and-Aggregate
Contrastive Adaptation (DACA), which is constructed
within a new Multi-Source Mean Teacher (MSMT)
framework. To obtain unified region proposals, perform
effective self-supervised learning and learn discrimina-
tive object features, DACA also comprises three essential
components: a proposal unifying method, a probabilistic
bounding box fusionmethod, and a class-wise contrastive
learning method.
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– We conduct extensive experiments under various adap-
tation settings. The results, including quantitative com-
parisons, ablation studies, visualization results, and
extension studies, robustly demonstrate the superior per-
formance of DACA as compared to the state-of-the-art
approaches, comprehensively demonstrating the effec-
tiveness of DACA.

The rest of this paper is organized as follows. Section2
reviews related work. Section3 defines the proposed MSF-
DAOD problem. Section4 introduces the proposed DACA
framework in detail. Section5presents experimental settings,
results, and corresponding analysis. Section6 gives the con-
clusion of our work.

2 RelatedWork

In this section, we delve into related work that is closely
aligned with the MSFDAOD task. This encompasses OD,
DAOD, SFDAOD, MSDAOD, and MSFDA. We also make
comparisons between our proposed DACA framework and
these existing approaches.

2.1 Object Detection

Object detection (OD) involves the localization and classi-
fication of existing objects within a given image, sampled
from photos, video frames, or live footage. The success
of deep learning has yielded numerous effective object
detection methodologies grounded in deep networks. These
methodologies can be categorized into two main groups:
two-stage detectors and one-stage detectors. The inception
of two-stage detectors can be traced back to R-CNN (Gir-
shick et al., 2014), the first two-stage detector, and also
the first to utilize CNN on object detection tasks. R-CNN
frames the localization problem with a proposed recogni-
tion using regions paradigm together with a sliding window
paradigm. Subsequent advancements in this family include
Fast R-CNN (Girshick, 2015), which improves both R-CNN
accuracy and speed by pretrained network, RoI pooling lay-
ers, and truncated SVD (Denton et al., 2014). Building upon
these improvements, Faster R-CNN (Ren et al., 2015) incor-
porates region proposal networks (RPNs) to further elevate
accuracy and speed.

While two-stage detectors take object detection tasks as
“coarse to fine” steps, one-stage detectors attempt to achieve
detection in a single step (Zou et al., 2023). SSD (Single
Shot MultiBox Detector) (Liu et al., 2016) is a promi-
nent one-stage detector. Without using any region proposals,
SSD detects objects by predicting classification and regres-
sion results for a fixed set of bounding boxes (Liu et al.,
2016). Similarly giving up region proposals, YOLO (You

Only Look Once) (Redmon et al., 2016) partitions the input
image into a grid of fixed dimensions, generating predic-
tions based on each grid cell. Drawing inspiration from fully
connected networks (Long et al., 2015), FCOS (Fully Con-
volutional One-Stage Object Detector ) (Tian et al., 2019)
performs pixel-wise prediction across various scales of the
feature pyramid, complemented by a center-ness loss to
mitigate the influence of some low-quality objects. Intro-
ducing a brand new set prediction paradigm for object
detection, DETR (DEtection TRansformer) (Carion et al.,
2020) designs transformer (Vaswani et al., 2017) encoders,
decoders, and prediction feed-forward networks to predict
objects based on image features. DiffusionDet (Chen et al.,
2023) transfers the popular diffusion model (Ho et al., 2020)
to object detection tasks by treating the bounding box pre-
diction as a diffusion process. However, both two-stage and
one-stage detectors experience a notable performance drop
owing to their limited generalization capacity when the tar-
get distribution is different from the source. In contrast to
these approaches, our proposed DACA adeptly performs
domain adaptation across multiple source domains to the
target domain, resulting in commendable generalization abil-
ity under domain shift. Furthermore, these OD methods fail
whenhigh-quality datawith accurate labels is absent. Instead,
the proposedDACA is capable of performing effective detec-
tion with only source-pretrained models.

2.2 Domain Adaptive Object Detection

Evidently,within real-world applications, conventional object
detection models encounter a performance drop attributed
to domain shift. Some early works identify the need for
single-source domain adaptive object detection (DAOD),
also known as cross-domain object detection, and make
some attempts. DA-Faster (Chen et al., 2018) mitigates the
domain gap by incorporating image and instance-level adap-
tation, along with a consistency regularization mechanism.
DTPL (Inoue et al., 2018) employs a weakly supervised
approach forDAOD, involving sequential fine-tuning of fully
supervised detectors in two phases. Subsequently, a vari-
ety of algorithms and architectures have been applied to
DAOD tasks. For instance, the mean teacher (MT) frame-
work (Tarvainen & Valpola, 2017) aggregates information
by averaging model parameters using exponential moving
average (EMA).MT introduces noise to the model to prevent
predictions from exhibiting bias towards specific training tar-
gets, aligning with the cross-domain detection setting where
training and testing data originate from distinct domains.
MTOR (Cai et al., 2019) extends MT to include region-level
inter-graph, and region-level intra-graph consistencies, con-
sidering graph structures. UMT (Deng et al., 2021) applies
MT with augmenting source samples via CycleGAN (Zhu et
al., 2017) and employs a teacher–student bias healing pro-
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cess. Addressing the challenge of low-quality pseudo-labels,
AT (Li et al., 2022b) tackles domain shift by promoting
mutual learning and strong-weak augmentations. Similar
to teacher–student models, MAF (He et al., 2023) utilizes
Paradigm Teacher to overcome source error collapse and
guide knowledge distillation for the adaptation process.

While early works primarily rely on diverse public bench-
marks, covering a range of situations such as various
weather conditions, different art forms, etc., some recent
works emphasize specific application scenarios. For instance,
DAOD under adverse weather conditions (Sindagi et al.,
2020; Li et al., 2023) and lighting conditions (Kennerley
et al., 2023) have received significant attention. Several
works have also investigated a more challenging cross-
domain object detection setting, Domain Generalization for
Object Detection, to improve the adapted model’s general-
ization ability to unseen domains (Lin et al., 2021; Xu et al.,
2023; Zhang et al., 2023a). While DAOD methods excel in
addressing single source-target domain shift, they fall short in
handling multi-source or source-free scenarios. In contrast,
our proposed DACA framework is specifically engineered to
achieve robust adaptation in both of these demanding sce-
narios.

2.3 Source-Free Domain Adaptive Object Detection

Conventional DAOD always incurs a substantial cost for
data transmission (Liang et al., 2020; Fang et al., 2022).
Meanwhile, the collected source data may potentially con-
tain sensitive user privacy information and is unavailable
due to privacy policy (Yang et al., 2020, 2021a, b; Li et
al., 2021; Huang et al., 2021). To address the issues above,
researchers make essential efforts on source-free domain
adaptive object detection (SFDAOD). SED (Li et al., 2021)
represents one of the initial endeavors to address SFDAOD
challenges. This method generates high-quality pseudo-
labels through self-entropy descent and handles false nega-
tives using mosaic augmentation techniques (Bochkovskiy
et al., 2020). HCL (Huang et al., 2021) employs con-
trastive learning (Kang et al., 2019) on thememorized source
hypotheses to acquire instance-discriminative and category-
discriminative representations within the target domain.
Utilizing pseudo-labeling strategy (Kim et al., 2021; Liang
et al., 2020; Li et al., 2021; Huang et al., 2021) on clas-
sification loss, LODS (Li et al., 2022a) meanwhile focuses
on enhancing target domain style while aligning image-level
and instance-level features. This alignment process enhances
target model’s capability to generalize across various image
styles. IRG (Vibashan et al., 2023) draws inspiration from the
well-established contrastive representation learning (CRL)
framework, SimCLR (Chen et al., 2020b). To enhance the
quality of representations and adaptation performance, IRG
treats different region proposals surrounding the same object

as distinct augmentations of the object. It employs a graph
convolution network (Gori et al., 2005) to establish positive–
negative pairs and introduces a distillation loss to the training
process. In comparison to these methodologies, our pro-
posed DACA harnesses multiple source domain knowledge
embedded in multiple pretrained models through the imple-
mentation of a pseudo-label ensemble and a sourceweighting
method.

2.4 Multi-source Domain Adaptive Object Detection

Multi-source domain adaptive object detection (MSDAOD)
presents the challenge of utilizing source data from multiple
distinct domains. Building upon earlier theoretical investi-
gations into multi-source domain adaptation (MSDA) (Man-
sour et al., 2008; Hoffman et al., 2012; Lin et al., 2020),
several early approaches of MSDA can be directly gener-
alized to MSDAOD tasks. For instance, MDAN (Zhao et
al., 2018) introduces a novel generalization bound and exe-
cutesMSDA through adversarial learning within deep neural
networks. M3SDA (Peng et al., 2019) aligns the deep fea-
ture distribution moments across multiple source domains,
emphasizing the advantages of aligning source domains in
the context of MSDA.

DMSN (Yao et al., 2021) is the first approach that specifi-
cally focuses on MSDAOD tasks. DMSN employs feature
alignment strategies on low-level and high-level features,
tailored to align the hierarchical features originating from
both source and target domains. Recognizing that combined
source hypotheses with appropriate weights can effectively
represent target hypotheses (Mansour et al., 2008; Peng et
al., 2019), DMSNassignsweights to source parameters by an
inverse fashion of MT framework, in which multiple source
subnets are updated by stochastic gradient descent (Rob-
bins & Monro, 1951) and target subnet is updated by
weighted EMA of source parameters. TRKP (Wu et al.,
2022) preserves domain-specific knowledge through a dis-
entanglement module during the teacher model pretraining
process in an adversarialmanner.Additionally, it introduces a
target-relevant mining procedure incorporating the k-nearest
neighbors (KNN) algorithm (Cover&Hart, 1967) to discover
relevant knowledge and alleviate knowledge degradation.
MTK (Zhang et al., 2022) proposes a two-stage strategy on
low-level and high-level features to address the MSFDAOD
problem. With the implementation of the attention mecha-
nism, MTK achieves high-quality information fusion during
both the training and testing phases. However, existingmeth-
ods depend on source data and labels for their foundational
training processes. In contrast, our proposed DACA model
excels in scenarios where multi-source data is unavailable,
with the help of its effective pseudo-labelingmethod and con-
trastive learning approach. This capability enhances privacy
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protection and contributes to data transmission cost reduc-
tion.

2.5 Multi-source-free Domain Adaptation

Multi-source-free domain adaptation (MSFDA) is a more
practical and challenging scenario where training data
is sampled from multiple source domains and is invisi-
ble and unavailable during the adaptation process. DECI-
SION (Ahmed et al., 2021) first focuses on MSFDA and
proposes to optimize an information maximization loss to
assign proper weights to source hypotheses. These weights
are further utilized for weighted pseudo-labeling and cluster-
ing processes. CAiDA (Dong et al., 2021) proposes a novel
MSFDA generalization bound based on more mild assump-
tions, proving that multi-source predictors benefit adaptation
by high-quality pseudo-labeling. According to the theoreti-
cal analysis, CAiDA utilizes a transferability perception to
quantify source contributions and a reliable pseudo-labeling
module based on a confident anchor to achieve appropriate
weights and a reliable pseudo-labeling process. Surrogate
(Shen et al., 2023) also gives a novel generalization error
bound,which further introduces a bias and variance trade-off,
by designing a selective self-training paradigm and assign-
ing several losses to different parts of the framework. All
the methods discussed before are based on white-box mod-
els, where the network parameters are accessible. To address
a more challenging scenario of black-box UDA (Fang et
al., 2022), DINE (Liang et al., 2022) introduces an adaptive
label smoothingmethod and structural regularization for self-
knowledge distillation (Hinton et al., 2015) on aMTmanner,
which works well on black-boxMSFDA tasks. Notably, US-
MSMA (Li et al., 2022c) focuses on MSFDA in semantic
segmentation tasks. In the first stage of US-MSMA, back-
bones and classifiers are randomly combined and trained
with cross-model consistency, followed by domain-specific
and domain-invariant features learning. In the second stage,
an integrated final model is trained with pseudo-labels and
mitigated to source models.

