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In this appendix, we will show more explanations, details, and results that are not included in the
main paper. In Preliminaries A, we especially add more detailed formal denifitions of calibration
metrics, Rényi Divergence, and control variate method. In Proof B, both the bound for the variance of
estimated calibration error and the variance reduction analysis for variants of control variate methods
are provided. In Seup C, we provide a detailed description of the experiment setting. In the last
section D, more qualitative and quantitative results of TransCal are shown when it is evaluated on
other domain adaptation tasks of Office-Home, on more domain adaptation methods, on more domain
adaptation datasets (Office-31 and DomainNet), and on NLL and BS.

A Preliminaries

A.1 Calibration Metrics.

Given a deep neural model φ (parameterized by θ) which transforms the random variable input X
into the class prediction Ŷ and its associated confidence P̂ , we can define the perfect calibration [9]
as P(Ŷ = Y |P̂ = c) = c, ∀ c ∈ [0, 1] where Y is the ground truth label. As it is impossible to
achieve perfect calibration in practical, there are some typical metrics to measure calibration error:
Negative Log-Likelihood (NLL), Brier Score (BS), and Expected Calibration Error (ECE).

Negative Log-Likelihood (NLL) [8], also known as the cross-entropy loss in field of deep learning,
serves as a proper scoring rule to measure the quality of a probabilistic model [10]. Denote p(ŷi|xi,θ)
a predicted probability vector associated with the one-hot encoded ground-truth label yi for example
xi in the dataset, NLL can be defined as

LNLL = −
n∑
i=1

K∑
k=1

yki log p(ŷ
k
i |xi,θ), (1)

where n is the number of samples and K is the number of classes. NLL achieves minimal if
and only if the prediction probability p(y|x,θ) recovers the ground-truth label y, however, it may
over-emphasize tail probabilities [3].

Brier Score (BS) [2], defined as the squared error between the prediction probability p(y|x,θ) and
the ground-truth label y, is another proper scoring rule for uncertainty measurement. Using the same
notation of NLL, Brier Score is formally defined as

LBS = − 1

K

n∑
i=1

K∑
k=1

(p(ŷki |xi,θ)− yki )
2, (2)

For classification, BS can be decomposed into calibration and refinement [6], therefore, it conflates
accuracy with calibration, causing it not a optimal metric for calibration in DA.
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Expected Calibration Error (ECE) [16, 9] first partitions the interval of probability predictions
into B bins where Bm is the indices of samples falling into the m-th bin, and then computes the
weighted absolute difference between accuracy and confidence across bins:

LECE =

B∑
m=1

|Bm|
n
|A(Bm)− C(Bm)|, (3)

where for each bin m, the accuracy is A(Bm) = |Bm|−1
∑
i∈Bm 1(ŷi = yi) and its confidence is

C(Bm) = |Bm|−1
∑
i∈Bm maxk p(ŷ

k
i |xi,θ). ECE is easier to interpret and thereby more popular.

A.2 Rényi Divergence [22]

Akin to [4, 28], our analysis also based on the widely-used notation of Rényi divergence [22], which
is an information-theoretical measure directly relevant to the study of importance weighting. Given
a hyper-parameter α ≥ 0 and α 6= 1, Rényi divergence between distribution p and q is defined as

Dα(p‖q) = 1
α−1 log2

∑
x p(x)

(
p(x)
q(x)

)α−1
. Rényi divergence is well-defined: it is non-negative and

Dα(p‖q) = 0 if and only if p = q. Particularly, when α = 1, it coincides with Kullback–Leibler
divergence, i.e., lim

α→1
Dα(p‖q) = KL(p‖q). Here, another notation of Rényi divergence is adopted:

dα(p‖q) = 2Dα(p‖q) =

[∑
x

pα(x)

qα−1(x)

] 1
α−1

. (4)

A.3 Control Variate [12]

To reduce variance, an effective technique typically employed in Monte Carlo methods named as
Control Variate [12] is introduced here. Denote the statistic u an unbiased estimator of an unknown
parameter µ, i.e. E[u] = µ. To reduce its variance, we introduce a related unbiased estimator t such
that E[t] = τ , in which τ is the parameter that t tries to estimate. Then, a new estimator u∗ with a
constant η can be constructed as

u∗ = u+ η(t− τ). (5)

u∗ has two important properties: 1) u∗ is still an unbiased unbiased estimator of µ since E[u∗] =
E[u] + ηE[t − τ ] = µ + η ∗ (E[t] − E[τ ]) = µ; 2) The variance Var[u∗] of u∗ is reduced, i.e.,
Var[u∗] ≤ Var[u]. That is because the variance of u∗ can be decomposed into

