Transferability in Deep Learning

Mingsheng Long

School of Software, Tsinghua University

MLA 2022

Outline

1	Intr	oduction	2					
	1.1	Terminology	5					
	1.2	Overview	7					
2	Pre-	-Training	9					
	2.1	Pre-Training Model	9					
	2.2	Supervised Pre-Training	12					
	2.3	Unsupervised Pre-Training	20					
3	Ada	ptation	31					
	3.1	Task Adaptation	31					
	3.2	Domain Adaptation	44					
4	Eva	luation	68					
	4.1	Datasets	68					
	4.2	Library	69					
	4.3	Benchmark	72					
5	Con	clusion	76					
6	Ack	nowledgements	77					
Re	References							

Transferability in Deep Learning

Suggested Citation: Junguang Jiang, Yang Shu and Mingsheng Long (2022), "Transferability in Deep Learning", : Vol. xx, No. xx, pp 1–18. DOI: 10.1561/XXXXXXXXXX.

Junguang Jiang

Tsinghua University jiangjunguang1123@outlook.com

Yang Shu

Tsinghua University shu-y18@mails.tsinghua.edu.cn

Mingsheng Long

Tsinghua University mingsheng@tsinghua.edu.cn

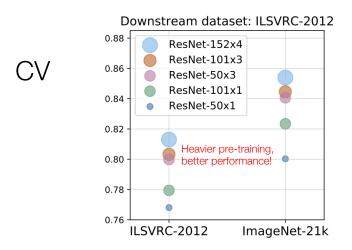
This article may be used only for the purpose of research, teaching, and/or private study. Commercial use or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher approval.

Pre-training NLP SPT-2 SMALL SPT-2 MEDIUM Pre-training GPT-2 EXTRA LARGE

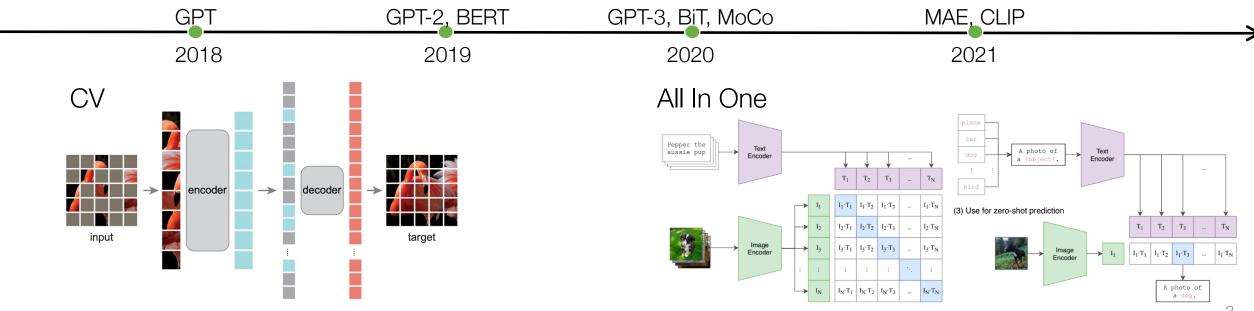
762M Parameters

345M Parameters

117M Parameters



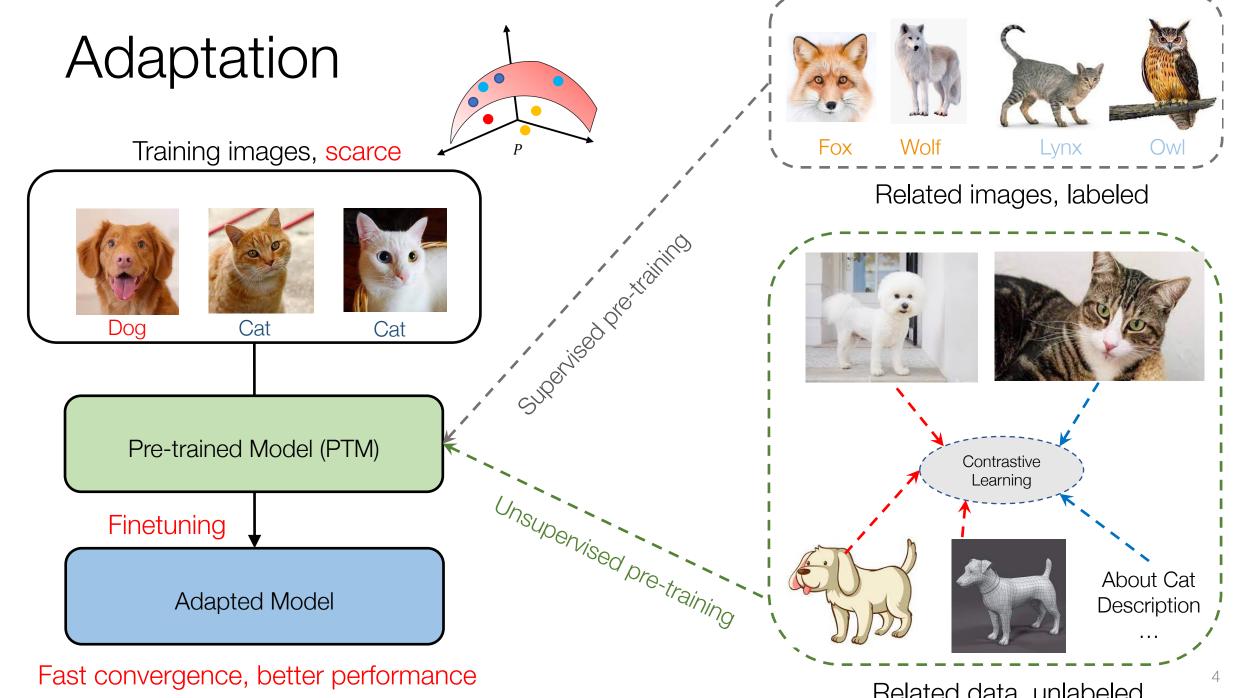
BiT: General Visual Representation Learning



1,542M Parameters

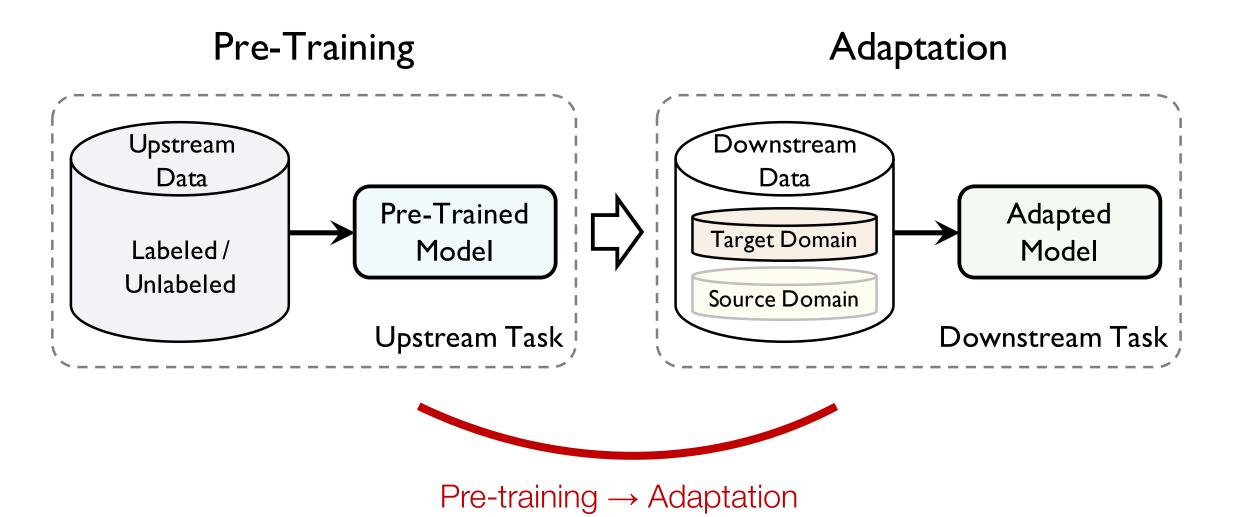
MAE: Masked AutoEncoder as Self-supervised Learner