Recent works about MSFDA emphasize more on harmo-
nizingdiscriminability and transferability forMSFDA(Kundu
et al., 2022; Han et al., 2023). Discriminability stands for
the ease of classifying objects into given categories by a
pretrained classifier, while transferability refers to feature
representations invariance between different domains (Chen
et al., 2019, 2020a; Kundu et al., 2022). Discriminability
and transferability are balanced by utilizing edge-mixup and
feature-mixup (Kundu et al., 2022). DATE (Han et al., 2023)
gives a novel Bayesian perspective on MSFDA target risk
upper bound, which is further explained by discriminability
and transferability trade-off by Bayesian formulas. DATE
employs a proxy discriminability perception module based
on novel sample habitat and habitat density definition, while

a source-similarity transferability module is introduced to
measuremodel transferability. The trade-off problem is grad-
ually optimized in a universal decision and optimization
process. TGMA (Yang et al., 2023) performs multi-source
model selection and pseudo-label correction by domain-
level and instance-level transferability matrix, respectively,
based on a proposed label-free transferability metric. These
algorithms are proven to work well for classification or seg-
mentation tasks. However, given that these studies mainly
concentrate on image classification or semantic segmenta-
tion tasks, the direct transposition of their methodologies to
MSFDAOD tasks proves to be challenging. Fortunately, there
exist several works (Lu et al., 2023; Liu et al., 2023b) delving
into the domain of federated learning (Li et al., 2020a; Zhang
et al., 2021a) onMSDA orMSDAOD task. These works hold
a similar setting where training and testing data is stored
in different devices with privacy-preserving policies. How-
ever, unlike these federated-learning-based approaches, our
desired MSFDAOD is more realistic and challenging since
we are constrained to accessing solely source-pretrained
models, without the capacity to intervene in the detector pre-
training process or alternate between source pretraining and
aggregation steps.

In summary, previous works have addressed the necessity
of multi-source-free domain adaptation in image classifica-
tion (Ahmed et al., 2021; Dong et al., 2021; Liang et al.,
2022; Kundu et al., 2022; Han et al., 2023; Shen et al.,
2023) or semantic segmentation (Li et al., 2022c; Yang et al.,
2023). Nevertheless, within the constraints given by DAOD,
SFDAOD, and MSDAOD in a more confined MSFDAOD
scenario, the direct application of any of these methodolo-
gies toMSFDAOD tasks proves to be a formidable challenge.
For instance, in the context of MSDAOD tasks, the absence
of source data or distributions poses a significant challenge,
given the unavailability of supervised signals for the adapta-
tion process. For SFDAOD tasks, the straightforwardmixture
of multiple source domains into a unified domainmay lead to
substantial knowledge degradation and a performance drop,
due to the persistence of domain discrepancy within source
domain pairs (Riemer et al., 2019; Yao et al., 2021) and dis-
tinct adaptation contributions of source domains to the target
domain.

Concentrating on the application ofMSFDA in the context
of object detection, our proposed method, DACA, demon-
strates adept capability in effecting efficient adaptation by
leveraging multiple pretrained detection models, thereby
attaining superior performance. In our proposed approach,
we opt to proficiently acquire visual representations through
contrastive learning and efficiently distill knowledge via
our novel multi-source mean-teacher framework in a multi-
source-free scenario. To the best of our knowledge,we are the
first to study theMSFDAOD problem. Compared with all the
approaches above, which are not suitable to be directly trans-
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Fig. 2 Detailed frameworkof the proposedDivide-and-AggregateCon-
trastive Adaptation (DACA) network. Source data is only available at
source pretraining stage. After pretraining, each one teacher–student
pair of multiple teacher–students will be initialized by a corresponding

source model, then multiple teacher–student will cooperate in the adap-
tation stage within DACA. The initialization process is omitted in this
figure

ferred to MSFDAOD, our novel approach can proficiently
perform multi-source-free adaptation on object detection
tasks, leading to superior MSFDAOD performance.

3 Problem Setup

In the MSFDAOD setting, there exists an unlabeled target
domain denoted by T and multiple unseen source domains
denoted by S1, S2, . . . , Sm , wherem is the number of source
domains. We can only access the target dataset XT =
{x j

T }NT
j=1, where xT denotes a single image sampled from the

target distribution pT (xT , yT ). yT includes both bounding
box label and category label distribution, which are unseen
during adaptation. NT denotes the total number of target
samples. As for source information, only a set of source-
pretrained models θS = {θi }mi=1 is available, where θi is
the source model pretrained using samples from the i-th
source distribution psi (xSi , ySi ). Source data, label, bound-
ing box distribution, and label distribution are unseen during
adaptation. Nevertheless, source models are pretrained with
unknown strategies (e.g., supervised, unsupervised, or semi-
supervised). Our goal is to transfer detection knowledge from
source domains to the target domain and obtain a final target

hypothesis θT : xT → yp using only source-pretrainedmod-

els θS = {θi }mi=1 and unlabeled target data XT = {x j
T }NT

j=1.
We implement DACA on Faster R-CNN (Ren et al., 2015)
unless otherwise specified.

Similar to MSDAOD and MSFDA methods (Ahmed et
al., 2021; Yao et al., 2021; Wu et al., 2022), we hold three
assumptions:

(1) Unsupervised, i.e., no supervised information of the tar-
get domain is provided;

(2) Homogeneity, i.e., the source and target domains are
observed in the identical data space with identical dimen-
sionality;

(3) Closed-set, i.e., the label sets for the source and target
domains are identical. Specifically, we denote the label
sets for XT as {ci }ki=1, including k catrgories.

4 Divide-and-Aggregate Contrastive
Adaptation

In this section, we present our approach to address the
challenges posed by MSFDAOD: Divide-and-Aggregate
Contrastive Adaptation (DACA) framework. DACA com-
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prises a primary framework named Multi-Source Mean
Teacher (MSMT) and three components: Unified Proposals
(UniP), Multi-Source Probabilistic Bounding Box Ensemble
(MSPE), and Memory Bank Consensus Contrastive Learn-
ing (MBCL). Throughout the training process, MSMT is
employed for source networks to aggregate weighted pre-
dictions from source models, thereby distilling knowledge
from the source to the target model. This facilitates an
enhancement in model discriminability through utilizing sta-
ble pseudo-labels and trainable domain weights. To establish
a reasonable schema for pseudo-label generation, we uti-
lize MSPE to fuse bounding box predictions from different
source models. Given the challenges associated with dis-
criminative object-level features and biased pseudo-labels in
source-free settings, MBCL is introduced to learn consensus
class-wise high-quality features within each source domain
feature space, effectively learning class-wise features. An
overall framework of DACA is shown in Fig. 2. In this sec-
tion, we will introduce the motivation and detailed method
for each component, ending with the overall objective.

4.1 Multi-source Mean Teacher Framework

Motivation. To formulate a comprehensive framework for
MSFDAOD, we initiate our approach by addressing the
challenges associated with the transfer from MSDAOD
to MSFDAOD. Given the absence of source data and its
supervised signals, conventional MSDAOD algorithms are
ineffective. For example, they typically incorporate a branch
associated with source image detection loss (Yao et al.,
2021; Wu et al., 2022; Zhang et al., 2022). To address this
limitation and enhance basic detection performance, we nat-
urally consider a pseudo-label learning pipeline. For previous
MSFDAmethods employed in classification or segmentation
tasks using pseudo-label learning pipeline, possible pseudo-
labeling techniques include neighborhood clustering (Yang
et al., 2021a, b; Ahmed et al., 2021; Dong et al., 2021; Han
et al., 2023) or directly weighting model output (Liang et
al., 2022) or both (Shen et al., 2023). However, for detection
tasks, these pseudo-labelingmethodsmay exhibit suboptimal
performance or be unavilable due to cross-model variability
and task specificity.

Considering that no previousMSFDA pseudo-label learn-
ing pipeline is suitable for MSFDAOD tasks, and in pursuit
of a robust training process with more reliable pseudo-labels
for MSFDAOD tasks, we start with leveraging MT (Tar-
vainen & Valpola, 2017), which generates pseudo-labels by
a teacher model and facilitates teacher–student mutual learn-
ing. MT is commonly employed in both SFDAOD (Li et
al., 2021, 2022a; Vibashan et al., 2023; Chu et al., 2023)
and MSDAOD (Yao et al., 2021; Wu et al., 2022), revealing
its potential to excel in MSFDAOD. Furthermore, recogniz-
ing that weight assignment for combining source hypotheses

plays a crucial role in effectively representing target hypothe-
ses in MSDA, MSDAOD, and MSFDAOD tasks (Mansour
et al., 2008; Peng et al., 2019; Yao et al., 2021; Ahmed et al.,
2021;Dong et al., 2021; Shen et al., 2023), we opt to optimize
a set of weights representing source importance. However,
this approach still encounters challenges of weighting source
predictions due to cross-model variability. To tackle this
issue effectively, we design a strategy for generating unified
proposals.

In response to the above observations, we introduce
a Multi-Source Mean Teacher (MSMT) framework and
a Unified Proposal (UniP) approach. Within the MSMT
framework designed for MSFDAOD, students and teachers
engage in mutual learning, leading to more stable knowledge
distillation and more effective enhancement of model dis-
criminability. Leveraging UniP, MSMT dynamically assigns
optimizedweights to studentmodel predictions basedon con-
sistent proposals. This enables the framework to obtain more
appropriate source weights and more accurate predictions by
incorporating knowledge from multiple source models.
Method. In the originalMT framework (Tarvainen&Valpola,
2017) for semi-supervised learning, a teacher model Mte and
a student modelMst are initialized with identical parameters.
The training loss of the studentmodel involves a combination
of a supervised loss, Lsup, and a consistency regulariza-
tion term, denoted as Lcon , designed to enforce consistency
between teachers and students. Optimization methods such
as stochastic gradient descent are employed for updating the
student model, whereas the teacher model updates through
the Exponential Moving Average (EMA) of student model
parameters.

Within our MSMT framework, there exist m teacher–
student pairs. We initialize the i-th teacher θ tei and the i-th
student θ sti with the pretrainedmodel θi . Concurrently, during
the initialization stage, we initialize a set of parameterized
domain weights {αi }mi=1. Following previous implementa-
tions of MT (Tarvainen & Valpola, 2017; Cao et al., 2023;
Vibashan et al., 2023; Deng et al., 2023), inputs for teachers
and students are weakly augmented and strongly augmented
images, respectively. During the training process, we obtain
a set of weighted predictions of input images from student
models, along with a collection of pseudo-labels generated
by teacher models serving as classification and regression
targets. We start by discussing the process of obtaining a
unified set of weighted predictions from the student models.
To address this issue, we introduce UniP, a procedure for
obtaining unified proposals.
UniP. At the beginning of the j-th iteration, the process ini-
tiates by acquiring the proposal set predicted by each source
model, denoted as {propi }mi=1. Following the paradigm of
Faster R-CNN, the initial proposal set for each source
model is established by applying Non-Maximum Suppres-
sion (NMS) to eliminate redundant proposals based on RPN
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Fig. 3 Proposed Unified Proposal (UniP) approach. Proposals gener-
ated bymultiple sourcemodelswill undergo non-maximumsuppression
(NMS) individually. Subsequently, we combine all the proposals and
conduct another round of NMS to eliminate redundant proposals based
on the mean Intersection over Union (IoU) scores

scores. After performing NMS, we sort the list of post-
NMS proposals within each propi in descending order of
RPN prediction scores. We select the top pt proposals after
eliminating redundant boxes in NMS, where pt is a hyper-
parameter.

After performing NMS in all m proposal sets, we sim-
ply combine all the proposals into a unified set of proposals.
However, simply combining proposals is likely to introduce
duplicated proposals, e.g., proposals for easy samples that
every RPN can easily detect. Following the observation that
localization accuracy can be measured by the variance of
bounding box regression (Xu et al., 2021; Zhang et al.,
2023b), we implement an additional NMS after combination
to eliminate duplicate proposals. In this phase, we calculate
the mean Intersection over Union (mIoU) for each proposal,
based on its associated proposals within the original set. For
a single proposal from {propi }mi=1, if this proposal is origi-
nally from propi , we denote propi as its original set and the
i-th model as its original model. Finally, we obtain a high-
quality proposal set denoted as prop f in . The process of UniP
is shown in Fig. 3.

After obtaining unified proposals for the current image
using UniP, we replace each set of original proposals from
{θ sti }mi=1 with prop

f in . Naturally, we continue forward prop-
agation within each model detection head. Finally, a set of
classification scores {clssti }mi=1 and bounding box regression
predictions {regsti }mi=1 are acquired. For the classification
scores, domain weights are applied, and the weighted student

classification scores are computed as clsst = ∑m
i=1 αiclssti .

As assigning weights to regression predictions is inappropri-
ate, for each proposal inprop f in , its bounding box prediction
is retained as the original prediction generated by its original
model.

After obtaining a set of predictions for the image xT using
UniP, we can compute loss functions with pseudo labels
ỹT to train the student detection models. To generate high-
quality pseudo-labels, motivated by a multimodal bounding
box fusion approach ProbEn (Chen et al., 2022), we propose
a bounding box fusion method termed Multi-Source Prob-
abilistic Bounding Box Ensemble (MSPE). This method is
well-suited for pseudo-labeling scenarios involving predic-
tions from multiple source teachers. Further elaboration on
the methodology is provided in Sect. 4.2. After obtaining
pseudo-labels, to optimize weight parameters and teacher–
student models, we propose three losses within the MSMT
framework: detection loss Ldet , information maximization
lossLIM, and consistency loss Lcons .