Var[u∗] = Var[u+ η(t− τ)] = Var[t]η2 + 2Cov(u, t)η +Var[u], (6)

which is a quadratic form of η and has a optimal solution when η̂ = −Cov(u, t)/Var[t], resulting
in a optimal value (1− ρ(u, t)2)Var[u] where ρ is the correlation coefficient. Obviously, ρ satisfies
0 ≤ |ρ| ≤ 1, leading to a lower variance: Var[u∗] ≤ Var[u].

B Proof

B.1 The Bound for the Variance of Estimated Calibration Error

In the main paper, we have mentioned that the main drawback of importance weighting is uncontrolled
variance as the importance weighted estimator can be drastically exploded by a few bad samples
with large weights. For simplicity, we denote w(x)LECE(φ(x), y) as LwECE as in the main paper.
Motivated by the Lemma 2 of the learning bounds for importance weighting [4], we show that the
variance of transferable calibration error can be bounded by Rényi divergence between p and q. By
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using Hölder’s Inequality, we provide detailed proof here.

Varx∼p[LwECE] = Ex∼p[(LwECE)
2]− (Ex∼p[LwECE])

2

= Ex∼p

[
(w(x))

2
(LECE(φ(x), y))

2
]
− (Ex∼p[LwECE])

2

=
∑
x

p(x)

[
q(x)

p(x)

]2
(LECE(φ(x), y))

2 − (Ex∼p[LwECE])
2

=
∑
x

(q(x))
1
α

[
q(x)

p(x)

]
(q(x))

α−1
α (LECE(φ(x), y))

2 − (Ex∼p[LwECE])
2

≤

[∑
x

q(x)

[
q(x)

p(x)

]α] 1
α
[∑

x

q(x) (LECE(φ(x), y))
2α
α−1

]α−1
α

− (Ex∼p[LwECE])
2

= dα+1(q‖p)

[∑
x

q(x)LECE(φ(x), y) (LECE(φ(x), y))
α+1
α−1

]α−1
α

− (Ex∼p[LwECE])
2

≤ dα+1(q‖p)(Ex∼pLwECE)
1− 1

α

[∑
x

LECE(φ(x), y)

]1+ 1
α

− (Ex∼p[LwECE])
2

≤ dα+1(q‖p)(Ex∼pLwECE)
1− 1

α − (Ex∼pLwECE)
2, ∀α > 0.

(7)
Apparently, lowering the variance of LwECE results in a more accurate estimation. First, Rényi
divergence [22] between p and q can be reduced by deep domain adaptation methods [14, 7, 29].
Second, we further reduce the variance by the control variate method [12]. As analyzed in the main
paper, these two techniques can be utilized to reduce the variance of the transferable calibration error,
and the former one has been verified by the previous works. For a fair comparison, we use deep
adapted features in all baselines, including the IID Calibration (Temp. Scaling), IID Calibration
(Vector Scaling), IID Calibration (Matrix Scaling) and CPCS [17].

B.2 Variance Reduction Analysis for Variants of Control Variate Methods

B.2.1 Single Control Variate

As analyzed in Section A.3, control variate is an effective and mainstream technique to reduce
variance. By introducing a related unbiased estimator t to the estimator u that we concern, we can
attain a new estimator u∗ = u+ η(t− τ). Obviously, the variance of u∗ is

Var[u∗] = Var[u+ η(t− τ)] = Var[t]η2 + 2Cov(u, t)η +Var[u], (8)

which is a quadratic form of η and has a optimal solution when η̂ = −Cov(u, t)/Var[t], resulting
in a optimal value (1− ρ(u, t)2)Var[u] where ρ is the correlation coefficient. Obviously, ρ satisfies
0 ≤ |ρ| ≤ 1, leading to a lower variance: Var[u∗] ≤ Var[u]. For a single control variate method,
both Control Variate via only w(x) as shown in Eq. (9) and Control Variate via only r(x) as shown
in Eq. (10) can reduce the variance of the target estimated calibration error Var[u∗] ≤ Var[u].