CLIP: Contrastive Language-Image Pre-Training



Related data, unlabeled

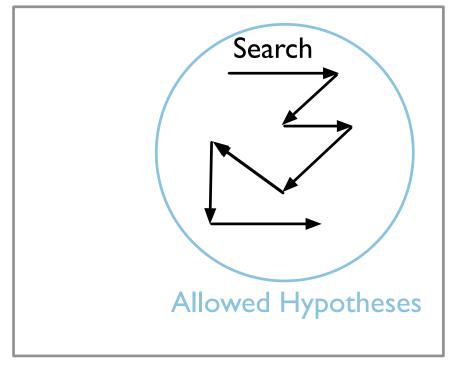
Pre-training and Adaptation



A Paradigm for Deep Learning Application

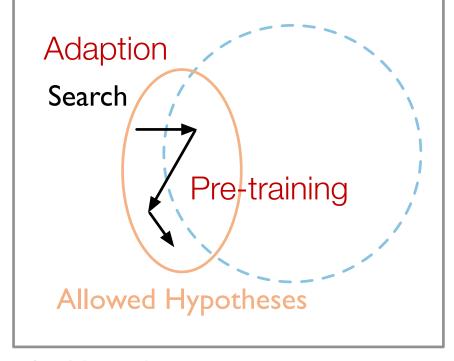
Pre-training and Adaptation

Inductive Learning



All Hypotheses

Inductive Transfer

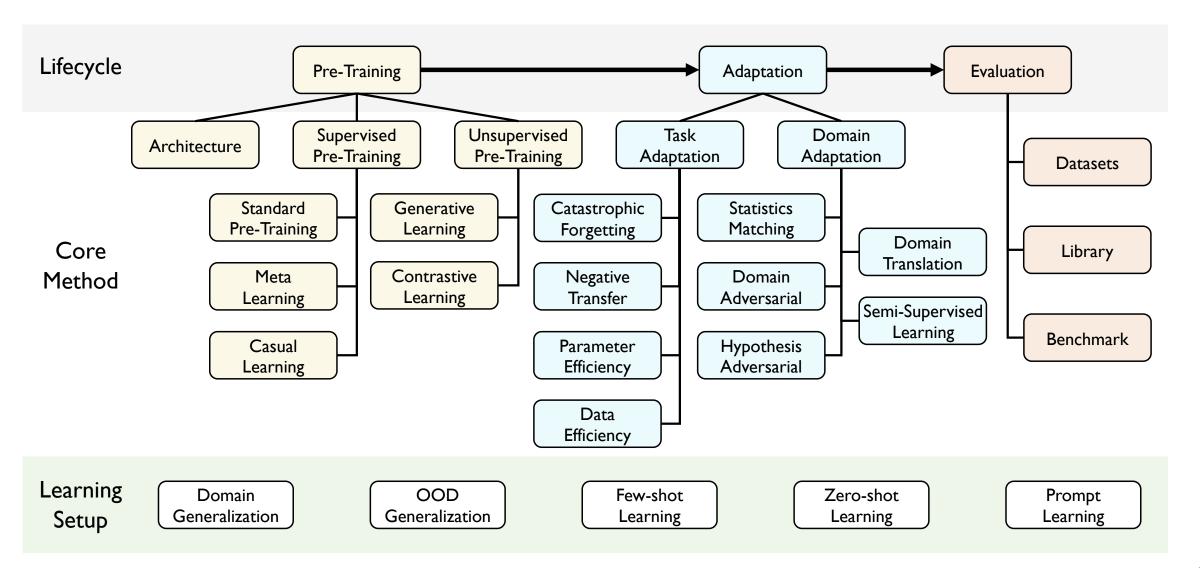


All Hypotheses

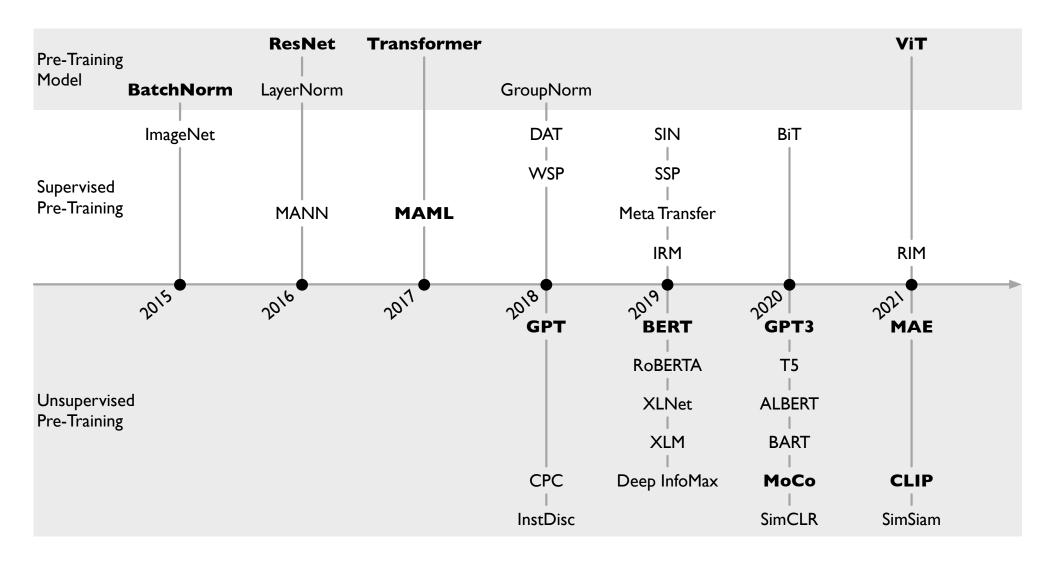
Pre-training → Adaptation

A Paradigm for Deep Learning Application

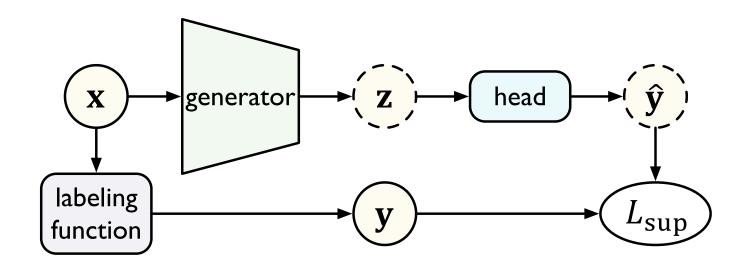
Transferability in the Lifecycle



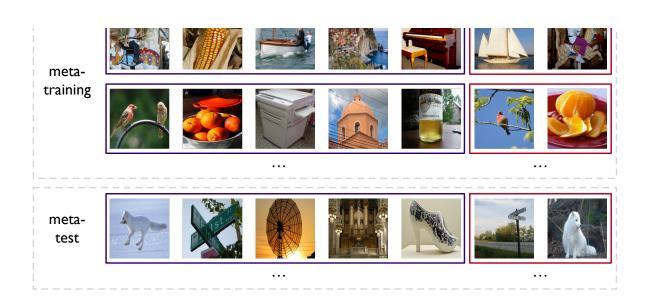
Pre-training

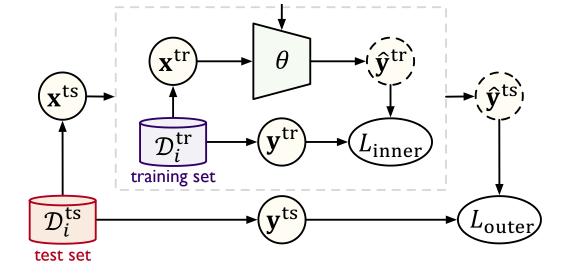


Supervised Pre-training



- Big Transfer (BiT) (Kolesnikov et al., 2020) emphasizes that training on larger datasets is vital for better transferability.
- Domain Adaptive Transfer (DAT) (Ngiam et al., 2018) uses importance weighting to carefully choose the pre-training data that are most relevant to the target task.





Task $i \in [1, ..., n]$

$$\phi^* = \arg\max_{\phi} \sum_{i=1}^n \log P(\theta_i(\phi)|\mathcal{D}_i^{\text{ts}}),$$

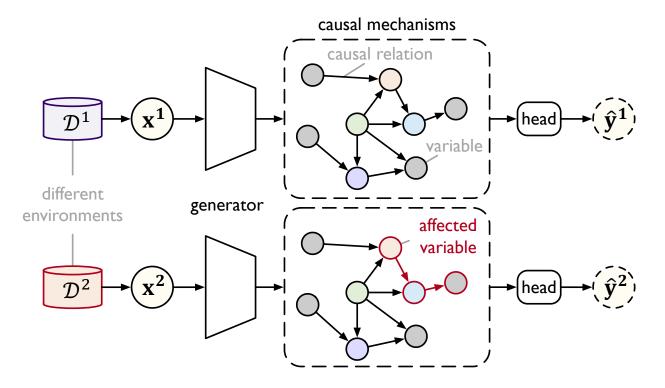
where $\theta_i(\phi) = \arg \max_{\theta} \log P(\theta | \mathcal{D}_i^{\text{tr}}, \phi)$.

Model-Agnostic Meta-Learning (MAML)

for fast adaptation

$$\theta_i = \phi - \alpha \nabla_{\phi} L(\phi, \mathcal{D}_i^{\text{tr}})$$

Causal Learning



Invariant Risk Minimization (IRM)

for OOD generalization

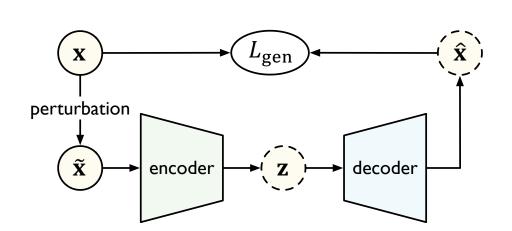
$$\min_{\psi: \mathcal{X} \to \mathcal{Z}, h: \mathcal{Z} \to \mathcal{Y}} \sum_{e \in \mathcal{E}^{tr}} \epsilon^e(h \circ \psi),$$

subject to $h \in \underset{\bar{h}: \mathcal{Z} \to \mathcal{Y}}{\arg \min} \epsilon^e(\bar{h} \circ \psi)$, for all $e \in \mathcal{E}^{tr}$

Essentially, this implies invariance to data augmentation!

• Causal learning seeks a model with causal mechanisms, and if the environment or distribution changes, only part of the causal mechanisms will be affected.