To construct the basic detection loss,we divide the original
detection loss into two parts: RPN loss andR-CNN loss. Nor-
malizedweights are assigned tomultiple object classification
logits to calculate theweightedR-CNNclassification loss fol-
lowing DECISION (Ahmed et al., 2021). Meanwhile, RPN
loss and R-CNN regression loss are processed separately
within each teacher–student pair. There are two reasons for
assigning weights to classification scores only: (1) Regres-
sion scores treat the bounding box localization task as a
regression problem and are defined on a continuous domain,
whichmeans it is inappropriate to assignweights to them. (2)
Assigning the same weight to classification and regression
scores may hurt performance since there exists misalignment
between classification and localization due to task indepen-
dence (Tian et al., 2019; Li et al., 2020b; Wang & Zhang,
2021; Deng et al., 2023). Overall, the detection lossLdet of
student models can be given as:

Ldet = Lrpn + Lrcnn, (1)

Lrpn = 1

m

m∑

i=1

(
L cls

rpn

(
θ sti (xT ), ỹT

)

+L
reg
rpn

(
θ sti (xT ), ỹT

))
, (2)

Lrcnn = L cls
rcnn

(
m∑

i=1

αiθ
st
i (xT ), ỹT

)

+ 1

m

m∑

i=1

L
reg
rcnn

(
θ sti (xT ), ỹT

)
, (3)

where Lrpn is the RPN loss and Lrcnn is the R-CNN loss.
L cls

rpn andL
reg
rpn are the classification and regression loss for

RPN, respectively; L cls
rcnn and L

reg
rcnn are the classification

loss and regression loss for R-CNN, respectively.
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To effectively learn source weights, we further implement
the information maximization (IM) loss (Hu et al., 2017;
Liang et al., 2020; Ahmed et al., 2021; Shen et al., 2023) with
weights in ourMSMTframework. The IM losswas utilized to
promote the network to assign distinct one-hot encodings to
the target feature representations and to fit the hypothesis (Hu
et al., 2017; Liang et al., 2020). DECISION (Ahmed et al.,
2021) first implemented the IM loss on MSFDA tasks for
weighted predictions, enhancing the confidence and global
diversity of weighted predictions on the target data. Surro-
gate (Shen et al., 2023) conducts more theoretical analyses
on the assumptions about the optimal mixture distribution.
Surrogate (Shen et al., 2023) concludes that the optimization
goal of the IM loss perfectlymatches the attempt to access the
optimal mixture distribution. Based on the analyses above,
we utilize the IM loss in DACA to optimize source weights
and enhance target feature learning. Similar to DECISION
and Surrogate, we attempt to optimize a weighted IM loss,
i.e., reduce a conditional entropy term as well as increase
an empirical label distribution entropy term (Ahmed et al.,
2021):

LIM = 1

NT

NT∑

i=1

H

⎛

⎝
k∑

j=1

σ j

⎛

⎝
m∑

p=1

αpθ
st
p

(
xiT

)
⎞

⎠

⎞

⎠

−H

⎛

⎝ 1

NT

NT∑

i=1

k∑

j=1

σ j

⎛

⎝
m∑

p=1

αpθ
st
p

(
xiT

)
⎞

⎠

⎞

⎠ , (4)

where σ denotes the softmax operator and H denotes the
entropy function.

While MT with strong-weak augmentation can distill
knowledge with noisy pseudo-labels to a certain extent, we
further ensure more robust mutual learning by facilitating
consistency between teacher and student models. We pro-
pose to add consistency regularization terms for the MSMT
framework. Specifically, we conduct inference on teacher
models by getting the teacher proposals replaced by student-
generated prop f in . Afterward, we obtain individual teacher
predictions and then obtain weighted classification predic-
tions, denoted as clste = ∑m

i=1 αiclstei , where clstei is the
classification scores of the i-th teacher.Weconstruct a consis-
tency loss between weighted classification predictions from
students and teachers, given as:

Lcons = K L(σ (clsst ), σ (clste)), (5)

where K L denotes the Kullback–Leibler divergence and σ

denotes the softmax operator.

4.2 Multi-source Probabilistic Bounding Box
Ensemble

Motivation. In DAOD tasks, pseudo-labels, typically con-
sisting of bounding boxes with class logits, are commonly
employed as “pseudo” supervisory signals for unsupervised
or semi-supervised target domain data, ensuring effective tar-
get representation learning (Vibashan et al., 2023). In prior
SFDAOD or MSDAOD methods, pseudo-labels are usually
generated by a singlemodel, specifically, by the singlemodel
that will be optimized for inference (Huang et al., 2021; Li
et al., 2021), or by the single teacher model in MT-based
methods (Li et al., 2022a; Wu et al., 2022; Vibashan et
al., 2023). Through additional operations such as confidence
thresholding, the pseudo-labels can be directly employed to
construct detection losses. However, in our MSMT frame-
work, each teacher is capable of independently generating
a set of pseudo-labels. A natural question arises: How can
we integrate these distinct sets of pseudo-labels into a uni-
fied set of pseudo-labels? Two intuitive approaches involve
directly combining, or applying Non-Maximum Suppres-
sion (NMS) to all pseudo-labels generated by all teachers.
However, simply combining pseudo-labels may result in a
significant number of duplicated or inaccurately predicted
boxes, introducing substantial bias. Applying NMS with
either classification scores or localization metric e.g., mIoU
in Unip may also lead to inferior performance as we need
to consider classification and localization both to construct
more precise pseudo-labels. Borrowing the insightful idea
from ProbEn (Chen et al., 2022), a multimodal bounding box
fusionmethod,we extendProbEn to amethodology formerg-
ing detection pseudo-labels from multiple source models for
a more reasonable classification and localization ensemble,
which is named Multi-Source Probabilistic Bounding Box
Ensemble (MSPE).
Method. To formulate the complete MSPE process, we
initially establish MSPE for two distinct source models, fol-
lowing the methodology of ProbEn (Chen et al., 2022). We
denote the two chosen source models as θ1 and θ2. We also
denote the current target image and label as xT , yT , respec-
tively. An assumption can be made that the teacher models
are conditional independent since they are pretrained from
independent source domains and are updated from indepen-
dent student models:

p(θ1, θ2|xT , yT ) = p(θ1|xT , yT ) ∗ p(θ2|xT , yT ). (6)

To obtain the classification prediction results, following the
ProbEn (Chen et al., 2022) theory, we begin with:

p(yT |θ1, θ2, xT ) = p(xT , yT , θ1, θ2)

p(xT , θ1, θ2)

∝ p(θ1, θ2|xT , yT )p(xT , yT )
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∝ p(θ1|xT , yT ) ∝ p(θ2|xT , yT )p(xT , yT )

∝ p(yT |θ1, xT )p(θ1, xT )

p(xT , yT )

p(yT |θ2, xT )p(θ2, xT )

p(xT , yT )
p(xT , yT )

∝ p(yT |θ1, xT )p(yT |θ2, xT )

p(xT , yT )
. (7)

Then we can simply extend Eq. (7) to m source domains:

p
(
yT |{θi }mi=1, xT

) ∝ �m
i=1 p(yT |θi , xT )

p(xT , yT )m−1 . (8)

Following the fact introduced by ProbEn that the softmax
denominator’s partition function is not the current class
label’s function (Chen et al., 2022), by utilizing softmax pos-
terior as an activate function, the softmax posterior for class-k
for a single source model can be derived as:

p(yT=k|θi , xT ) = exp(θi (xT )[k])
∑

j exp(θi (xT )[ j])
∝ exp(θi (xT )[k]). (9)

Then MSPE for classification is derived as:

p
(
yT = k|{θi }mi=1, xT

) ∝ �m
i=1 exp(θi (xT )[k])
pm−1(xT , yT )

∝ exp(
∑m

i=1 θi (xT )[k])
pm−1(xT , yT )

. (10)

This implies that the class-wise prediction is related to
summing class logits of correlated predictions from different
sourcemodels. After summing logits, softmax is applied, and
the results are divided by a joint distribution of xT and yT .
According to this result, we can derive our MSPE algorithm.
In our algorithm, we neglect the influence of pm−1(xT , yT )

and solely sum class logits. This decision is based on our
empirical observation that approximating pm−1(xT , yT ) is
challenging, and simply summing logits yields optimal per-
formance.

For bounding box fusion, we define zT for the bounding
box continuous random variable for a target image, follow-
ing ProbEn (Chen et al., 2022). Except for the assumption
of a uniform prior on p(zT ) as a bounding box can lie any-
where within the image with the same probability as stated
in ProbEn, we also assume a uniform prior on p(xT , zT )

implying that all combinations of an image and a bounding
box are of the same probability without any preferences if
there exists no prior knowledge. We denote σ 2

i as the Gaus-
sian distribution variance andμi as the box coordinates from
the i-th source model prediction following ProbEn (Chen et

Algorithm 1MSPE
Input: Bounding boxes {bboxi }mi=1 fromm teacher models, with cor-

responding logits. IoU threshold τiou . confidence threshold τcon .
Output: Final bounding boxes with logits
1: Initialization: empty bounding box sets bboxens , bbox f in ,

{bboxoi }mi=1.
2: repeat
3: Find the single bounding box bboxcur in {bboxi }mi=1 with largest

class posterior.
4: for i = 1 to m do
5: Find all bounding boxes from bboxi with IoU ≥ τiou with

bboxcur , add eligible bounding boxes to bboxoi .
6: end for
7: for i = 1 to m do
8: if bboxoi is not empty then
9: In bboxoi find the bbox having the largest IoU with bboxcur ,

add it to bboxens .
10: end if
11: end for
12: if bboxens is not empty then
13: Sum class logits and average box coordinates of all bounding

boxes in bboxens , add the ensembled bounding box to bbox f in .
14: end if
15: Remove {bboxoi }mi=1 from {bboxi }mi=1.
16: Empty bboxens and {bboxoi }mi=1.
17: until {bboxi }mi=1 are all empty
18: Filter confident bounding boxes in bbox f in by τcon .
19: return Filtered bbox f in .

al., 2022). Then we can derive MSPE bounding box coordi-
nation fusion beginning with two source domains:

p(zT |θ1, θ2, xT ) = p(θ1, θ2|xT , zT )p(xT , zT )

p(xT , θ1, θ2)

∝ p(θ1|xT , zT )p(θ2|xT , zT )p(xT , zT )

∝ p(zT |θ1, xT )p(θ1, xT )

p(xT , zT )

p(zT |θ2, xT )p(θ2, xT )

p(xT , zT )
p(xT , zT )

∝ p(zT |θ1, xT )p(zT |θ2, xT )
p(θ1, xT )p(θ2, xT )

p(xT , zT )

∝ p(zT |θ1, xT )p(zT |θ2, xT )

∝ exp
(‖zT − μ1‖2

−2σ 2
1

)
exp

(‖zT − μ2‖2
−2σ 2

2

)
. (11)

Afterward, the derivation process is the same as that of
Eq. (7) in ProbEn (Chen et al., 2022). We refer readers to
the remaining proof in ProbEn (Chen et al., 2022) paper and
ProbEn appendix.

Considering the theoretical proof above, we can easily
designourMSPEprocedure following theProbEnprocedure,
as shown in Algorithm 1 and Fig. 4. In our implementation,
we also utilize UniP for multiple teachers to obtain unified
proposals before MSPE, as shown in Fig. 2. Since our MSF-
DAOD setting cannot access any supervised signals, a vanilla
implementation of MSPEmay introduce bias. Rationales for
this are discussed in Sect. 5.3.
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Fig. 4 Proposed Multi-source Probabilistic Bounding Box Ensemble
(MSPE) approach. Formultiple teacher inputs, including both bounding
box predictions and class logits, we combine them into a unified input
set. To begin MSPE, we identify the bounding box with the highest
class posterior probability, denoting it as the current box. Subsequently,
we identify all bounding boxes with an IoU ≥ τiou . From the bounding
box set generated by each teacher model, we select the box having the
highest IoU with the current box. We then merge this selected box with
the current box to form a singular bounding box prediction, which is
appended to the output set. The current box and overlapping boxes are
then removed. This process iterates until the input set is empty

Discussions. We provide some discussions about the MSPE
design andmethodologyby answering several potential ques-
tions as follows:

– What’s the difference between ProbEn (Chen et al.,
2022) and MSPE? Firstly, MSPE and ProbEn are
implemented on different tasks. ProbEn is designed for
multimodal image object detection tasks, while MSPE
is adopted in MSFDAOD tasks. Models can access
images of the same view in different modalities such as
RGB, thermal, etc., in ProbEn tasks. However, models
can only access unsupervised target domain images in
MSFDAOD tasks. Secondly, the theoretical derivation
processes of ProbEn and MSPE are different. The pre-
requisites of ProbEn include multimodal images, while
those ofMSPE include target images andmultiple source
models. In Eq. (6) of ProbEn (Chen et al., 2022), the con-
ditional confidence distribution is inversely proportional
to p(y = k)(M−1), in which y is the object distribu-
tion and M is the number of modalities. In Eq. (10)
of DACA, the conditional confidence distribution is
inversely proportional to pm−1(xT , yT ), which is com-
pletely different to p(y = k)(M−1). Considering that the

target domain is unsupervised in theMSFDA setting, it is
extremely challenging to approximate the joint distribu-
tion pm−1(xT , yT ). Thus, we borrow the solution from
ProbEn which simply neglects the denominator distri-
bution. In that case, we can simply modify the original
ProbEn algorithm to ensemble bounding boxes frommul-
tiple source models, extending ProbEn to MSFDAOD
tasks. This leads to a high similarity of methodologies
between ProbEn and MSPE. Generally, the differences
between ProbEn and MSPE are mainly (1) Application
tasks and (2) Theoretical derivation. Moreover, since we
implement UniP before MSPE, there is also a slight dif-
ference between ProbEn and MSPE methodologies.