E(1)
q (ŷ,y) = Ẽq(ŷ,y)−

1

ns

Cov(Lw̃ECE, w̃(x))

Var[w̃(x)]

ns∑
i=1

[w̃(xis)− 1]. (9)

E(2)
q (ŷ,y) = Ẽq(ŷ,y)−

1

ns

Cov(Lw̃ECE, r(x))

Var[r(x)]

ns∑
i=1

[r(xis)− c], (10)

B.2.2 Parallel Control Variate

For a parallel control variate method, we extend the control variate method into a parallel version in
which there is a collection of control variables: t1, t2 whose corresponding expectations are τ1, τ2
respectively. By introducing these two related estimators into u, a new estimator is attained:

u∗ = u+ η1(t1 − τ1) + η2(t2 − τ2). (11)
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Similarly, the variance of u∗ in the parallel control variate can be decomposed into:

Var[u∗] = Var[u+ η1(t1 − τ1) + η2(t2 − τ2)]
= Var[u] + Var[t1]η

2
1 + 2Cov(u, t1)η1

+ 2Cov(t1, t2)η1η2 +Var[t2]η
2
2 + 2Cov(u, t2)η2,

(12)

which is much more complex than that of the single control variate whose variance is a quadratic
form and has an optimal solution. Set the derivative of Var[u∗] with respect to η1 and η2 to zero:

Var[t1]η1 +Cov(u, t1) + Cov(t1, t2)η2 = 0

Var[t2]η2 +Cov(u, t2) + Cov(t1, t2)η1 = 0
(13)

we can attain the optimal solutions of η1 and η2 corresponding to the optimal value of Var[u∗]:

η̂1 =
Cov(u, t1)Var[t2]− Cov(u, t2)Cov(t1, t2)

Cov(t1, t2)Cov(t1, t2)−Var[t1]Var[t2]

η̂2 =

[
Cov(u, t2)Cov(t1, t2)− Cov(u, t1)Var[t2]

Cov(t1, t2)Cov(t1, t2)−Var[t1]Var[t2]

]
Var[t1]

Cov(t1, t2)
− Cov(u, t1)

Cov(t1, t2)

(14)

By pulgging η̂1 and η̂2 into Eq. (12), we can attain the optimal value of Var[u∗] as Var[u] +
Res[t1, t2, u]. However, the property Var[u∗] ≤ Var[u] is not always true unless we can guarantee
that Res[t1, t2, u] ≤ 0. In this way, the variance of the target estimated calibration error by the
parallel control variate method may not be reduced.

B.2.3 Serial Control Variate

As mentioned in the main paper, the control variate method can be easily extended into the serial
version in which there is a collection of control variables: t1, t2 whose corresponding expectations
are τ1, τ2 respectively. That is formally defined as

u∗ = u+ η1(t1 − τ1),
u∗∗ = u∗ + η2(t2 − τ2).

(15)

By using the w(x) and r(x) as the first and the second control variate in Eq. (15), we can further
reduce the variance of target calibration error by the serial control variate method as

E∗q(ŷ,y) = Ẽq(ŷ,y)−
1

ns

Cov(Lw̃ECE, w̃(x))

Var[w̃(x)]

ns∑
i=1

[w̃(xis)− 1]

E∗∗q (ŷ,y) = E∗q(ŷ,y)−
1

ns

Cov(Lw̃∗ECE, r(x))

Var[r(x)]

ns∑
i=1

[r(xis)− c].
(16)

In the serial control variate method, the variance Var[u∗] and Var[u∗∗] of u∗ and u∗∗ are

Var[u∗] = Var[u+ η1(t1 − τ1)] = Var[t1]η
2
1 + 2Cov(u, t1)η1 +Var[u]

Var[u∗∗] = Var[u∗ + η2(t2 − τ2)] = Var[t2]η
2
2 + 2Cov(u∗, t2)η2 +Var[u∗].

(17)

Apparently, the property Var[E∗∗q ] ≤ Var[E∗q ] ≤ Var[Ẽq] is held since the above two equations in
Eq. (17) have optimal solutions when η̂1 = −Cov(u, t1)/Var[t1] and η̂2 = −Cov(u∗, t2)/Var[t2],
resulting in a lower and lower variance of the target estimated calibration error.