Generative Learning

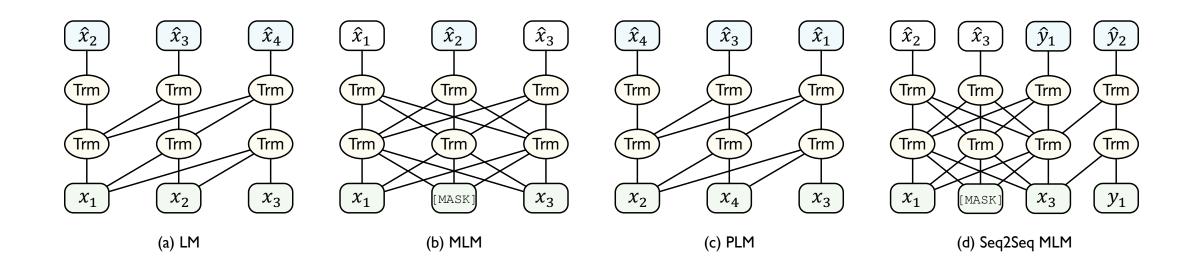


Autoregression GPT, Image-GPT

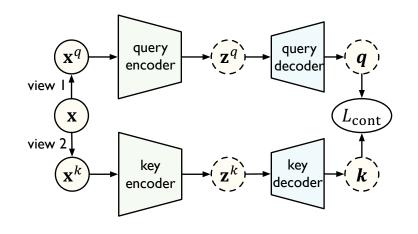
$$\max_{\theta} \sum_{t=1}^{T} \log P_{\theta}(x_t | x_{t-k}, \cdots, x_{t-1})$$

Autoencoding **BERT**, **MAE**

$$\max_{\theta} \sum_{x \in m(\mathbf{x})} \log P_{\theta}(x|\mathbf{x}_{\backslash m(\mathbf{x})})$$

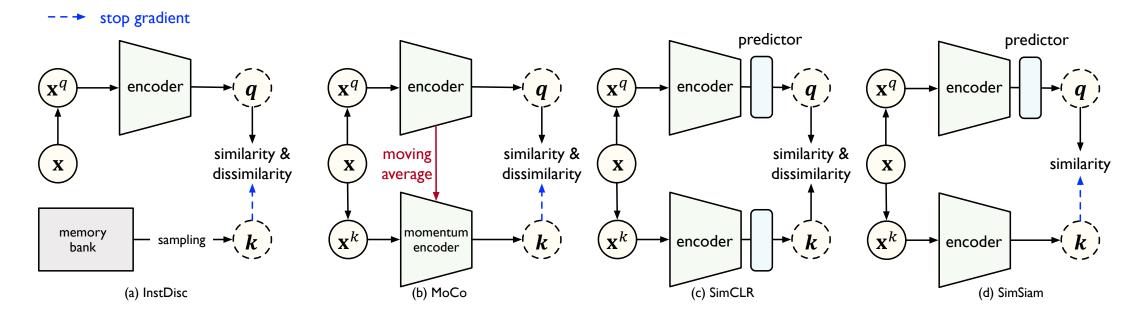


Contrastive Learning



$$\min_{\psi} - \log \frac{\exp(\mathbf{q} \cdot \mathbf{k}_{+}/\tau)}{\sum_{j=0}^{K} \exp(\mathbf{q} \cdot \mathbf{k}_{j}/\tau)}$$

Supervised pre-training gains high-level semantic knowledge, while contrastive and generative pre-training gains mid-level & low-level representations



Remarks on Pre-training

Method	Modality Scalability ¹	$\begin{array}{c} {\rm Task} \\ {\rm Scalability}^2 \end{array}$	Data Efficiency ³	Label Efficiency ⁴
Standard Pre-Training	***	**	***	*
Meta-Learning	***	*	*	*
Causal Learning	**	*	*	*
Generative Learning	**	***	***	***
Contrastive Learning	*	***	***	***

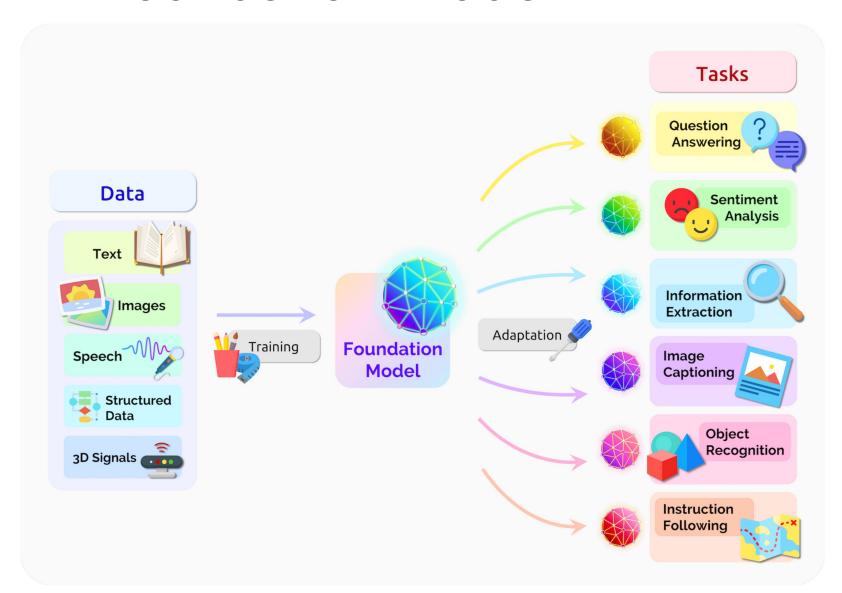
¹ Whether models can be pre-trained on various modalities, such as text, graph.

² Whether pre-trained models can be easily transferred to many downstream tasks.

³ Whether stronger transferability can be yielded from large-scale pre-training.

⁴ Whether pre-training relies on manual data labeling.

Foundation Model



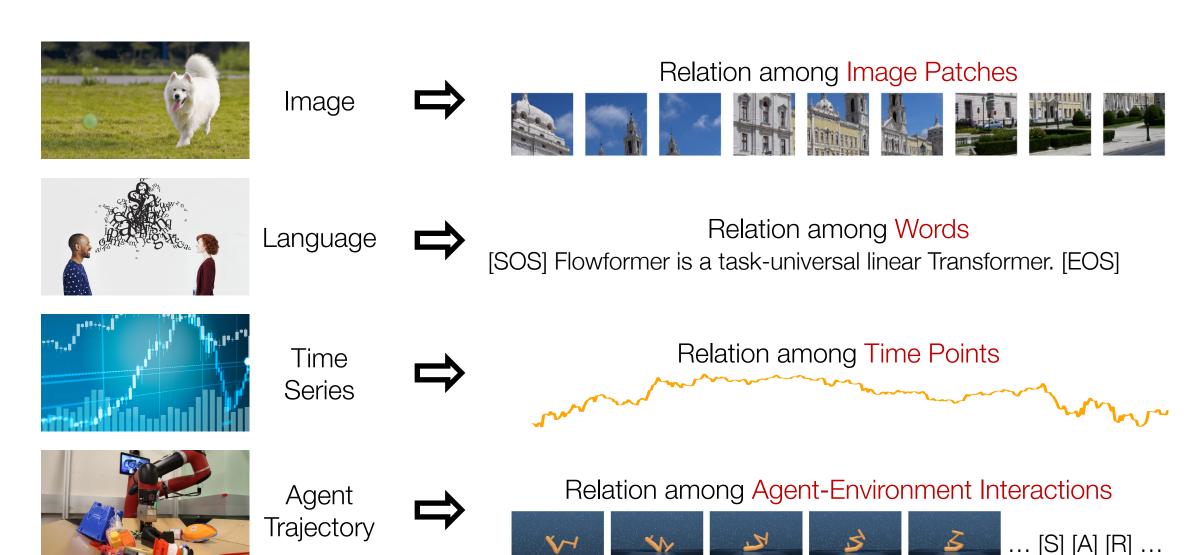
[Data Universal]

Learn from various modalities

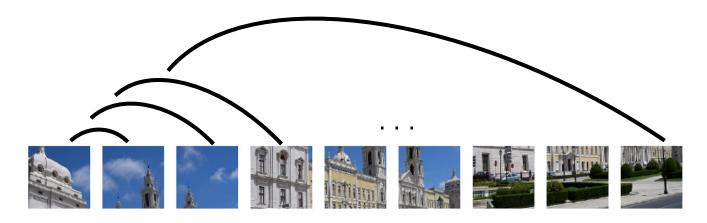
[Task Universal]