– CanMSPEbe extended to student prediction ensemble?
Given that the proposed MSPE is essentially a bounding
box ensemble algorithm, it is also capable of integrating
student predictions. However, we do not recommend this
approach, since multi-source weights will not be effec-
tively optimized, as no source weights will be assigned
to student models.

4.3 Memory Bank Consensus Contrastive Learning

Motivation. In MSMT, where consensus pseudo-labels are
constructed, each source model is empowered to perform
effective knowledge distillation. However, the quality of fea-
ture representation remains suboptimal under the raw mean-
teacher framework (Vibashan et al., 2023). Previous research
has also sought solutions to this challenge. IRG (Vibashan
et al., 2023) obtains object pair-wise relations by con-
structing a Graph Convolutional Network (GCN) (Kipf &
Welling, 2016). Nevertheless, graph convolution operations
may prove time-consuming in real-world scenarios (Yu
& Qin, 2020). CMT (Cao et al., 2023) has introduced a
contrastive learning strategy involving teacher and student
features at multiple scales, yet it may learn on incorrectly
annotated features since no supervisory signals of the tar-
get domain are provided. Considering these concerns, to
address the challenge of object feature discriminability,
we propose a Memory Bank Consensus Contrastive Learn-
ing (MBCL) approach within the MSMT framework. This
approach aims to lead the network to contrastively learn con-
sensus class-wise features, enhance the network’s ability to
acquire high-quality feature representations and improve its
discriminability.
Method. The InfoNCE loss (Oord et al., 2018), a widely
employed unsupervised contrastive learning loss function,
is designed to enhance the maximization of mutual informa-
tion between input and context. This improves the model’s
capability to distinguish between positive and negative pairs.
The crucial component for effective contrastive learning lies
in the construction of positive and negative pairs. Exploiting
the InfoNCE characteristic to ensure the proximity of posi-
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tive features to the cluster centroid and the clarity of decision
boundaries, it is instinctive to assign instances sharing the
same category label to the positive cluster and vice versa.
Nevertheless, considering the existence of noise in pseudo-
labels, particularly the occurrence of incorrect predictions
in source-free and unsupervised scenarios, we employ the
following strategy to discern high-quality feature represen-
tations as keys.

During the training phase of the i-th student network,
we acquire object-level features by applying RoI-Alignment
with both image-level features and corresponding proposals
of the current image. It is noteworthy that distinct sets of RoI
features are obtainedwith image-level features fromdifferent
students, and distinct sets of RoI features are processed sep-
arately to ensure consistent learning within the same feature
space.To constructmemorybankswith high-quality features,
we employ three criteria for sample selection: (1) A class
probability exceeding a predefined threshold fixed at 0.7; (2)
Prediction entropy below the average entropy in the current
minibatch; (3) Consensus predictions, where “consensus” is
defined as (a) the category predictions of the same instance
from the current source model and the ensemble model are
consistent, and (b) the final prediction, i.e., the weighted pre-
diction and the pseudo-labels are consistent. Criteria (1) and
(2) aim to incorporate representative class-wise information
into the key set while excluding potentially challenging sam-
ples. Criterion (3) serves to safeguard the key set against
pollution by biased or erroneous predictions.

Following the above filtering process, we categorize
current object-level features into consensus features and non-
consensus features.Aiming to performclass-wise contrastive
learning within each source domain feature space, we estab-
lishm ·(k+1) class-wise memory banks, as we also consider
background features for abundant samples and better gener-
alization ability. Here, we denote the i-th student model’s
j-th category memory bank asMB j

i . The memory bank size
is fixed at lmb for all source domains and categories, where
lmb is a hyperparameter. Upon acquiring the features for
each potential category, we adopt a First-In-First-Out (FIFO)
approach to update the respective memory bank. It is impor-
tant to note that we update memory banks each iteration.
Through these steps, we assemble a memory bank contain-
ing high-quality consensus features for each source domain
and category.

In each iteration, after updating the feature memory bank,
we construct and back-propagate the contrastive loss. We
denote the input query features as {{Q j

i }k+1
j=1}mi=1, where

Q
j
i represents the feature belonging to the j-th category

extracted by the i-th student model. For a given set of
query features from a source domain with the same predicted
category, we take memory bank features of the same cate-
gory as positive keys, while memory bank features from the

Fig. 5 Proposed Memory Bank Consensus Contrastive Learning
(MBCL) approach. For the class-wise input features derived from each
student model, we extract consensus features and subsequently update
the memory bank with these selected features. Then we formulate a
class-wise contrastive loss by the consensus features and the memory
bank features within each source feature space

remaining categories serve as negative keys.According to the
principle that features belonging to the same category as the
query are positive keys and vice versa, the final contrastive
loss is given by:

Lcont = 1

m

m∑

i=1

1

ci

k+1∑

j=1

L
i j
cont , (12)

L
i j
cont = 1

|Q j
i |

∑

q∈Q j
i

−1

|Kpos |
∑

K+∈Kpos

log
exp(q · K+/τ)

∑
K∈Kall

exp(q · K/τ)
, (13)

Kpos = MB j
i , (14)

Kall = {MB j ′
i }k+1

j ′=1, (15)

where Kpos represents positive keys, and Kall represents

all keys, including both positive and negative keys for Q j
i ,

the query for the i-th source domain and j-th category, to
conduct contrastive learning. Here, ci represents the total
number of predicted categories in the current iteration, and
τ denotes the temperature of contrastive learning, which is a
hyperparameter. For better readability, we use lowercase k to
denote the total number of categories and capital K to denote
the key in a key set. The process of MBCL is illustrated in
Fig. 5.

4.4 Overall Objective

In this section, we introduce the training and testing process
in an overall objective.
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Training. At the start of each training iteration, a minibatch
of target images is sampled from the target dataset as input.
Weakly augmented images are fed to the teacher models,
while strongly augmented images are fed to the student
models. Once forward propagation and loss calculation are
completed across all components, we combine the final loss,
denoted as L f in , using the proposed detection loss, infor-
mation maximization loss, consistency loss, and contrastive
loss with weighting hyperparameters ω1 to ω4:

L f in = ω1Ldet + ω2LI M + ω3Lcons + ω4Lcont . (16)

Subsequently, we perform backpropagation throughL f in to
update model parameters. The backpropagation process is
applied only to the student models. Once the parameters of
the student models are updated, we update each correspond-
ing teacher model using the exponential moving average
(EMA) of its associated student model. The update process
for the student models and weights, as well as the EMA pro-
cess, are denoted by Eqs. (17), (18) and (19), respectively:

θ sti ← θ sti + γ
∂(L f in)

∂θ sti
, (17)

{αi }mi=1 ← {αi }mi=1 + γ
∂(L f in)

∂
({αi }mi=1

) , (18)

θ tei ← ηθ tei + (1 − η)θ sti , (19)

where η is a predefined coefficient controlling the teacher
updating rate, and γ represents the student learning rate. Dur-
ing the iteration for executing EMA, we perform EMA for
the m teacher–student pairs {θ tei , θ sti }mi=1. Instead of execut-
ing EMA every iteration, we set the EMA frequency to a
dynamic number of iterations for smoother and more stable
updates. The empirical equation for determining the EMA
frequency is:

EMA_i ter = k ∗ NT //500. (20)

Testing. To fully leverage the finely adjusted domain weights
and ensure consistency with the training objective during
inference, we assign weights to the final predictions from
multiple source models using UniP-generated proposals to
obtain the final testing results.

5 Experiments

In this section, we conduct a series of experiments, includ-
ing comparisons between DACA and other state-of-the-art
approaches, ablation studies, visualizations, a model inte-
gration study, and an extension study of DACA. The objec-
tive is to demonstrate the effectiveness of DACA through

both quantitative comparisons and visualization results.
The source code will be released at https://github.com/
HuizaiVictorYao/DACA.

5.1 Experimental Settings

We introduce the datasets, baselines, and implementation
details in this section.

5.1.1 Datasets

Cityscapes. Cityscapes (Cordts et al., 2016) is a dataset for
semantic urban scene understanding, featuring images cap-
tured in diverse urban environments. The dataset comprises
2,975 training images and 500 validation images, each anno-
tated at the pixel level.
Bdd100k. Bdd100k (Yu et al., 2020) is a large-scale dataset
with a total of 100,000 images, with 80,000 of them anno-
tated with bounding boxes. Among the accurately annotated
images, 70,000 are divided into a training set and 10,000
are divided into a validation set. The annotated images are
distributed across three distinct periods: daytime, night, and
dawn/dusk. In our partitioning, daytime has 36,728 training
and 5258 validation images; night has 27,971 training and
3929 validation images; dawn/dusk has 5027 training and
778 validation images.
KITTI. KITTI (Geiger et al., 2012), specifically designed for
autonomous driving systems, provides a benchmark dataset
with images captured across diverse scenes, including cities,
highways, and rural areas. In our configuration, we utilize
all 7481 images in the original training set as source domain
images.
SHIFT. SHIFT (Sun et al., 2022) emerges as a compre-
hensive synthetic dataset for autonomous driving, featuring
various domain shifts such as different times of the day (sun
altitude angle) and adverse weather conditions. In our exper-
imental settings, we only employ images under daytime and
specific weather conditions including clear, heavy cloudy,
heavy foggy, and heavy rainy. In our partitioning, clear has
18,906 training and 3152 validation images; heavy cloudy
has 13,308 training and 2218 validation images; heavy foggy
has 12,543 training and 2091 validation images; heavy rainy
has 19,191 training and 3199 validation images.
Sim10k. Sim10k (Johnson-Roberson et al., 2017) is a syn-
thetic dataset derived from the video game Grand Theft Auto
V (GTA V), simulating real-world scenarios with a total of
10,000 images. In our experimental setting, we utilize all
9000 training images and 1000 testing images from Sim10k.

5.1.2 Baselines

To conduct comprehensive comparisons, we benchmark
DACA against the following baselines:
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(1) Source-only: This involves training on the source domain
and testing on the target domain without any adaptation,
serving as a lower bound for domain adaptation perfor-
mance.

(2) SFDAOD: This involves using a single source domain
or constructing a unified source domain for SFDAOD
methods.

(3) MSDAOD: This involves the direct utilization of exist-
ing MSDA approaches with annotated source domains.
Corresponding methods include vanilla MSDAOD and
transferring MSDA for classification to detection.

(4) MSFDAOD: As no pioneers inMSFDA research focus on
object detection tasks, we have adapted several MSFDA
for classification or segmentation methods to object
detection as MSFDAOD baselines.

(5) Oracle: This intends training and testing directly on target
domain with its supervisory signals. This represents the
upper bound of domain adaptation in some extent.

To obtain a single domain from multiple source domains
in Source-only and SFDAOD experiments, we employ two
strategies:

(1) Single-source. In this approach, we only select one
source domain. In scenarios with two source domains,
we report evaluation results for both. In cases with more
than two source domains, we focus on Single-best and
Single-worst, meaning we perform adaptation on each
single domain and report the corresponding best or worst
results. The division of Single-best and Single-worst is
for illustrating different contributions to adaptation per-
formance due to different degrees of domain gap.

(2) Source-combined, where we combine all source domain
datasets into a single dataset, creating a combined
domain.

For source-only experiments, we contend that compar-
ing our method with single-source source-available DAOD
approaches is meaningless due to significant differences in
experimental settings. Consequently, we only employ Faster
R-CNN (Ren et al., 2015) as the source-only object detection
baseline.