C Setup

C.1 Datasets

We fully verify our methods on six DA datasets: (1) Office-Home [25]: a dataset with 65 categories,
consisting of 4 domains: Artistic (A), Clipart (C), Product (P) and Real-World (R). (2) VisDA-2017
[19], a Simulation-to-Real dataset with 12 categories. (3) ImageNet-Sketch [26], a large-scale dataset
transferring from ImageNet (I) to Sketch (S) with 1000 categories. (4) Multi-Domain Sentiment [1],
a NLP dataset, comprising of product reviews from amazon.com in four product domains: books
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(B), dvds (D), electronics (E), and kitchen appliances (K). (5) DomainNet [18]: a dataset with 345
categories, including 6 domains: Infograph (I), Quickdraw (Q), Real (R), Sketch (S), Clipart (C) and
Painting (P). (6) Office-31 [23] contains 31 categories from 3 domains: Amazon (A), Webcam (W),
DSLR (D). For each dataset, we randomly split it and use the first 80 percent for training and the
remaining 20 percent data for validation. We run each experiment for 10 times. We denote Vanilla as
the standard softmax method before calibration, Oracle as the temperature scaling method while the
target labels are available. Detailed descriptions are included in C.1, C.2 and C.3 of Appendix.

C.2 Implementation Details

Our methods were implemented based on PyTorch. The implementation of our paper consists of two
main steps: Generating Features and Transferable Calibration. When generating features, we use
ResNet-50 [11] models pre-trained on the ImageNet dataset [21] as the backbone. As a post-hoc
calibration method, we fixed the adapted model when recalibrating the accuracy and confidence. As
for the Transferable Calibration step, the scipy.optimize package was used to solve the constrained
optimization problem. Since no hyperparameter was introduced into the method, we can directly
attain the results in all experiments. To objectively verify our method, we use three calibration
metrics: Negative Log-Likelihood (NLL), Brier Score (BS), and Expected Calibration Error (ECE).
Follow the protocol in [9], we set the number of bins M = 15 of ECE to measure calibration error.
We run each experiment for 10 times for each task.

C.3 Calibration Methods

We denote Vanilla as the standard softmax method before calibration, and Oracle as the temperature
scaling method while the target labels are available. Meanwhile, IID Cal. (Temp. Scaling) is the IID
calibration via temperature scaling recalibration method applied on the source domain as adopted in
[9], IID Cal (Platt Scaling) as the IID calibration via Platt scaling recalibration method adopted in
[20]. Further, we report the results of the transferable calibration method TransCal that we proposed,
and TransCal without bias reduction term: TransCal (w/o Bias), as well as TransCal without variance
reduction term: TransCal (w/o Variance). For a fair comparison, we use deep adapted features
in all baselines, including the IID Calibration (Temp. Scaling) and CPCS [17]. We select three
mainstream domain adaptation methods: MCD [24], CDAN [14] and MDD [29] in the main paper. To
verify that TransCal can be generalized to recalibrate domain adaptation models, we further conduct
the experiments with the other two mainstream classical domain adaptation methods: DAN [13],
JAN [15], and another two latest domain adaptation methods: AFN [27] and BNM [5].

D Results and Analysis

D.1 More Results to Demonstrate the Dilemma Between Accuracy and Calibration

In Section 1 of the main paper, we uncover a dilemma in the open problem of Calibration in DA:
existing domain adaptation models learn higher classification accuracy at the expense of well-
calibrated probabilities by 12 transfer tasks of Office-Home. To verify these phenomena in other
datasets and tasks, we further include the results of accuracy and calibration on Office-31 with 4
tasks: Amazon→Webcam, Amazon→ DSLR, DSLR→ Amazon, Webcam→ Amazon since the other
two tasks are too simple, and on ImageNet-Sketch, a large-scale dataset transferring from ImageNet
to Sketch consisting of 1000 categories. Note that, besides the five mainstream domain adaptation
methods that we reported in the main paper, we further conduct the experiments on other two main
stream DA methods: DAN [13], JAN [15], and another latest DA methods: AFN [27] and BNM [5].
As shown in Figure 1, the same conclusion about the dilemma between accuracy and calibration
can be drawn on other DA datasets and tasks. Meanwhile, we show the detailed results of accuracy
and ECE of 12 transfer tasks on Office-Home in Figure 2 to precisely back up our observation of the
miscalibration between accuracy and confidence after applying domain adaptation methods.
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Before DA