Adapt to a wide range of downstream tasks

General Relation Modeling in Transformers



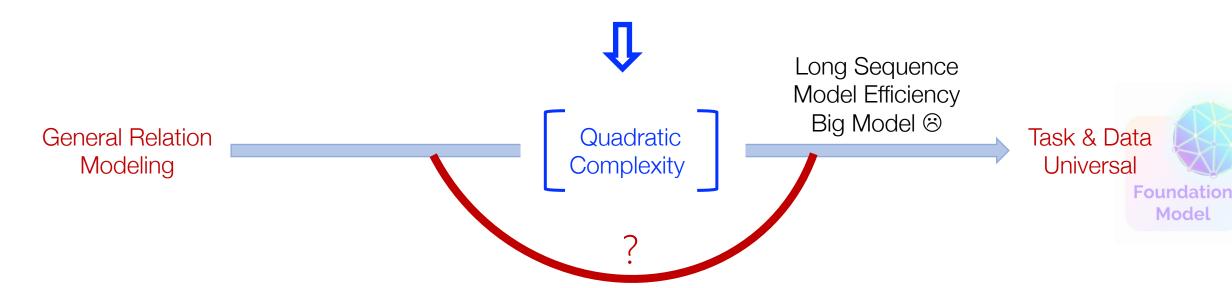
Quadratic Complexity in Self-Attention



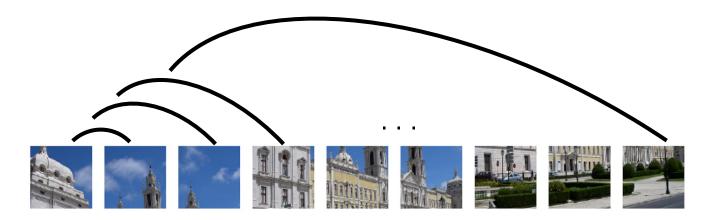
Pair-wise Relation Modeling:

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Model



Quadratic Complexity in Self-Attention



Pair-wise Relation Modeling:

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

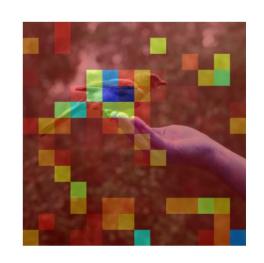
$$O(n^2d)$$

Can we remove Softmax function?

$$(QK^T)V = Q(K^TV) \implies \mathcal{O}(n^2d) \to \mathcal{O}(nd^2)$$

Recap: Softmax function

Softmax function is proposed as a differentiable generalization of the "winner-take-all" picking maximum operation.



Bridle et al. Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters. NeurlPS 1989.

Recap: Softmax function

Softmax function is proposed as a differentiable generalization of the "winner-take-all" picking maximum operation.

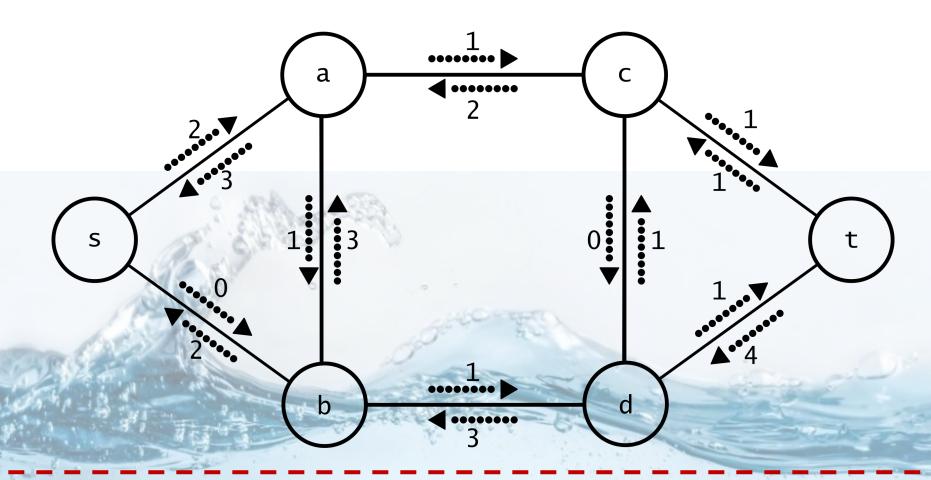
$$\frac{\phi(Q)(\phi(K)^T V)}{+} \qquad \longleftrightarrow \qquad \text{Softmax}\left(\frac{QK^T}{\sqrt{d}}\right) V$$

Competition Mechanism

"fixed resource will cause competition"

Bridle et al. Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters. NeurlPS 1989.

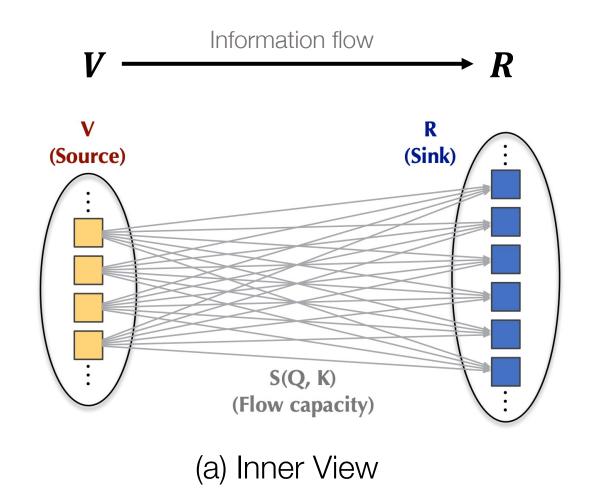
Flow Network Theory



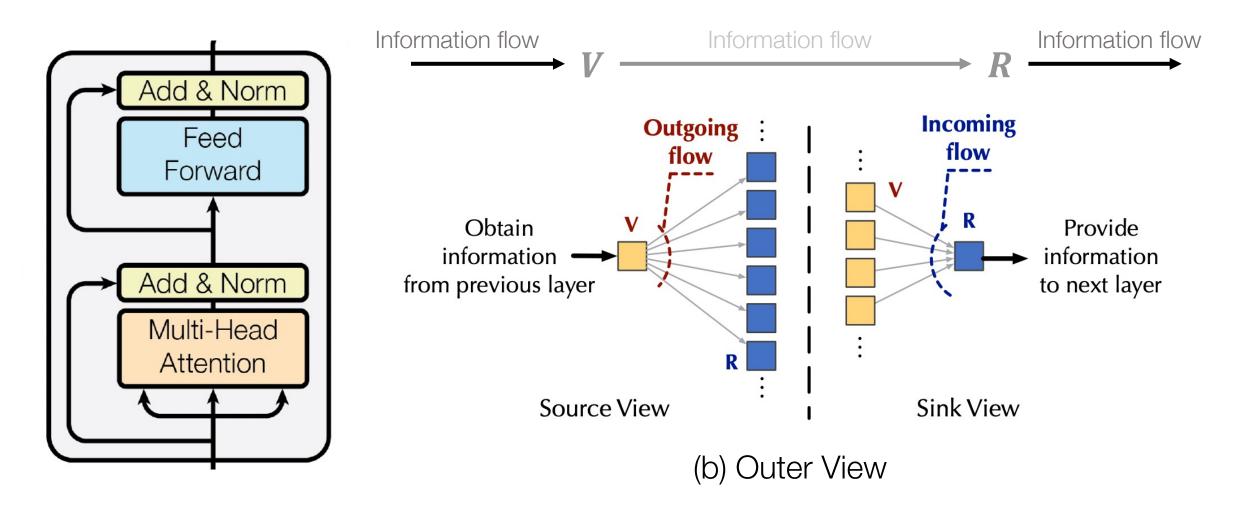
[Conservation Property]: The incoming flow capacity of each node is equal to the outgoing flow.

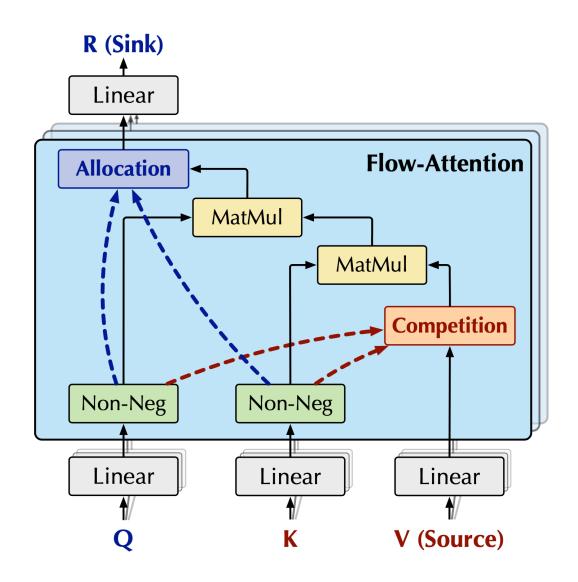
Attention: A Flow Network View



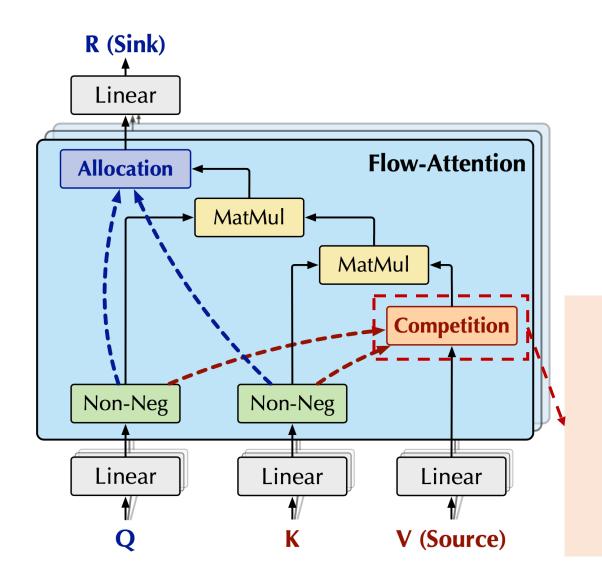


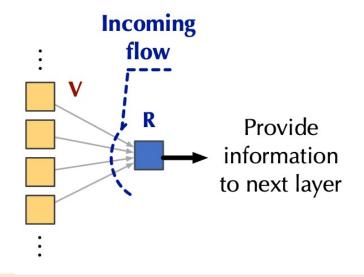
Attention: A Flow Network View





- [Incoming Flow Conservation]:
 - Competition among Source tokens
- [Outgoing Flow Conservation]:
 - Competition among Sink tokens