For SFDAOD experiments, we compare against SOAP
(Xionget al., 2021),LODS(Li et al., 2022a), and IRG(Vibashan
et al., 2023). These approaches are selected because they have
fully runnable open-source codebases.

For MSDAOD experiments, we compare against DMSN
(Yao et al., 2021), TRKP (Wu et al., 2022), MDAN (Zhao
et al., 2018), and M3SDA (Peng et al., 2019). MDAN and
M3SDA are originally designed for classification tasks, so
they are modified to object detection tasks for a comprehen-
sive comparison, following DMSN. It is worth noting that
MSDAOD approaches are likely to outperform MSFDAOD

methods due to the availability of abundant source data and
labels. However, we can still gain insights from these results
to analyze the capacity ofMSFDAODmethods to learn with-
out any supervisory information.

ForMSFDAODexperiments,we adaptDECISION(Ahmed
et al., 2021) and US-MSMA (Li et al., 2022c), originally
designed for classification and segmentation tasks, respec-
tively, to object detection tasks, considering factors such as
training time consumption and modification feasibility.

5.1.3 Implementation Details

Task-specific details. Here, we introduce some task-specific
details and necessary modifications to demonstrate how we
conduct fair and comprehensive comparisons:

– SFDAOD. For SFDAOD experiments, all experiments
are conducted using corresponding open-source imple-
mentations. It is important to note that we implement
VGG16 (Simonyan & Zisserman, 2014) as the back-
bone for IRG (Vibashan et al., 2023), which is originally
implemented with a ResNet (He et al., 2016) backbone,
to ensure fair comparisons. We employ Single-source
and Source-combined strategies to construct the source
domain as previously stated.

– MSDAOD. For DMSN (Yao et al., 2021) and TRKP (Wu
et al., 2022) experiments, as they are not open-sourced,
we only refer to existing results in the original paper.
For MDAN (Zhao et al., 2018) and M3SDA (Peng et al.,
2019), it is feasible to directly apply them to object detec-
tion tasks. For MDAN, we treat the RPN and R-CNN
detection head in Faster R-CNN as “Desired Task” in the
original paper (Zhao et al., 2018), with the VGG16 back-
bone serving as “Feature Extractor”. For M3SDA, we
take the VGG16 backbone, RPN, and R-CNN convolu-
tional layers before the R-CNN classifier as the “Feature
Extractor” mentioned in the original paper (Peng et al.,
2019), considering that only object-level classification
predictions are provided by the last classification layers
of R-CNN head.

– MSFDA to MSFDAOD. For MSFDA to MSFDAOD
experiments, we make necessary modifications based on
the original MSFDA methods. It is important to note
that, due to task specificity and cross-model variability
mentioned above, these two methods cannot be directly
applied to MSFDAOD. For instance, the weighted infor-
mation maximization and weighted pseudo-labeling in
DECISION cannot be directly utilized for object detec-
tion tasks, as Regions of Interest (RoIs) vary from model
to model, i.e., cross-model variability. To address this
challenge, we employ UniP to obtain a unified proposal
set for eachminibatch of images. Nevertheless, as theMT
framework is not present in DECISION and US-MSMA,
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Table 1 Comparisons with state-of-the-art SFDAOD, MSDAOD, and MSFDAOD methods under cross-camera setting measured by mAP (%)

Settings and methods Results (%)

Settings Methods Original task Source domain mAP

Source-Only Faster R-CNN (Ren et al., 2015) Detection C 44.60

K 28.60

C+K combined 43.20

SFDAOD LODS (Li et al., 2022a) Detection C 42.07

K 34.11

C+K combined 45.67

SOAP (Xiong et al., 2021) Detection C 39.55

K 34.26

C+K combined 41.47

IRG (Vibashan et al., 2023) Detection C 47.73

K 34.46

C+K combined 45.87

MSDAOD MDAN (Zhao et al., 2018) Classification C+K 43.20

M3SDA (Peng et al., 2019) Classification C+K 44.10

DMSN (Yao et al., 2021) Detection C+K 49.20

TRKP (Wu et al., 2022) Detection C+K 58.40

MSFDAOD DECISION (Ahmed et al., 2021) Classification C+K 44.89

US-MSMA (Li et al., 2022c) Segmentation C+K 40.08

DACA (Ours) Detection C+K 51.45

Oracle Faster R-CNN (Ren et al., 2015) Detection Bdd100k 59.20

The best method within each setting is emphasized in bold. To save space, we denote Cityscapes as “C” and KITTI as “K”

we initially try to apply UniP in every iteration. How-
ever, this straightforward solution could lead to severe
performance degradation. This is because the quality of
the localization ability cannot be assured in classifica-
tion/segmentation approaches due to task specificity. To
address this problem, we choose to generate proposals
for all target images at the initialization process of the
adaptation stage using UniP, denoted as pre-adaptation
proposals. In the training process of the adaptation stage,
we replace every set of RPN-generated proposals with
corresponding pre-adaptation proposals, ensuring rea-
sonable and comparable results.

Overall details. Unless otherwise specified, our primary
focus is on the two-stage model, Faster R-CNN (Ren et
al., 2015), with a VGG16 (Simonyan & Zisserman, 2014)
backbone, serving as the foundational detection model in all
experiments following (Li et al., 2021; Yao et al., 2021; Wu
et al., 2022; Li et al., 2022a). Following (Li et al., 2021; Ren
et al., 2015; Saito et al., 2019), we resize the shorter side of
all images to 600 pixels. The initial learning rate γ for all
experiments is set to 0.0025, and the MSMT framework is
trained with cosine learning rate decay. To maintain consis-
tency with previous SFDAOD approaches (Li et al., 2021,

2022a; Vibashan et al., 2023), we maintain a fixed batch size
of 1 in all experiments.

Without intricate adjustment of weighting hyperparame-
ters, we assign a weight of 0.4 to the contrastive loss weight
ω4, while ω1 to ω3 are simply set to 1. We employ Smooth
L1 Loss for all regression losses. RPN classification loss is
addressed with Cross-Entropy Loss, and R-CNN classifica-
tion loss is handled using Focal Loss (Lin et al., 2017b; Yao
et al., 2021). The number of top-rated proposals pt in UniP is
consistently set to 300, and memory bank size lmb in MBCL
is fixed at 256 for all categories. The temperature param-
eter τ for contrastive loss in Eq. (12) is fixed at 0.1. The
IoU threshold τiou and confidence threshold τcon for MSPE
in Algorithm 1 are set to 0.7 and 0.4, respectively. We use
the stochastic gradient descent (SGD) optimizer. For each
teacher–student pair, the EMA momentum coefficient η is
set to 0.999, and the EMA frequency follows results outlined
in Eq. (20) for a smooth and stable teacher update.

In the testing phase, for fair comparisons, we employ the
same evaluation metric: mean average precision (mAP) with
a 0.5 Intersection over Union (IoU) threshold. Following
some previousmethods utilizingMT,we utilize teachermod-
els for testing, ensuringmore reliable performance (Vibashan
et al., 2023; Cao et al., 2023). All code implementations are
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Table 3 Comparisons with state-of-the-art SFDAOD, MSDAOD, and MSFDAODmethods under synthetic-to-real setting measured by mAP (%)

Settings and methods Results (%)

Settings Methods Original task Source domain mAP

Source-only Faster R-CNN (Ren et al., 2015) Detection Sim10k 39.07

SHIFT 32.06

Sim10k+SHIFT combined 34.94

SFDAOD LODS (Li et al., 2022a) Detection Sim10k 44.41

SHIFT 36.90

Sim10k+SHIFT combined 45.10

SOAP (Xiong et al., 2021) Detection Sim10k 42.22

SHIFT 32.50

Sim10k+SHIFT combined 44.23

IRG (Vibashan et al., 2023) Detection Sim10k 46.73

SHIFT 38.83

Sim10k+SHIFT combined 47.14

MSDAOD MDAN (Zhao et al., 2018) Classification Sim10k+SHIFT 44.18

M3SDA (Peng et al., 2019) Classification Sim10k+SHIFT 45.38

MSFDAOD DECISION (Ahmed et al., 2021) Classification Sim10k+SHIFT 43.64

US-MSMA (Li et al., 2022c) Segmentation Sim10k+SHIFT 41.69

DACA (Ours) Detection Sim10k+SHIFT 55.34

Oracle Faster R-CNN (Ren et al., 2015) Detection Cityscapes 53.86

The best method within each setting is emphasized in bold

built with PyTorch (Paszke et al., 2019). Each experiment is
conducted on one NVIDIA GeForce RTX 3090 GPU.

5.2 Comparison with State-of-the-art

Tables 1, 2, 3 and 4 present the experimental results of the
proposedDACAframework comparedwith (1)Source-only,
(2) SFDAOD, (3) MSDAOD, and (4) MSFDAOD. All the
datasets mentioned above are included in the experiments.
These tables present four MSDAOD settings respectively,
which are categorized as:

– Cross-camera. Following Yao et al. (2021), we designate
Cityscapes and KITTI as source domains, with Bdd100k
daytime as the target domain for cross-camera adapta-
tion, focusing exclusively on the car category.Within the
cross-camera setting, source and target images are cap-
tured across various city landscapes and filming angles,
serving as the primary domain gap.

– Cross-time. Following Yao et al. (2021), we designate
Bdd100k daytime and night as source domains, with
Bdd100k dawn/dusk as the target domain. This setting
encompasses all 10 categories, including bike (bicycle),
car, bus, motor (motorcycle), person, rider, light (traffic
light), sign (traffic sign), train, and truck. This cross-time
setting mirrors a real-world scenario where images are
collected at different times of the day, indicating different

natural or artificial light conditions as the main domain
gap.

– Synthetic-to-real. In the synthetic-to-real experimental
setting, Sim10k and SHIFT daytime clear are desig-
nated as source domains, while Cityscapes is utilized
as the target domain, concentrating solely on the car
category. This setting explores the potential usage of
synthetic images for adaptation to real-world images, par-
ticularly beneficial for real-world applications in which
preprocessing and annotating real-world datasets are
challenging and time-consuming. The primary domain
gap lies in distinct appearances of real-world and syn-
thetic objects under different environments, such as
lighting conditions and texture.

– Cross-weather. In the cross-weather setting, SHIFT day-
time images under clear, heavy cloudy, and heavy foggy
weather conditions are taken as source domains, while
SHIFT daytime images under heavy rainy weather con-
ditions serve as the target domain. The primary domain
gap in the cross-weather setting stems from the different
appearances of objects under various adverse weather
conditions.

From the experimental results, several observations can
be made:
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(1) Comparing source-only with others: Source-only con-
sistently exhibits the poorest performance when com-
pared with other adaptation approaches. The presence of
domain shift, both between the source and target domains
and among source domains in the Source-combined set-
tings, results in a significant performance drop when
source-pretrained models are directly applied to the tar-
get domain without adaptation. This performance drop
underscores the evident difference in joint probability
distributions of image and label spaces between source-
source and source-target domain pairs.

(2) Comparing source-only with SFDAOD under single-
source setting: This comparison reveals that almost all
methods with adaptation outperform Source-only meth-
ods. For instance, in Sim10k to Cityscapes adaptation
in synthetic-to-real setting, LODS, SOAP, and IRG
exhibit performance improvements of 5.37%, 3.15% and
7.66%, respectively. This demonstrates that adapting
from a single source to a target domain significantly
enhances detection performance. It is noteworthy that
some single-source adaptation results are different from
the recorded results in the original paper. For example,
KITTI toCityscapes adaptation records a 43.90%mAP in
LODS (Li et al., 2022a), while our result is 34.11%mAP.
Themain reason is that we adopt the source-only baseline
in DMSN (Yao et al., 2021) for all experiments for fair
comparisons of adaptation performance. For example,
KITTI to Cityscapes Source-only baseline in DMSN is
28.6% mAP, which is much lower than that in LODS (Li
et al., 2022a) which is 39.2% mAP.

(3) Comparing source-only with SFDAOD under Source-
combined setting: When comparing Source-only with
SFDAOD results using a combined source domain, it
becomes evident that Source-combined results are some-
times superior to single-source results. This is mainly
because of the benefit of rich domain-invariant fea-
tures from multiple source domains. However, in most
cases, directly combining source domains leads to sim-
ilar or inferior performance compared to single-source
adaptation. This results from distribution shifts between
source-source and source-target domain pairs. On the
other hand, while Source-combined results may occa-
sionally exhibitmarginal improvements, this comes at the
expense of additional pre-processing and training time.
Both observations underscore the necessity ofMSDAand
MSFDA to effectively leverage information from multi-
ple source domains.

(4) Comparing MSDAOD with SFDAOD and MSFDAOD:
When source data is available, MSDAOD almost consis-
tently outperformsSFDAODandMSFDAODresults. For
example, TRKP (Wu et al., 2022) reaches 58.40% mAP,
which is 6.95% mAP higher than DACA and 10.67%
mAPhigher than SFDAOD.This superior performance is

attributed tomulti-source adaptation and abundant super-
visory information, providing supervision for detection
models and leveraging knowledge from multiple source
domains.