After DA

Before DA

After DA
Before DA

After DA

Figure 1: The dilemma between Accuracy and ECE before calibration on more DA methods and
datasets (Office-Home, Office-31, Sketch). After applying domain adaptation methods, miscalibration
phenomena become severer compared with SourceOnly model, indicating that DA models learn
higher accuracy than the SourceOnly ones at the expense of well-calibrated probabilities.
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Figure 2: The dilemma between accuracy and ECE for different transfer tasks on Office-Home.
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D.2 More Quantitative Results

D.2.1 Generlized to Other Tasks of Office-Home

Due to the space limit, we only report the first six transfer tasks on Office-Home in the main paper,
thus we show the calibration results of the other tasks in Table 1. As reported, TransCal also achieves
much lower ECE than competitors on other tasks on Office-Home while recalibrating various domain
adaptation methods. Further, the ablation studies on TransCal (w/o Bias) and TransCal (w/o Variance)
also verify that both bias reduction term and variance reduction term are effective.

Table 1: ECE(%) before and after various calibration methods for other 6 tasks on Office-Home.
Method Transfer Task P→A P→C P→R R→A R→C R→P Avg

MDD

Before Cal. (Vanilla) 26.4 33.9 14.6 19.6 32.5 13.3 23.4
IID Cal. (Temp. Scaling) 22.5 30.6 12.1 13.3 26.3 9.8 19.1
CPCS [17] 24.6 31.6 14.1 13.3 27.0 9.9 20.1

TransCal (w/o Bias) 25.0 31.8 13.4 10.6 23.2 10.2 19.1
TransCal (w/o Variance) 21.1 29.5 12.1 12.9 24.0 9.3 18.2
TransCal (ours) 21.7 30.6 6.5 7.5 23.0 5.6 15.8
Oracle 6.6 6.0 4.7 6.2 6.7 5.2 5.9

MCD

Before Cal. (Vanilla) 35.7 37.2 18.4 26.1 39 18.1 29.1
IID Cal. (Temp. Scaling) 29.1 28.1 15.9 22.6 31.1 16.3 23.9
CPCS [17] 30.1 30.4 15.2 21.9 32.8 17.1 24.6

TransCal (w/o Bias) 19.1 13.7 5.9 19.3 30.7 12.4 16.8
TransCal (w/o Variance) 20.7 25.5 4.9 7.2 27.9 6.1 15.4
TransCal (ours) 16.4 27.7 5.5 7.2 23.2 6.1 14.3
Oracle 6.2 4.7 2.6 6.9 8.1 5.3 5.6

CDAN

Before Cal. (Vanilla) 34.2 42.1 17.7 24.8 36.4 14.5 28.3
IID Cal. (Temp. Scaling) 25.5 32.9 11.5 14.0 26.0 8.8 19.8
CPCS [17] 27.7 39.2 15.6 13.6 19.9 9.1 20.9

TransCal (w/o Bias) 26.7 38.8 13.6 10.2 27.4 5.2 20.3
TransCal (w/o Variance) 22.1 41.7 15.7 13.0 27.5 4.1 20.7
TransCal (ours) 18.5 40.4 13.9 9.1 21.6 4.5 18.0
Oracle 10.2 4.8 3.8 6.1 5.5 3.9 5.7

D.2.2 Generlized to More Domain Adaptation Methods

To verify that TransCal can be generalized to recalibrate DA methods, we further conduct the
experiments with the other two mainstream DA methods: DAN [13], JAN [15], and another latest
DA methods: AFN [27] and BNM [5]. As shown in Figure 3, we conduct experiments on Visda-2017
to recalibrate the above four DA methods. The results demonstrate that TransCal also performs well
for these DA methods, resulting in a lower calibration error for each task.
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Figure 3: ECE(%) before and after various calibration methods for more DA methods on Visda.
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D.2.3 Generlized to More Domain Adaptation Datasets

As shown in Figure 4, Figure 5, Figure 6 and Figure 7, TransCal also achieves much lower ECE than
competitors on some domain adaptation tasks of Office-31 and DomainNet.
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Figure 4: ECE (%) before and after various calibration methods for several DA methods on Office-31.
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Figure 5: ECE(%) before and after various calibration methods for CDAN on DomainNet.
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Figure 6: ECE(%) before and after various calibration methods for MCD on DomainNet.
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Figure 7: ECE(%) before and after various calibration methods for MDD on DomainNet.
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D.2.4 Evaluated by Negative Log-Likelihood (NLL)

In Section 4.2 of the main paper, we report ECE after recalibrating various domain adaptation methods
on various datasets using TransCal. To verify that TransCal can also perform on other calibration
metrics while only optimizing on ECE, we report the results of TransCal on NLL. As shown in
Table 2, TransCal also outperforms other calibration methods when evaluated by NLL.