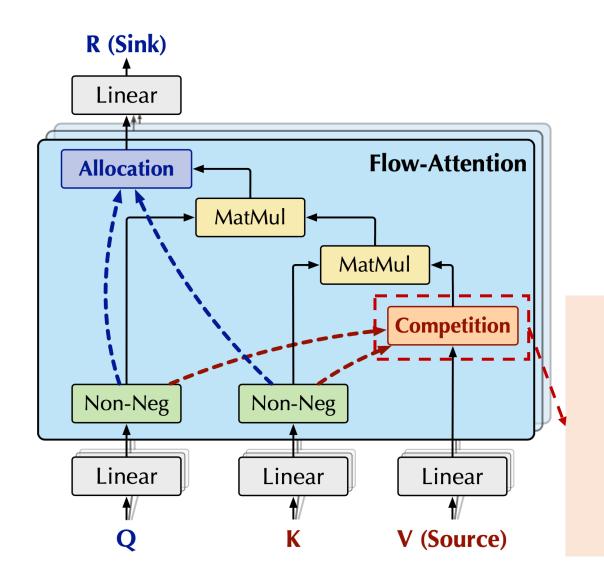


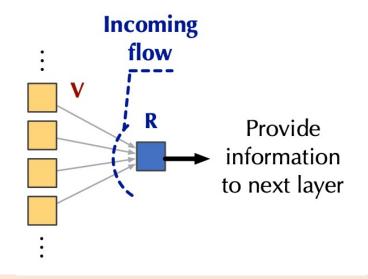


Incoming flow: $I_i = \phi(Q_i) \sum_j \phi(K_j)^T$

Incoming flow conservation: $\frac{\phi(Q)}{I}$

Incoming flow:
$$\frac{\phi(Q_i)}{I_i} \sum_j \phi(K_j)^T = \frac{I_i}{I_i} = 1$$

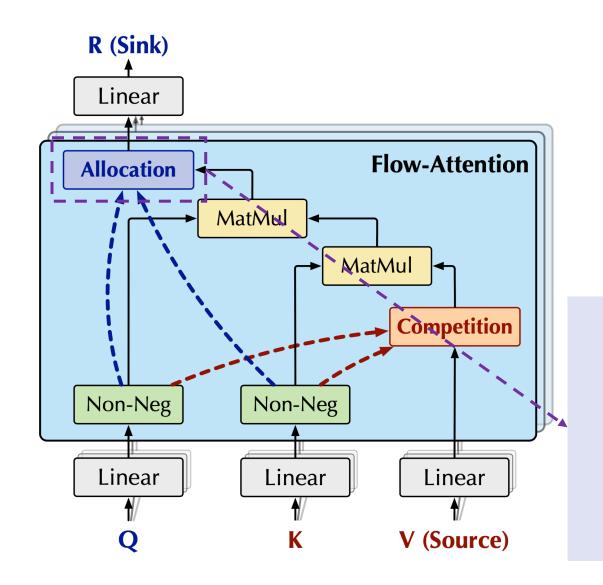


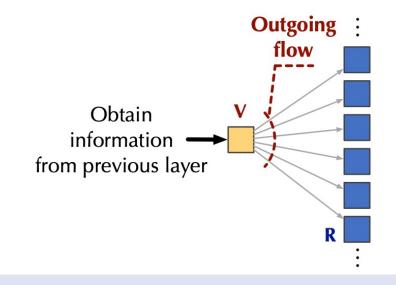


Incoming flow: $I_i = \phi(Q_i) \sum_j \phi(K_j)^T$

Incoming flow conservation: $\frac{\phi(Q)}{I}$

Conserved outgoing flow: $\widehat{\mathbf{O}} = \phi(\mathbf{K}) \sum_{i} \frac{\phi(Q_i)^T}{I_i}$

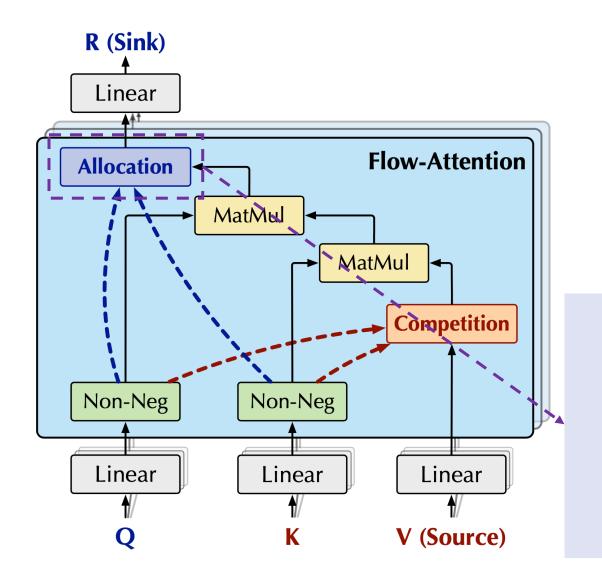


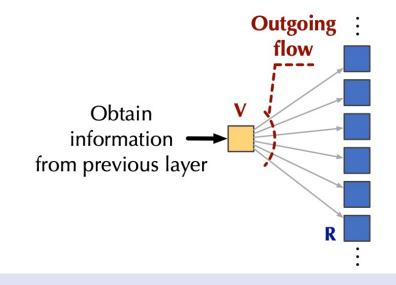


Outgoing flow: $O_i = \phi(K_i) \sum_j \phi(Q_j)^T$

Outgoing flow conservation: $\frac{\phi(K)}{o}$

Outgoing flow:
$$\frac{\phi(K_i)}{o_i} \sum_j \phi(Q_j)^T = \frac{o_i}{o_i} = 1$$

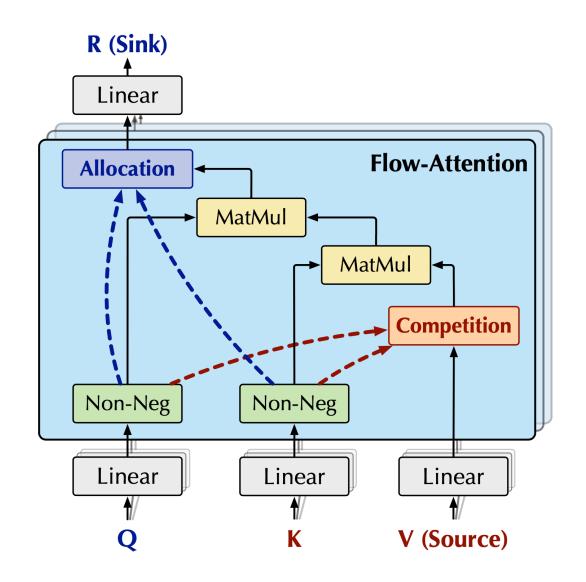




Outgoing flow: $O_i = \phi(K_i) \sum_j \phi(Q_j)^T$

Outgoing flow conservation: $\frac{\phi(K)}{o}$

Conserved incoming flow: $\hat{I} = \phi(\mathbf{Q}) \sum_{j} \frac{\phi(\kappa_{j})^{T}}{o_{j}}$

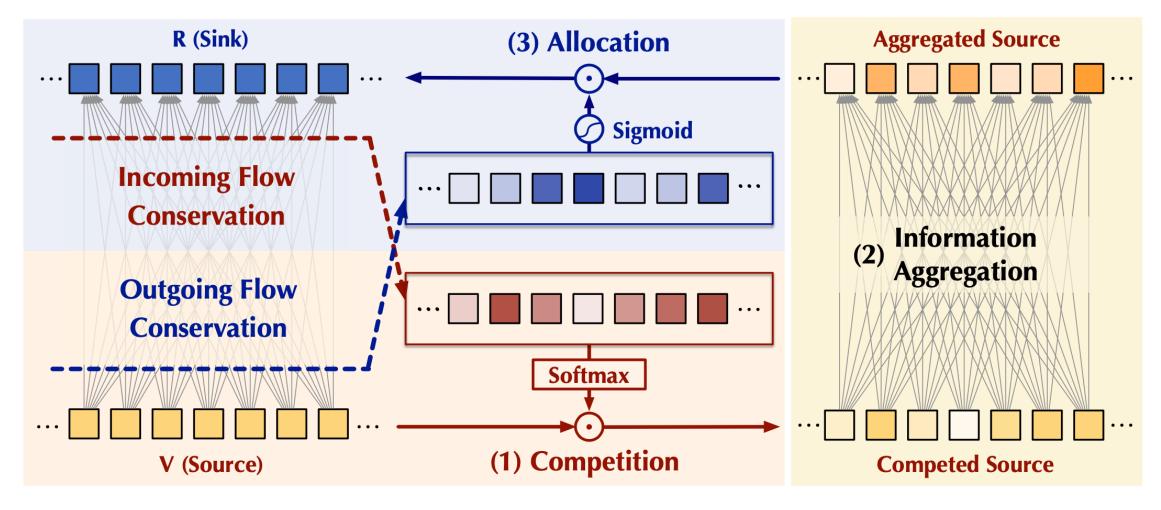


Competition:
$$\widehat{\mathbf{V}} = \operatorname{Softmax}(\widehat{\mathbf{O}}) \odot \mathbf{V}$$

Aggregation: $\mathbf{A} = \frac{\phi(\mathbf{Q})}{\mathbf{I}} (\phi(\mathbf{K})^{\mathsf{T}} \widehat{\mathbf{V}})$
Allocation: $\mathbf{R} = \operatorname{Sigmoid}(\widehat{\mathbf{I}}) \odot \mathbf{A}$,

Successfully bring the Competition Mechanism Into Attention design to avoid trivial attention

Flowformer: Efficiency and Universality



[Efficiency]: All the calculations are in linear complexity.