(5) Comparing MSFDA for classification or segmentation
withMSDAOD andDACA: For both DECISION andUS-
MSMA, detection performance is generally lower than
that of MSDAOD and DACA. In comparison to DACA,
the inferior performance ofMSFDA todetection results is
mainly associatedwith task specificity, cross-model vari-
ability, and object feature discriminability, asmentioned
earlier. The fixed scales for classification or segmentation
tasks lead to a lack of localization training objectives
when MSFDA is applied straightforwardly to detection
tasks. This emphasizes the need to consider object-level
discriminative features and localization ability in MSF-
DAOD tasks.

(6) ComparingDACAwith others: Generally, DACAoutper-
forms all MSFDAOD and SFDAOD methods and some
results of MSDAOD methods. This demonstrates the
effective utilization of multi-source detection knowledge
ofDACA, evenwith only source-pretrainedmodels under
source-free scenarios. DACA’s superior performance
results from robust mutual learning and knowledge
distillation of MSMT and UniP, high-quality pseudo-
labels from MSPE, and discriminative feature learning
with MBCL. Notably, DACA also outperforms some
MSDAOD and Oracle results even under source-free
constraints. For example, DACA gains a 39.94% mAP
in the cross-time adaptation scenario, outperforming
DMSN (Yao et al., 2021) by 4.94%mAP and TRKP (Wu
et al., 2022) by marginal 0.14% mAP. These detection
results are all much higher than the 26.60%mAP of Ora-
cle as recorded in DMSN. This emphasizes that Oracle
results may not always be the upper bound of adap-
tation performance (Yao et al., 2021), since multiple
source domain data or pretrained models may contain
rich domain-invariant information,which is beneficial for
adaptation. This comparison highlights that our DACA
framework can leverage knowledge stored in multiple
source-pretrained models, resulting in considerable per-
formance. Additionally, this comparison suggests the
potential for MSDAOD and MSFDAOD approaches to
fully exploit the domain knowledge hidden in model
parameters.

5.3 Ablation Study

In this section, we conduct ablation studies to illustrate the
effectiveness of different components for detection and adap-
tation performance in DACA. Note that in the rest of this
section, we only showcase results under the Synthetic-to-
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Table 5 Ablation study on the effectiveness of MSMT framework and
MBCL methodology

MSPE MSMT MBCL mAP

� 48.41

� � 50.42

� � 53.38

� � � 55.34

The best result is emphasized in bold

Table 6 Ablation study on multi-source adaptation performance com-
pared with single-source adaptation performance

Settings mAP

Sim10k to Cityscapes 47.95

SHIFT to Cityscapes 48.28

Sim10k+SHIFT to Cityscapes 55.34

The best result is emphasized in bold

real setting unless otherwise specified. Details of this setting
are described in Sect. 5.2.

To begin with, as the DACA framework comprises three
main components: MSMT, MSPE, and MBCL, it is intuitive
to consider keeping or eliminating these components to con-
duct a comprehensive comparison. However, it is not feasible
to directly eliminate MSPE, as the entire framework relies
on available pseudo-labels. Therefore, we first evaluate the
effectiveness of MSMT and MBCL while keeping MSPE.
For MSPE effectiveness, we evaluate it by comparing it with
several alternative pseudo-labeling approaches, which will
be discussed later.
MSMT and MBCL effectiveness. We demonstrate the effec-
tiveness of MSMT and MBCL in Table 5. We start by
showcasing howwe“eliminate” these components. IfMSMT
is eliminated, no teacher models are used in the adaptation
process, and correlated components such as consistency loss
and teacher–student consensus inMBCL are also removed. If
MBCL is eliminated, no memory bank or contrastive loss is
constructed. Results in Table 5 show that withoutMSMT, the
performance drops by 6.93% or 4.92% mAP, depending on
whether MBCL is eliminated. Similarly, without MBCL, the
performance will drop by 6.93% or 1.96% mAP, depending
on whether MSMT is eliminated. These results highlight the
beneficial roles of MSMT and MBCL in MSFDAOD perfor-
mance by providing robust mutual learning and high-quality
representation learning processes.
Multi-sourceadaptation effectiveness.Additionally, an exper-
iment is conducted to explore the scenario when only a single
source is provided to DACA. This experiment is also able
to reveal the adaptation effectiveness of MSMT and MBCL
components. Since only a single source-pretrained model
is given, we can only initialize one teacher–student pair.

Table 7 Ablation study on the effectiveness of each loss, including
detection loss Ldet , information maximization loss Lim , consistency
loss Lcons in MSMT, and contrastive loss Lcont in MBCL

Ldet LI M Lcons Lcont mAP

� 52.35

� � 53.51

� � 53.82

� � 54.39

� � � 53.38

� � � 54.45

� � � 54.06

� � � � 55.34

The best result is emphasized in bold

UniP and MSPE are also eliminated since we can directly
take proposals and pseudo-labels generated by the single
teacher as final proposals and pseudo-labels without any
fusion or ensemble operations. Note that the pseudo-label
generation process for a single model is simply filtering
predictions by confidence threshold τcon . Additionally, no
source weights will be initialized or trained. The results in
Table 6 show that multi-source full DACA can significantly
improve single-source performance by about 6–7% mAP
compared with single-source incomplete DACA, emphasiz-
ing DACA’s capability of leveraging multi-source domain
knowledge and exploring multi-source complementarity.
Loss fuction effectiveness. We also assess the effectiveness
of each loss function as shown in Table 7. DACA only yields
a 52.35% mAP when solely employing weighted detection
loss. The inclusion of any one of the information maximiza-
tion loss, consistency loss, or contrastive loss results in an
overall mAP improvement, thereby substantiating the posi-
tive impact of each loss. Conversely, the elimination of any
one of these three losses leads to a decline in mAP by 1.96%,
0.89%, and 1.28% mAP, relative to the full performance of
55.34%mAP, respectively. This observation underscores the
contribution of each loss function within the DACA frame-
work to proficiently execute the MSFDAOD task.
Pseudo-labelingmethod comparisons.We evaluate the effec-
tiveness of MSPE in Table 8. This is to supplement the
analysis in Table 5whereMSPE is retained. Here, we present
several alternative pseudo-label generationmethods to obtain
a unified pseudo-label set: (1) All combined: This method
involves collecting and combining all pseudo-labels gener-
ated by single teacher models. (2) UniP+Weighted: In this
approach, a unified proposal set is obtained using UniP, and
classification scores are obtained by weighting classification
scores using {αi }mi=1. The bounding box coordinate predic-
tions of a proposal are provided by the teacher model that
generated it. (3) WBF+Weighted. WBF (Solovyev et al.,
2021) is a novel method to combine bounding boxes pre-
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Table 8 Results of different pseudo-labeling methods

Pseudo-labeling methods mAP

All combined 49.22

UniP+weighted 54.49

WBF+weighted 53.51

Naïve MSPE 52.87

WBF+MSPE 54.99

UniP+MSPE 55.34

The final results of adapted models trained from each method are pre-
sented for comparison.
The best result is emphasized in bold

dicted by multiple object detection models, which has been
used by some SFDAOD approaches (Liu et al., 2023a). How-
ever, in practice, we find that directly using WBF to fuse
teacher prediction results as pseudo-labels inMSMT leads to
poor performance. One possible reason is that bounding box
predictions are unstable due to significant domain shift at the
beginning of the adaptation process. Thus, we only imple-
ment WBF to obtain a unified proposal set, i.e., replacing
UniP. The scores inWBFare class posteriors byR-CNN (Ren
et al., 2015) head. After obtaining unified proposals with
WBF, the weighting process is the same as in (2). (4) Naïve
MSPE: This method directly uses MSPE to fuse bounding
box predictions frommultiple teachers, where single-teacher
model predictions are generated by corresponding indepen-
dent proposals instead of unified proposals by UniP. (5)
UniP+MSPE and WBF+MSPE: These approaches involve
replacing individual teacher proposal sets with the unified
proposal set generated by UniP or WBF, and fusing bound-
ing box predictions from multiple teachers using MSPE.

Results in Table 8 show that combining UniP+MSPE
achieves the best performance. We can easily conclude that
MSPE outperforms simple combination or weighted predic-
tions due to MSPE’s ability to boost consensus predictions
and reasonably fuse localization results. The reasons why
utilizing unified proposals for pseudo labeling helps are
twofold: (1) Some source models may have inferior localiza-
tion ability on the target domain due to domain shift, resulting
in inaccurate bounding box coordinates from individual
proposals. Utilizing a unified set of consensus proposals
inhibits this inaccuracy. (2) Domain shift may cause overcon-
fident incorrect predictions towards background or irrelevant
objects. This kind of bias may be boosted in the MSPE pro-
cess without unified proposal constraint, as MSPE always
chooses bounding boxes with the highest class posterior to
be fused. Thus, a set of unified proposals may eliminate this
bias and improve performance.
Parameter sensitivity. To demonstrate the robustness of
DACA under parameter fluctuations and further analyze the
impact of each loss function on the overall design,we conduct

parameter sensitivity experiments in the Synthetic-to-real
setting. We simply adjust one of ω1 to ω4 in Eq. (16) while
keeping the other three fixed. Experiment results are shown in
Fig. 6. Generally, when these parameters are adjusted within
acceptable ranges, detection performance mainly fluctuates
between 55.5% and 54.5% mAP, only within a small range
of 1% mAP. The results demonstrate that DACA is robust to
slight parameter perturbations in real-world applications.We
can also analyze the impact of each loss function individually.

(1) For the detection loss weight ω1, assigning too small a
weight will impair basic detection performance, while
assigning too large a weight will lead to the ignorance of
other loss functions for adaptation.

(2) Regarding the information maximization loss weight ω2,
as it is mainly responsible for domain weight optimiza-
tion, loss weights below 0.5 lead to about a 1% mAP
performance drop due to inferior prediction weighting
ability. Hugeweights cause themodel to excessively con-
centrate on entropy functions, ignoring basic detection
ability.

(3) Generally, both too large and too small consistency loss
weights ω3 lead to worse performance. Student models
may deviate from teacher models after optimization if we
assign too small a weight to the consistency loss, while
forcing consistency too much can hurt the effectiveness
of student model exploration.

(4) Fromageneral perspective, neither too largenor too small
contrastive loss weight ω4 leads to good performance.
This highlights the effectiveness of high-quality object-
feature learning. However, as adjusting the contrastive
loss weight leads to more frequent performance fluctu-
ations, it is necessary to explore how to make memory
bank and filter-based contrastive learning more robust in
the future.

EMA frequency sensitivity. We also compare different EMA
frequencies, deviating from the common practice of perform-
ing EMA in each iteration, as observed in previous works (Li
et al., 2021, 2022a; Vibashan et al., 2023). We conduct this
experiment in the Synthetic-to-real setting. It is noteworthy
that AASFOD (Chu et al., 2023) also employs an empirical
EMA frequency set to 2500 iterations. To assess the effec-
tiveness of the EMA frequency calculated by Eq. (20), we
conduct experiments encompassing a wide range of EMA
frequencies. Specifically, a frequency of 0 iterations implies
that the teacher model is never updated.

Results presented in Table 9 demonstrate that applying our
dynamic EMA frequency inMSMT yields better results than
performing EMA updates every iteration. This is because
MSMT learns multiple source domain knowledge without
any supervised information, leading to occasional instabil-
ity in student updates in a single iteration. Adopting EMA
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Fig. 6 Ablation study on parameter sensitivity of each loss function.
Weighting parameters ω1 to ω4 correspond to the detection loss Ldet ,
information maximization loss Lim , consistency loss Lcons , and con-

trastive lossLcont in Eq. (16), respectively. While we adjust one of the
weighting parameters, we fix the other parameters. Original data points
are highlighted. We compare the performance using mAP (%)

Table 9 Comparisons of various EMA updating frequencies in the
synthetic-to-real setting

EMA update iterations mAP

0 47.82

1 39.16

Dynamic = 5 55.34

10 53.68

20 50.09

50 45.53

100 43.61

500 40.76

In the synthetic-to-real setting, the dynamic EMA updating frequency,
calculated by Eq. (20), is set to 5. An EMA update iteration of 0 implies
no updating of teacher models. The best result is emphasized in bold

after a suitable number of iterations enhances the robustness
of parameter updates. However, excessively slow updates
are also harmful, as the MT framework necessitates a high
enough optimization frequency to perform effective knowl-
edge distillation.