Table 2: NLL before and after various calibration methods for various tasks on Office-Home.
Method Transfer Task A→C A→P A→R C→A C→P C→R Avg

MDD

Before Cal. (Vanilla) 3.94 2.13 2.13 2.97 2.39 1.87 2.57
IID Cal. (Temp. Scaling) 3.13 1.80 1.71 2.20 1.75 1.42 2.00
CPCS [17] 3.23 1.91 1.73 2.27 1.76 1.41 2.05

TransCal (w/o Bias) 2.62 1.62 1.68 2.31 1.64 1.45 1.89
TransCal (w/o Variance) 2.51 1.41 1.37 2.18 1.54 1.42 1.74
TransCal (ours) 2.20 1.31 1.36 2.20 1.48 1.40 1.66
Oracle 2.13 1.31 1.35 1.79 1.47 1.28 1.56

MCD

Before Cal. (Vanilla) 3.89 2.57 1.62 3.01 2.45 1.70 2.54
IID Cal. (Temp. Scaling) 2.67 1.96 1.28 2.14 1.86 1.33 1.87
CPCS [17] 2.71 1.97 1.28 2.09 1.85 1.33 1.87

TransCal (w/o Bias) 2.60 2.26 1.30 2.06 1.67 1.32 1.87
TransCal (w/o Variance) 2.56 1.87 1.18 2.12 1.66 1.33 1.79
TransCal (ours) 2.51 1.89 1.19 1.99 1.65 1.32 1.76
Oracle 2.46 1.70 1.17 1.93 1.65 1.31 1.70

D.2.5 Evaluated by Brier Score (BS)

Similarly, we further report the results of TransCal on BS. As shown in Table 3, TransCal outperforms
its competitors on various datasets and domain adaptation methods when evaluated by BS. Note that,
no matter which kind of calibration metrics we adopt to evaluate the performance, TransCal is only
optimized via the proposed importance weighted expected calibration error metric.

Table 3: BS before and after various calibration methods for various tasks on Office-Home.
Method Transfer Task A→C A→P A→R C→A C→P C→R Avg

MDD

Before Cal. (Vanilla) 0.780 0.455 0.455 0.683 0.542 0.491 0.568
IID Cal. (Temp. Scaling) 0.739 0.442 0.438 0.630 0.501 0.452 0.534
CPCS [17] 0.745 0.447 0.438 0.637 0.502 0.451 0.537

TransCal (w/o Bias) 0.699 0.433 0.436 0.640 0.491 0.456 0.526
TransCal (w/o Variance) 0.687 0.422 0.419 0.628 0.480 0.452 0.515
TransCal (ours) 0.647 0.420 0.419 0.630 0.473 0.449 0.506
Oracle 0.635 0.419 0.419 0.577 0.473 0.432 0.493

MCD

Before Cal. (Vanilla) 0.914 0.635 0.452 0.748 0.617 0.512 0.647
IID Cal. (Temp. Scaling) 0.790 0.595 0.420 0.670 0.575 0.463 0.586
CPCS [17] 0.796 0.597 0.421 0.661 0.573 0.463 0.585

TransCal (w/o Bias) 0.776 0.620 0.424 0.655 0.546 0.461 0.580
TransCal (w/o Variance) 0.768 0.585 0.394 0.666 0.542 0.463 0.570
TransCal (ours) 0.756 0.588 0.396 0.641 0.540 0.462 0.564
Oracle 0.743 0.558 0.393 0.622 0.540 0.455 0.552
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D.3 More Qualitative Results.

Here, we further report more reliability diagrams for more DA tasks in Figure 8, Figure 9, Figure 10,
Figure 11, Figure 12, Figure 13 respectively, showing that TransCal performs much better.
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Figure 8: Reliability diagrams for the model from Art to Clipart before and after calibration.
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Figure 9: Reliability diagrams for the model from Art to Product before and after calibration.
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Figure 10: Reliability diagrams for the model from Art to Real-World before and after calibration.
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Figure 11: Reliability diagrams for the model from Real-World to Art before and after calibration.
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Figure 12: Reliability diagrams for the model from Real-World to Clipart before and after calibration.
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Figure 13: Reliability diagrams for the model from Real-World to Product before and after calibration.
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