[Universality]: The whole design is based on flow network without specific inductive biases.

Flowformer Experiments

Image

Language

Time Series

Agent Trajectory

BENCHMARKS	TASK	VERSION	LENGTH	
LRA (2020C)	SEQUENCE	NORMAL	1000~4000	
WIKITEXT (2017)	Language	CAUSAL	512	
IMAGENET (2009)	Vision	NORMAL	49~3136	
UEA (2018)	TIME SERIES	NORMAL	29~1751	
D4RL (2020)	OFFLINE RL	CAUSAL	60	

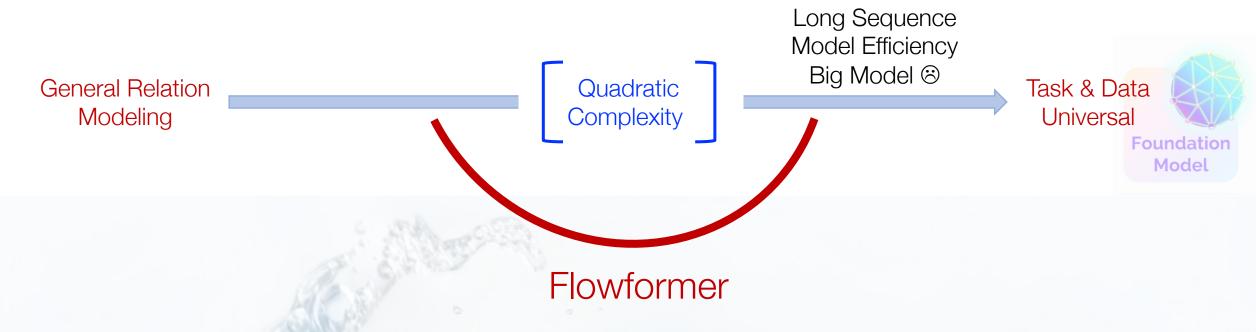
- Extensive tasks (covering 5 mainstream tasks)
- Normal and causal versions
- Various sequence lengths (29-4000)
- Extensive baselines (20+)

Flowformer Experiments

Task	Metrics	Flowformer	Performer	Reformer	Vanilla Transformer
Long Sequence Modeling (LRA)	Avg Acc (%) ↑	56.48	51.41	50.67	ООМ
Vision Recognization (ImageNet-1K)	Top-1 Acc (%) ↑	80.6	78.1	79.6	78.7
Language Modeling (WikiText-103)	Perplexity ↓	30.8	37.5	33.6	33.0
Time series classification (UEA)	Avg Acc (%) ↑	73.0	71.5	71.9	71.9
Offline RL (D4RL)	Avg Reward ↑ Avg Deviation ↓	73.5 ± 2.9	63.8 ± 7.6	63.9 ± 2.9	72.2 ± 2.6

Strong performance on all five mainstream tasks within the linear complexity.

Flowformer

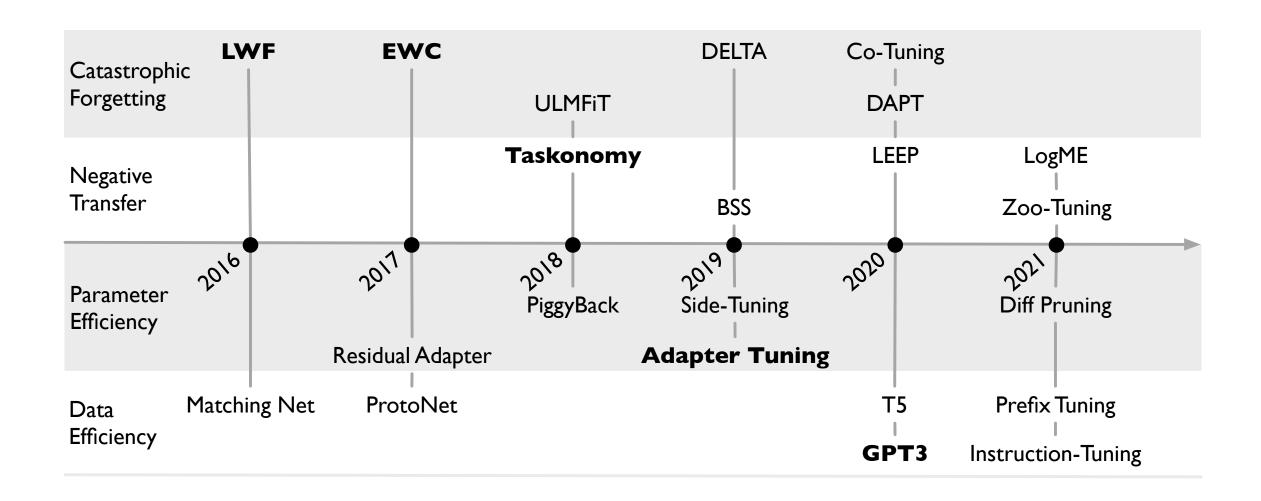


Linear complexity w.r.t. sequence length

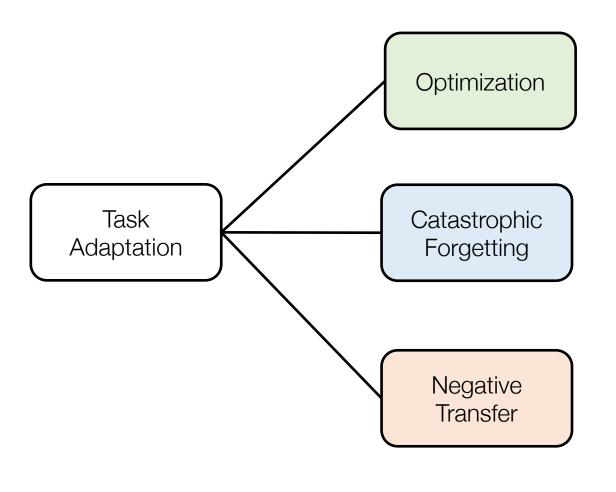
Based on flow network & without specific inductive biases

Strong performance in Long Sequence, CV, NLP, Time Series, RL

Task Adaptation

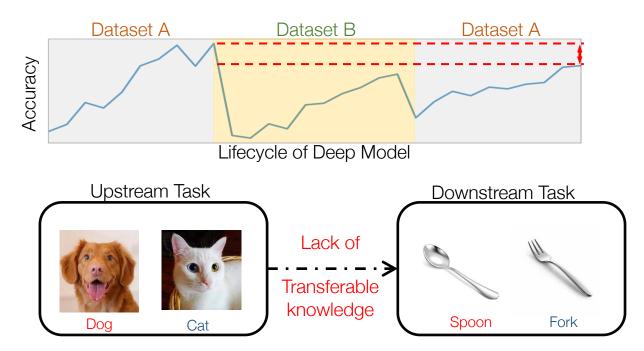


Foundation Problems



Training Strategies

- smaller Ir of task-specific head. [Yosinski et al, 2014]
- Ir decay helps transfer. [You et al, 2019]



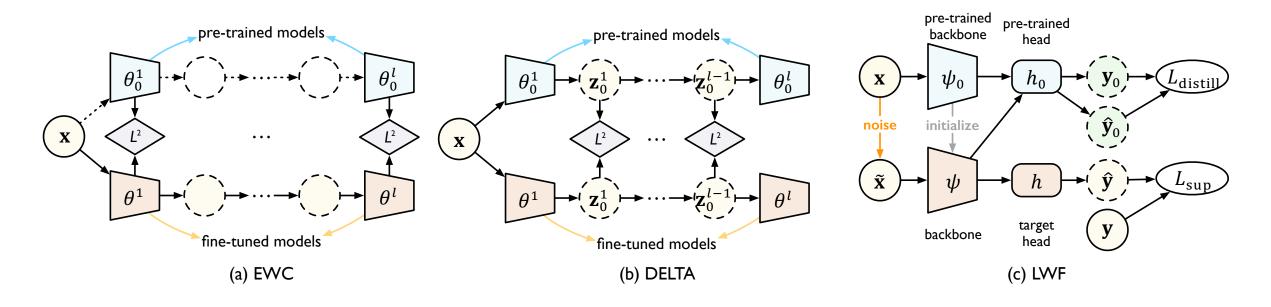
Catastrophic Forgetting	LWF	EWC	ULMFiT	DELTA	DAPT		
Negative Transfer			Taskonomy	BSS	LEEP	Zoo-Tuning, B-Tuning	Hub-Pathway
	2016	2017	2018	2019	2020	2021	2022