5.4 Visualization Results

This section shows the visualization results to further demon-
strate the effectiveness of DACA.
Detection visualization. Figure7 showcases predictions of
the same image generated by single-source models before
adaptation, i.e., source-only, and by DACA. The top two
lines represent predictions from two different source models,
while the bottom line represents predictions from DACA.
Obviously, model performance is improved after adapta-
tion, providing evidence of the DACAmodel’s effectiveness.
Moreover, our model harnesses high-quality information
from multiple sources. For instance, in column (b), DACA
not only utilizes predictions of cars on the right side of the
top image to complement missing predictions in the mid-
dle image but also eliminates duplicate predictions in the
top image through acquired high-quality knowledge. Fur-

thermore, DACA employs learned knowledge to explore and
identify additional challenging objects, such as the car at
the end of the road in the image in column (b). Generally,
DACA is able to utilize multi-source knowledge proficiently
and improve the generalization ability on the target domain.
Pseudo-label visualization. According to the analysis in
previous sections, one of the main reasons for DACA’s
superior performance on MSFDAOD tasks is that MSMT
and MSPE cooperate to generate and utilize reliable high-
quality pseudo-labels. Thus, we visualize pseudo-labels
generated by our method and several alternative methods
described in Sect. 5.3 for comparison, including Naïve
MSPE, WBF+MSPE, UniP+Weighted, and UniP+MSPE.
Figure8 shows the visualization results of these pseudo-
labeling methods across two MSDAOD settings: cross-time
and synthetic-to-real. Both dataset settings are described in
Sect. 5.2 in detail.

To begin with, we compare column (c), which lacks
MSPE, with (a), (b), and (d). It becomes apparent that MSPE
uncovers and highlights additional objects by enhancing the
consistency of prediction scores through logit summation.
For instance, in the first line, a truck is situated on the right
side of the image. Without MSPE, predictions around this
object in (c) are suppressed due to passive-weighted predic-
tions. Conversely, (a), (b), and (d) all precisely localize this
object with MSPE, although (a) and (b) inaccurately classify
it as a car category, which shares similar features with the
truck category.

In addition, applying UniP+MSPE proves to enhance
pseudo-label quality. This becomes evident when comparing
UniP+MSPE with WBF+MSPE or Naïve MSPE. For exam-
ple, UniP+MSPE gives the most high-quality pseudo-labels
among all pseudo-labels for the image in the third line, accu-
rately localizing the row of cars. These observations further
substantiate the analyses presented in Sect. 5.3.
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Fig. 7 Comparison of multi-source adapted predictions with source-
only predictions. Predictions in columns a, b, c and d correspond
to different target images. Images in columns a and b are from the
synthetic-to-real setting, while the rest are from the cross-time setting.
Predictions in the top and middle lines are generated by distinct source-
onlymodels, and predictions in the bottom line are generated byDACA.
Specifically, the top line of a and b is from Sim10k to Cityscapes; the

top line of c and d is from Bdd100k daytime to dawn/dusk; the middle
line of a and b is from SHIFT daytime clear to Cityscapes; the middle
line of c and d is from Bdd100k night to dawn/dusk. Generally, green
boxes represent “car”, cyan-blue boxes represent “traffic sign”, deep
purple boxes represent “traffic light”, pink boxes represent “truck”, and
red boxes represent “person”

5.5 Model Integration

Asmodel ensemble inevitably increases computational com-
plexity and inference time, it is natural to ask, “Is model
integration a better choice?”. We argue that it’s evident
that multiple teacher models are necessary since we need
to consider preserving source domain-specific knowledge,
providing abundant domain-invariant knowledge, and the
feasibility of initialization. However, it seems that the deci-
sion to adopt multiple students is still worth considering,
given computational resources and concerns about complex-
ity. Considering these factors, in this section, we conduct
analyses and experiments to address the rationale for our
decision to adopt multiple students from two perspectives:
performance and time efficiency.

5.5.1 Performance Analysis

In this section, we begin by outlining our rationale for using
multiple students from a performance perspective, followed
by an empirical study to further support our reasoning.

– Simply aggregating all domain knowledge into a single
model may lead to inferior performance due to domain
conflicts. This can be empirically demonstrated in the
following experiment.

– Efficiently initializing a single student model frommulti-
ple models remains a challenge. In theMSFDA scenario,
where there are multiple source pretrained models, it is
natural and convenient to create multiple student models
initialized by their corresponding source models. How-
ever, initializing a single model is more complex. To the
best of our knowledge, there still does not exist an effec-
tive method to directly integrate multiple sets of source
model parameters into one set of model parameters with-
out any training or fine-tuning. Simply initializing the
single studentwith an ImageNet (Krizhevsky et al., 2012)
pretrained model or a randomly chosen source pretrained
model leads to inferior performance.

Let’s also review several Multi-Source-Free Domain
Adaptation for classification or segmentation approaches
from previous studies, including DECISION (Ahmed et al.,
2021), CAiDA (Dong et al., 2021), DINE (Liang et al.,
2022), US-MSMA (Stage I) (Li et al., 2022c), DATE (Han
et al., 2023), Surrogate (Shen et al., 2023), etc. Except for
DINE (Liang et al., 2022), which is designed for black-box
domain adaptation without access to even pretrained model
parameters, we can observe that almost all these approaches
adopt multiple students or multiple models, or at least initial-
ize multiple students with pretrained models in part of their
training procedure. Based on the rationales and investiga-
tions discussed above, it appears that implementing multiple
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Fig. 8 Comparison of visualization results for pseudo-labeling meth-
ods. Predictions in columns a, b, c and d are generated by: a Naïve
MSPE, bWBF+MSPE, cUniP+Weighted, and dUniP+MSPE, respec-
tively. Predictions and images from the top two lines are from the

cross-time setting, while the rest are from the synthetic-to-real setting.
Similar to Table 7, green boxes represent “car”, cyan-blue boxes repre-
sent “traffic sign”, deep purple boxes represent “traffic light”, and pink
boxes represent “truck”

students is still the most applicable method for addressing
MSFDAOD tasks.

Since our reason for adopting a multiple-student frame-
work in DACA is to address the challenges of initializing
a single model and the inferior performance of aggregating
multiple models, we conduct an empirical study to compare
the performance of multiple students versus a single student.
For a comprehensive comparison, we conduct experiments
with only a single model in DACA, as well as delve into pre-
vious MSFDA research and identify some possible methods
for integrating multi-source models into the training proce-
dure.

– Shared Student. This setting simply makes all student
models in DACA share parameters. As we conduct the
experiment in the Synthetic-to-real setting, we initialize
studentmodelswith (1)Sim10k (Johnson-Roberson et al.,
2017) pretrained, (2)SHIFT (Sun et al., 2022) daytime
clear pretrained, and (3)ImageNet (Krizhevsky et al.,
2012) pretrained, respectively in three separate experi-
ments.Note that this setting is different from the setting in
Table 6.We utilize all teachermodels to generate pseudo-
labels here. In contrast, in Table 6, we only initialize
and optimize one teacher model to conduct single-source
adaptation.

– Knowledge Distillation, which is proposed by DECI-
SION (Ahmed et al., 2021) and KD (Hinton et al., 2015).
Following DECISION, after original DACA training,
we obtain weighted predictions by multiple teachers as
pseudo labels to train a single model, distilling multi-
ple source knowledge frommultiple models into a single
model.

– Stage II of US-MSMA (Li et al., 2022c). As US-MSMA
is originally designed for semantic segmentation tasks,
which have only pixel-level classification branches, we
add regression branches processed similarly to classifica-
tion branches.We useMSE (Mean Squared Error) loss in
regression branches to reduce regression prediction dis-
crepancy, similar to the original approach in US-MSMA
Stage II, which used Kullback–Leibler divergence to
reduce classification prediction discrepancy.

– Weighted EMA, which was proposed by DMSN (Yao
et al., 2021). It involves replacing the updated single stu-
dent parameters in EMA inMean-Teacher with weighted
updated multiple student parameters. Considering that
"Pseudo-Subnet Learning" in DMSN is introduced to
the training pipeline after 10 burn-in epochs, which
means multiple source subnets have already performed
10-epoch adaptation to the target domain, we introduce
the single model and weighted EMA after the original
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training steps of DACA and add a few epochs to train the
single model. In the training steps with weighted EMA,
the training procedure of other components is the same
as that of DACA, while the single model is updated by
weightedEMAusing continually updated studentmodels
and source weights{αi }mi=1.

These experiments are all conducted in the Synthetic-to-
real setting. Results are shown in Table 10. Note that for KD,
US-MSMA Stage II, and Weighted EMA we only report the
best result among the three initialization methods. We can
easily make some observations:

– Shared Student: Initializing shared student with a source
pretrained model leads to about 4–5% less mAP in the
Synthetic-to-real setting. This is mainly due to the bias
towards the source domain from which the shared stu-
dent is initialized. In this case, knowledge from other
source domains in other source models is weakened, and
the introduced domain shift between the chosen source
domain and other source domains from teacher models
will lead to worse performance. Initializing the shared
student with an ImageNet pretrained model causes a
severe performance drop since the ImageNet pretrained
model has none of the source domain knowledge. Fur-
thermore, the Shared Student is not able to optimize the
source weights effectively.

– Knowledge Distillation: By providing weighted teacher
predictions as pseudo labels, KD achieves 51.11% mAP,
4.23% mAP lower than Multiple Students. This perfor-
mance drop is due to the loss of domain information in
the distillation process. For example, this lost informa-
tion may contain domain-specific knowledge, which is
beneficial for detection performance.

– US-MSMA Stage II: This results in a significant per-
formance drop. As US-MSMA is originally designed
for semantic segmentation without the need for careful
regression branch design, directly transferring it to detec-
tion tasks hurts localization performance.

– WeightedEMA:By updating the finalmodel byweighted
EMAof studentmodels, the performance reaches 51.37%
mAP,which is 3.97%mAP lower thanMultiple Students.
This performance drop also comes from domain conflict
introduced by weighted parameters.

In general, simply implementing multiple students results
in superior performance compared to the possible alterna-
tive model integration methods mentioned above. However,
it is obvious that multiple students introduce more training
and inference time than a single student. To better analyze
the time efficiency between multiple students and a single
student, we conduct a time efficiency analysis in Sect. 5.5.2.

5.5.2 Time Efficiency Analysis

Furthermore, we analyze the training and inference time of
DACA and model integration methods.
Computational complexity. We start by analyzing the com-
putational complexity of the training phase in DACA. To
analyze the computational cost in training time, we first
review the training process of DACA. Initially, m sets of
image-level features are extracted by m backbones, where
m represents the number of source domains. Subsequently,
m RPNs generate m sets of region proposals respectively.
To consolidate these proposals into unified ones, UniP is
employed to process the m sets of region proposals. Follow-
ing this, proposals and features are forwarded to the detection
head. Pseudo-labels are generated usingMSPE for the detec-
tion loss, while MBCL is utilized for the contrastive loss.

InUniP,weneed to conductNMSwithinmmodels respec-
tively, then an additionalNMSusingmIoUscores.According
to analyses in Soft-NMS (Bodla et al., 2017), the computa-
tional complexity for traditional greedy-NMS is O(N 2

b ), in
which Nb is the number of detection boxes. After NMS in
each Faster R-CNN, only the top-N proposals are retained,
typically set to 256 or 300, which is significantly lower than
Nb. Consequently, the computational complexity of NMS
with mIoU scores can be simplified to O(mN 2

b ).
Similarly, MSPE follows a procedure akin to NMS, aim-

ing to identify one box and all overlapping boxes, followed
by the deletion of these boxes upon obtaining a single box.
Given that the total Region of Interest (RoI) number is typ-
ically significantly lower than the proposal number Nb in
UniP, we can neglect the computational complexity ofMSPE
compared to UniP.

For MBCL analysis, we begin with InfoNCE (Oord et al.,
2018) analysis. In InfoNCE, the fundamental concept is to
promote the model to enhance the similarity between posi-
tive samples while reducing the similarity between negative
samples, thereby facilitating the improvement of represen-
tations. Typically, in a contrastive learning setup, the query
size is usually equivalent to the positive key size (and they are
totally equivalent in all our settings), denoted as Np , while the
negative key size is denoted as Nn . The InfoNCE calculation
process can be segmented into three steps: (1) Calculating
the cosine similarity between queries and positive keys; (2)
Determining the cosine similarity between queries and nega-
tive keys; and (3) Summing these similarities. We can easily
derive InfoNCE complexity as O(N 2

p + NpNn + Np + Nn),
which can be simplified to O(N 2

p + NpNn). In MBCL,
assuming a worst-case scenario where every memory bank
is full, we can substitute Np with lmb and Nn with klmb. Note
that since we consider the background category, there are
totally k + 1 category-wise memory banks, as elaborated in
Sect. 4.3. Since contrastive loss is computed for each cate-
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Table 10 Training time and
performance comparisons
between several model
integration or single student
methods

Integration setting mAP (%) Training time (%)

Shared student (Sim10k) 50.44 86.12

Shared student (SHIFT) 50.97

Shared student (ImageNet) 28.18

KD (Hinton et al., 2015; Ahmed et al., 2021) 51.11 125.34

US-MSMA (Li et al., 2022c) Stage II 38.91 167.33

Weighted EMA (Yao et al., 2021) 51.37 153.09

Multiple students 55.34 100.00

The best performance result and the fewest training time are emphasized in bold

gory in each student model, we derive theMBCL complexity
as O(m(k + 1)(l2mb + kl2mb)), simplified to O(mk2l2mb).