Catastrophic Forgetting

Regularization Tuning

Loss Function: $\min_{\theta} \sum_{i=1}^{m} L(h_{\theta}(x_i), y_i) + \lambda \cdot \Omega(\theta)$

Regularization term

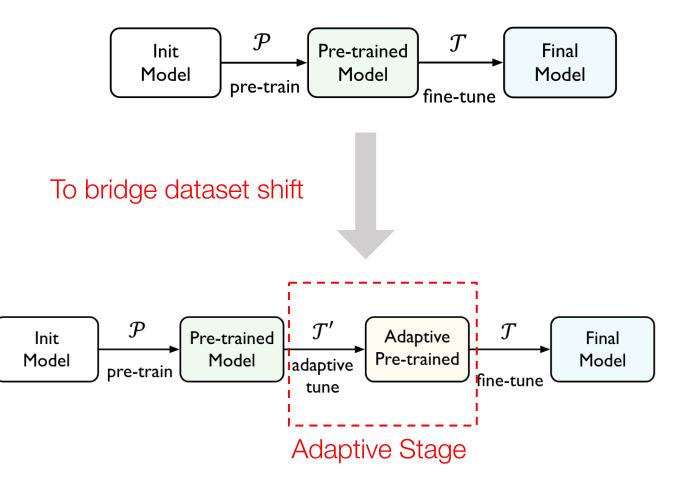


Catastrophic Forgetting	LWF	EWC	ULMFiT	DELTA	DAPT		
Negative Transfer			Taskonomy	BSS	LEEP	Zoo-Tuning, B-Tuning	Hub-Pathway
	2016	2017	2018	2019	2020	2021	2022

Catastrophic Forgetting

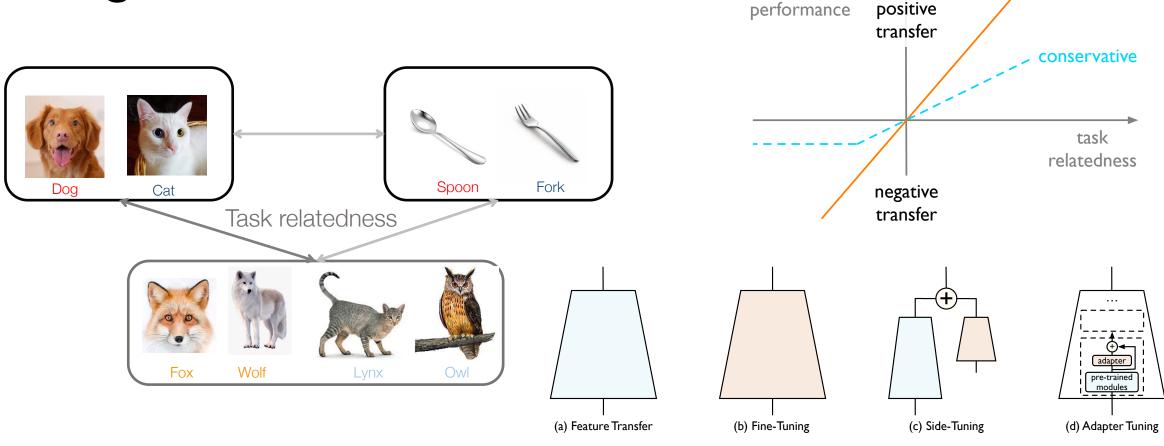
Domain Adaptive Tuning

- ULMFiT
- DAPT
- SiATL





Negative Transfer



transfer

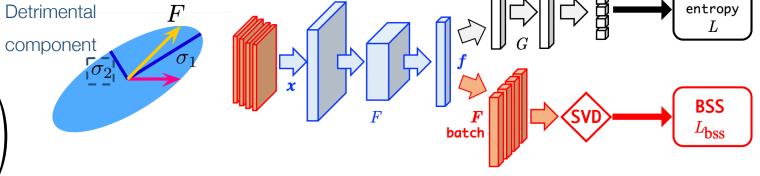
aggressive

Catastrophic Forgetting	LWF	EWC	ULMFiT	DELTA	DAPT		
Negative Transfer			Taskonomy	BSS	LEEP	Zoo-Tuning, B-Tuning	Hub-Pathway
	2016	2017	2018	2019	2020	2021	2022

Negative Transfer

- Enhance Safe Transfer
 - BSS, Zoo-tuning

$$\operatorname{err}_{P}(g) \leq \operatorname{err}_{\widehat{P}}^{\gamma}(f) + O\left(\sqrt{\frac{p_{g} \log_{2} r_{g}}{n}}\right)$$



- Choose Pre-trained Models
 - LEEP, LogME

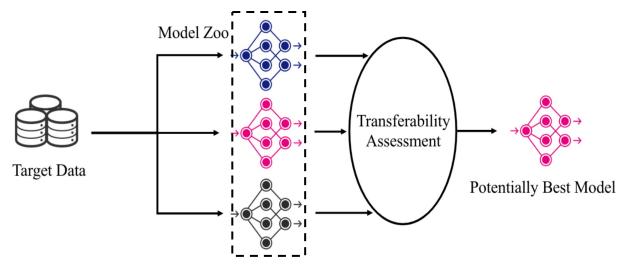
Penalize smallest singular values :

$$L_{\text{bss}}(F) = \eta \sum_{i=1}^{k} \sigma_{-i}^2$$

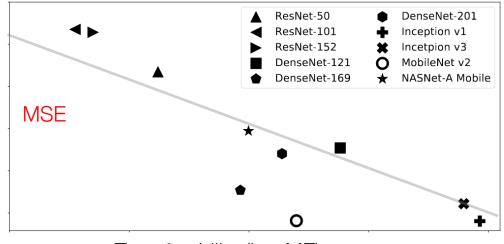
Negative Transfer

- Enhance Safe Transfer
 - BSS, Zoo-tuning

- Choose Pre-trained Models
 - LEEP, LogME



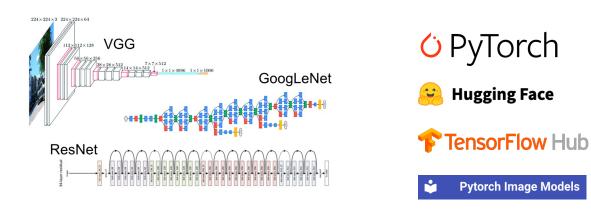
Transferable knowledge pool



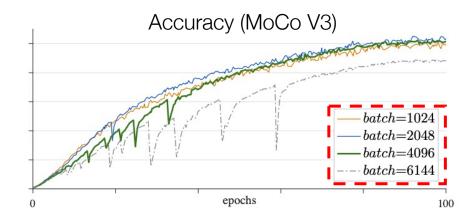
Transferability (LogME)

Pre-trained Model Hub

Various Models and Platforms



Avoid Heavy Pre-training



Plenty of Transferable Knowledge

IMAGENET SUP.
MOCO PT.
MASKRCNN PT.
DEEPLAB PT.
KEYPOINT PT.

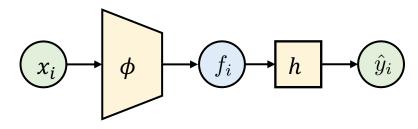
Same architecture
Pre-trained differently

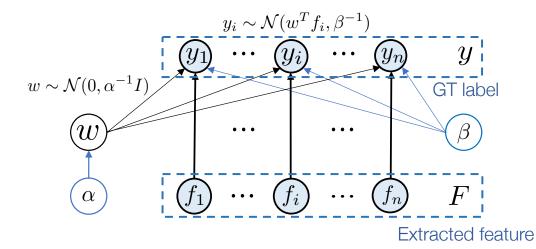
- Adapt one model
- Which one is the best?
- Adapt multiple models
- How to aggregate transferable knowledge?

Transferability Assessment by LogME

Estimate adaption performance of PTM on given dataset without finetuning.

LogME Approach

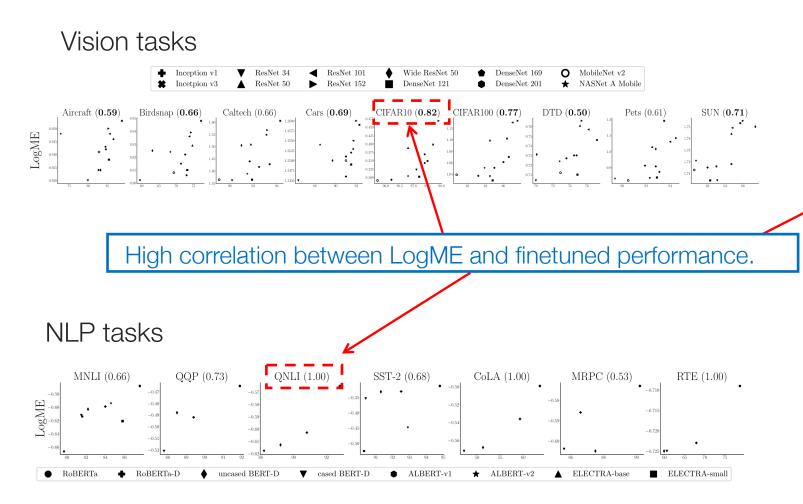




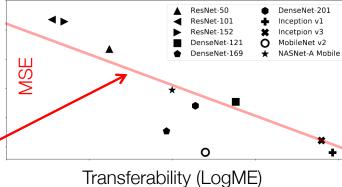
- Fixed PTM (as feature extractor).
- P(y | F): Graphical modeling
 between extracted features and GT
 label.
- Parameterize P(y | F) by prior α, β .
- Maximize evidence $P(y | F, \alpha, \beta)$.
 - MacKay algorithm with guarantee!