Then a set of unified proposals is fed to the RoI Align
layer and then m detection heads. We denote the computa-
tional complexity of a Faster R-CNN without considering
NMS is O(P), where P is determined by factors such as the
height and width of a feature map, etc. Then the computa-
tional cost of DACA is O(mN 2

b +mk2l2mb +mP), while that
of a single full Faster R-CNN is O(N 2

b + P) considering
the original NMS in Faster R-CNN. Here, m, representing
the number of source domains, is considered constant and
independent of N 2

b , k
2, l2mb, and P . Therefore, both com-

plexities, O(mN 2
b + mk2l2mb + mP) and O(N 2

b + P), are
of the same order of magnitude. This occurs because, as m
is a constant independent of other factors, regardless of the
increase in input size, these two terms of computational com-
plexity both exhibit the same growth rate. Given that DACA’s
computational complexity is of the same order of magnitude
as that of a single Faster R-CNN, DACA’s computational
complexity can be considered acceptable.

For the computational complexity during the inference
phase in DACA, we can similarly derive it as O(mN 2

b +mP)

since only UniP is utilized during inference. Consequently,
the computational complexity of inference time for DACA
and Faster R-CNN are also of the same order of magnitude.

In conclusion, based on the theoretical analysis of com-
putational complexity, we infer that both the training and
inference time of DACA are of the same order of magni-
tude compared to that of a single model Faster R-CNN.
While multiple students inevitably introduce extra training
and inference time, the increased time remains within an
acceptable range. To further explore the training and infer-
ence time consumption in practical applications, we conduct
several experiments to measure training and inference time,
providing corresponding analyses.
Training and inference time. In fact, components such as
UniP and MBCL contribute only a small fraction to the
additional training time. To provide a more empirical under-
standing of computational costs, we measured the average
training time of each method relative to DACA training
time. For clarity, we denote the average training time of

Table 11 Inference time comparisons between single student and mul-
tiple students with 2 or 3 source domains

Settings/m m = 2 m = 3

Single student 0.2169 ± 0.0034 0.1688 ± 0.0081

Multiple students 0.2955 ± 0.0059 0.3021 ± 0.0034

We choose models with similar performance and measured the average
time for inferring one image. Results are presented with second(s) and
m stands for the number of source domains

DACA as 100% and report the relative proportion of other
methods. Results are presented in Table 10. From training
time results in Table 10, we observe that Shared Student
reduces training time by only 13.88% by eliminating UniP
and performing MBCL within a single feature space. This
finding underscores that UniP and MBCL contribute min-
imally to additional computational costs, with the primary
cost stemming from the original Faster R-CNNs and DACA
components in multiple teachers. Additionally, it is evident
that additional model integration techniques, such as KD
after the original DACA training steps, substantially increase
training time.

For a comprehensive analysis, we also measured the aver-
age inference time. To ensure a fair comparison, we selected
inference models from the Single Student and Multiple Stu-
dent settings with similar performance. The experiments
were conducted in the Synthetic-to-real setting with 2 source
domains (m = 2 in Table 11) and the Cross-weather set-
ting with 3 source domains (m = 3 in Table 11). Results
are presented in Table 11. From the results, we observe that
Multiple Students do not introducem times inference time in
practice, despite having multiple students. At the same time,
Multiple Students consistently achieve superior performance
as presented in Table 10. Therefore, we continue to favor the
Multiple Students approach for our model design. It is worth
noting that the comparison between m = 2 and m = 3
was not conducted due to the significant performance gap
between the two dataset settings.
Future work. Since we currently conduct training and infer-
ence sequentially, introducing parallel programming in the
future could significantly reduce both training and infer-
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ence times. Components other than UniP can all be easily
parallelized since multiple teachers (or students) share the
same forward and backward propagation procedures individ-
ually. Theoretically, reasonable parallelization could bring
the training or inference time of Multiple Students to a sim-
ilar level as that of Single Student, but this remains an area
for future work. Furthermore, developing a more efficient
model integration algorithm for multiple source models also
remains a future task.

5.6 Extension to Other Detection Frameworks

Although DACA is mainly designed on Faster R-CNN,
DACA is framework-invariant, i.e., it can be modified
to successfully perform MSFDAOD based on different
detection frameworks. Compared with some framework-
specific DAOD approaches like GPA (Xu et al., 2020)
and RPA (Zhang et al., 2021b) which rely on RPN net-
work in Faster R-CNN, our framework is not limited to
object detector types. We demonstrate the effectiveness of
DACA across different detection frameworks by implement-
ing DACA on a well-known anchor-free one-stage object
detector FCOS (Tian et al., 2019). Without using any pre-
defined anchor boxes, FCOS extracts pixel-level features on
feature maps of Fully Convolutional Network (FCN) (Long
et al., 2015). FCOS gives multi-level prediction on multi-
level featuremaps and inhibits far-away bounding boxeswith
center-ness loss. We conclude the main difference between
FCOS and Faster R-CNN affecting our experiment as fol-
lows: (1) Faster R-CNN generates anchors and Regions
of Interest (RoI) and then gives bounding box prediction.
FCOS directly predicts bounding boxes on feature maps.
(2) Faster R-CNN extracts object-level features with RoI-
Alignment (He et al., 2017) on the last feature map of the
backbone network, while FCOS extracts multi-level feature
maps with Feature Pyramid Network (Lin et al., 2017a). (3)
Faster R-CNNperforms object-level prediction based on pre-
defined anchors, leading to cross-model variability. FCOS
performs bounding box prediction directly on pixels from
multi-level feature maps, avoiding cross-model variability
in region proposals.

Due to the difference mentioned above, we made several
modifications to implement DACA with FCOS: (1) With
pixel-level predictions on multi-level feature maps, cross-
model variability in region proposals does not exist. Thus,
we do not need to implement UniP in MSMT. This means
we can directly assign weights to pixel-level classification
predictions. (2) For center-ness losses, considering that it
is calculated based on regression targets and is designed to
inhibit far-away boxes from single predictions, we calculate
the center-ness loss for each student independently, without
assigning any weights. (3) Since FCOS only extracts fea-
ture maps with FPN, we cannot extract object-level features

Table 12 Results of DACA extension to FCOS using Resnet-101 (He
et al., 2016) as backbone

Method Setting mAP

Source-only Sim-only 41.80

SHIFT-only 44.87

EPM (Hsu et al., 2020) Sim to Cityscapes 51.20

SSAL (Munir et al., 2021) 51.80

MGA-DA (Zhou et al., 2022) 54.10

DACA Sim+SHIFT 51.98

Oracle Cityscapes 70.40

The Oracle result is cited from MGA-DA (Zhou et al., 2022). We use
Sim to represent Sim10k dataset. The best result within each setting is
emphasized in bold

directly. Instead of utilizing RoI-Alignment on multi-level
feature maps following SoCo (Wei et al., 2021) which still
relies on Faster R-CNN components, we directly perform
pixel-level contrastive learning for modified MBCL.

Results in Table 12 show that after adaptation, the final
performance on the target domain is improved by 10.18%
and 7.11% mAP as compared with Sim10k-only result and
SHIFT-only result, respectively. This proves that DACA is
able to leverage multi-source information and explore multi-
source complementarity for target performance improvement
even under other detection frameworks. We also com-
paredDACAwith several FCOS-based single-source source-
available DAOD approaches including EPM (Hsu et al.,
2020), SSAL (Munir et al., 2021), and MGA-DA (Zhou et
al., 2022). Although DACA cannot access source data, it
still outperforms SSAL by 0.18% mAP by leveraging multi-
ple domain knowledge, which further proves DACA’s strong
multi-source-free adaptation ability. This result proves that
DACA is framework-invariant and DACA can be utilized as
a universal solution for MSFDAOD tasks.

The most important key for transferring DACA to another
framework is ensuring that multiple source detection heads
i.e., classification, and regression layers perform prediction
on the same set of targets, such as a unified proposal for Faster
R-CNN and pixel-level prediction for FCOS. DACA can also
be extended tomoremodern detection frameworkswith a few
modifications. TakeDeformableDETR (Zhu et al., 2021) and
YOLO (Redmon et al., 2016) as examples. For Deformable
DETR, we can apply UniP in a two-stage Deformable DETR
to obtain a unified set of proposals as queries, and then feed
these unified queries to multiple detection heads. As for the
YOLO series, we can simply weight grid-level predictions
for each image. To implement MBCL, we can utilize RoI
Align or other techniques for object-level features.

In general, extending DACA toDeformable DETR is sim-
ilar to the process for Faster R-CNN, while extending it
to YOLO is similar to the approach for FCOS. Although
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we have already demonstrated the effectiveness of DACA
on Faster R-CNN and FCOS, extending DACA to YOLOs,
DETRs, or other possible frameworks remains a task for
future work due to limited computational resources and time.

6 Conclusion

In this paper, we introduced a novel research focus within the
Domain Adaptive Object Detection (DAOD) area, namely
Multi-Source-FreeDomainAdaptiveObjectDetection (MSF-
DAOD). To tackle the associated challenges, we proposed a
novel framework termed Divide-and-Aggregate Contrastive
Adaption (DACA). Following the pretraining phase for each
source domain, we initialized each corresponding teacher–
student pair in MSMT using the relevant pretrained model.
Subsequently, within the MSMT framework, we employed
strongly augmented images for students and weakly aug-
mented images for teachers during the feed-forward process.
To aggregate predictions from multiple source models, we
designed the UniP mechanism to aggregate and eliminate
redundant proposals. We formulated weighted detection
loss and information maximization loss based on unified
predictions utilizing UniP proposals. The bounding boxes
and categories, generated by MSPE, served as pseudo-
labels. To further learn target discriminative features, we
leveraged MBCL to acquire consensus high-quality repre-
sentations. Experimental results underscored the superior
performance of DACA, achieving mAP values of 54.45%,
39.94%, 55.34% and 48.79% in cross-camera, cross-time,
synthetic-to-real, and cross-weatherMSDAODtasks, respec-
tively, outperforming both SFDAOD and MSFDA to OD
approaches. For a comprehensive demonstration, we con-
ducted ablation, visualization studies, and necessary analysis
to demonstrate the effectiveness of DACA components.
Additionally, we extended DACA to other detection frame-
works, which revealed DACA’s scalability.
Limitations. Nevertheless, our proposed method still has
limitations. Althoughmultiple students achieve superior per-
formance, a single model is obviously less time-consuming
and more beneficial for real-time detection and deployment.
The problem of how to effectively aggregate multiple mod-
els and improve computational efficiency in MSFDAOD
remains as future work. Moreover, there is a limitation in
MSPE where we simply neglect the target joint distribution.
Considering that the target joint distribution may enhance
pseudo-label quality, we aim to explore methods for approx-
imating this distribution without supervisory signals in the
future. Furthermore, we primarily optimize the classification
branch through sourceweighting, consistency regularization,
and contrastive learning. For the localization branch, we only
compute a regression loss in the detection loss. Exploring
how to effectively optimize the regression branch, obtain

regression weights, and learn localization features, among
other aspects, are valuable topics for future work.
Future work. To broaden the scope of our research, we
express interest in extending MSFDAOD approaches to
multi-target adaptation.Moreover, we also plan to investigate
domain generalization, aligning with real-world scenarios
and contributing to the future exploration of more gener-
alized domain adaptation and object detection approaches.
Societal impact. This work is applicable for adapting object
detection networks from multiple source domains to a target
domain, even when source data and labels are not accessible
during the adaptation stage. The proposed method is capable
of reducing the burden of collecting and organizing large-
scale supervised data in open-world scenarios. Our work is
extremely helpful when training data and annotations are
not available due to privacy preservation policies and data
transmission constraints in real-world scenarios. By evalu-
ating the superior performance in the four dataset settings,
we can also demonstrate that our method is applicable to
various kinds of domain shifts in real-world urban environ-
ments, facilitating further development of real-world urban
detection systems. Although we have achieved state-of-the-
art performance, negative impacts still exist. Since we have
not yet developed a proper way to integrate multiple student
models, our proposed method adopts a multi-student frame-
work. Therefore, the proposed method should not be used in
some systems with extremely high detection latency require-
ments.
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