Effectiveness of LogME

General and Accurate



Regression task



Unsupervised PTMs

Pre-trained Network	Aircrat	dSprites		
TTO Gamed Treemon	Accuracy (%)	LogME	MSE	LogME
MoCo V1	81.68	0.93	0.069	1.52
MoCo V2	84.16	0.94	0.047	1.64
MoCo 800	86.99	0.95	0.050	1.58
	τ_w : 1.0	0	$ au_w$: 1.0

Theoretical Guarantee of LogME

- MacKay algorithm (1992) is a heuristic method for solving the evidence maximization procedure of empirical Bayesian learning (Bishop, 1995).
- We provide the theoretical guarantee for MacKay algorithm.

Algorithm 4 One iteration of evidence maximization in Algorithm 2.

- 1: Input: α, β ; Output: α', β' for the next iteration.
- 2: Compute $A = \alpha I + \beta F^T F$, $m = \beta A^{-1} F^T y$, $\gamma = \sum_{i=1}^{D} \frac{\beta \sigma_i^2}{\alpha + \beta \sigma_i^2}$
- 3: Return $\alpha' = \frac{\gamma}{m^T m}, \beta' = \frac{n \gamma}{||Fm y||_2^2}$

Theorem 1 Algorithm 4 induces a scalar function (Equation 3) with $t = \frac{\alpha}{\beta}$ and $t' = \frac{\alpha'}{\beta'}$.

$$t' = f(t) = \left(\frac{n}{n - \sum_{i=1}^{D} \frac{\sigma_i^2}{t + \sigma_i^2}} - 1\right) t^2 \frac{\sum_{i=1}^{n} \frac{z_i^2}{(t + \sigma_i^2)^2}}{\sum_{i=1}^{n} \frac{\sigma_i^2 z_i^2}{(t + \sigma_i^2)^2}}.$$
 (3)

Theorem 2 If r < n and $\sum_{1 \le i,j \le n} (z_i^2 - z_j^2)(\sigma_i^2 - \sigma_j^2) > 0$, then f(t) has a fixed point and thus MacKay's algorithm will converge.

Efficiency of LogME

Computation Efficient --- MacKay algorithm with improved complexity.

Algorithm 2 Evidence Maximization by MacKay's Algorithm

- 1: Input: Extracted features $F \in \mathbb{R}^{n \times D}$ and corresponding labels $y \in \mathbb{R}^n$
- 2: Output: Logarithm of Maximum Evidence (LogME)
- 3: **Note:** F has been pre-decomposed into $F = U\Sigma V^T$
- 4: Initialize $\alpha = 1, \beta = 1$
- 5: **while** α, β not converge **do**
- 6: Compute $\gamma = \sum_{i=1}^{D} \frac{\beta \sigma_i^2}{\alpha + \beta \sigma_i^2}, \Lambda = \text{diag}\{(\alpha + \beta \sigma^2)\}$
- 7: Naïve: $A = \alpha I + \beta F^T F, m = \beta A^{-1} F^T y$

9: Update
$$\alpha \leftarrow \frac{\gamma}{m^T m}, \beta \leftarrow \frac{n - \gamma}{\||Fm - y||_2^2}$$

10: end while

11: Compute and return $\mathcal{L} = \frac{1}{n}\mathcal{L}(\alpha,\beta)$ using Equation 2

$$\mathcal{O}(nCD^2 + CD^3)$$

Biquadrate complexity

Algorithm 2 Evidence Maximization by MacKay's Algorithm

- 1: Input: Extracted features $F \in \mathbb{R}^{n \times D}$ and corresponding labels $y \in \mathbb{R}^n$
- 2: Output: Logarithm of Maximum Evidence (LogME)
- 3: Note: F has been pre-decomposed into $F = U\Sigma V^T$
- 4: Initialize $\alpha = 1, \beta = 1$
- 5: **while** α, β not converge **do**
- 6: Compute $\gamma = \sum_{i=1}^{D} \frac{\beta \sigma_i^2}{\alpha + \beta \sigma_i^2}, \Lambda = \text{diag}\{(\alpha + \beta \sigma^2)\}$

8: **Optimized** by You et al. (2021): $m = \beta(V(\Lambda^{-1}(V^T(F^Ty))))$

- 9: Update $\alpha \leftarrow \frac{\gamma}{m^T m}, \beta \leftarrow \frac{n-\gamma}{\|Fm-y\|_2^2}$
- 10: end while
- 11: Compute and return $\mathcal{L} = \frac{1}{n}\mathcal{L}(\alpha, \beta)$ using Equation 2

$$\mathcal{O}(nD^2 + nCD + CD^2 + D^3)$$

Cubic complexity

Algorithm 3 Evidence Maximization by Optimized Fixed Point Iteration

- 1: Input: Extracted features $F \in \mathbb{R}^{n \times D}$ and corresponding labels $y \in \mathbb{R}^n$
- 2: Output: Logarithm of Maximum Evidence (LogME)
- 3: Require: Truncated SVD of $F: F = U_r \Sigma_r V_r^T$, with $U_r \in \mathbb{R}^{n \times r}, \Sigma_r \in \mathbb{R}^{r \times r}, V_r \in \mathbb{R}^{D \times r}$.
- 4: Compute the first r entries of $z = U_r^T y$
- 5: Compute the sum of remaining entries $\Delta = \sum_{i=r+1}^n z_i^2 = \sum_{i=1}^n y_i^2 \sum_{i=1}^r z_i^2$
- 6: Initialize $\alpha=1, \beta=1, t=\frac{\alpha}{\beta}=1$
- 7: **while** t not converge **do**
- 8: Compute $m^T m = \sum_{i=1}^r \frac{\sigma_i^2 z_i^2}{(t+\sigma_i^2)^2}$, $\gamma = \sum_{i=1}^r \frac{\sigma_i^2}{t+\sigma_i^2}$, $||Fm y||_2^2 = \sum_{i=1}^r \frac{z_i^2}{(1+\sigma_i^2)^2} + \Delta$
- 9: Update $\alpha \leftarrow \frac{\gamma}{m^T m}, \beta \leftarrow \frac{n \gamma}{||Fm y||_2^2}, t = \frac{\alpha}{\beta}$
- 10: end while
- 11: Compute $m = V_r \Sigma' z$, where $\Sigma'_{ii} = \frac{\sigma_i}{t + \sigma_i^2} (1 \le i \le r)$.
- 12: Compute and return $\mathcal{L} = \frac{1}{n}\mathcal{L}(\alpha, \beta)$ using Equation 2

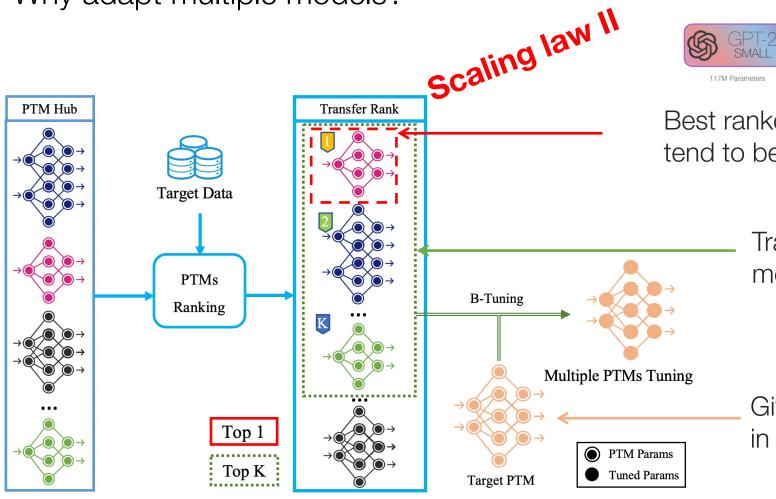
$$\mathcal{O}(nD^2 + nCD)$$

Cubic complexity with fewer terms

	wall-clock time		memory footprint	
	fine-tune (upper bound)	161000s	fine-tune (upper bound)	6.3 GB
Computer Vision	extract feature (lower bou	nd) 37s	extract feature (lower bound	d) 43 MB
Computer Vision	LogME	43s	LogME	$53~\mathrm{MB}$
	$\operatorname{benefit}$	3700 ↑	benefit	$120 \uparrow$
	fine-tune (upper bound)	100200s	fine-tune (upper bound)	88 GB
Natural Language Processing	extract feature (lower bou	nd) 1130s	extract feature (lower bound	d) 1.2 GB
Natural Language Frocessing	LogME	1136s	LogME	$1.2~\mathrm{GB}$
	benefit	88↑	benefit	73 ↑

Tuning Pre-trained Models

Why adapt multiple models?



Scaling law

Scaling law

GPT-2

MEDIUM

GPT-2

LARGE

762M Parameters

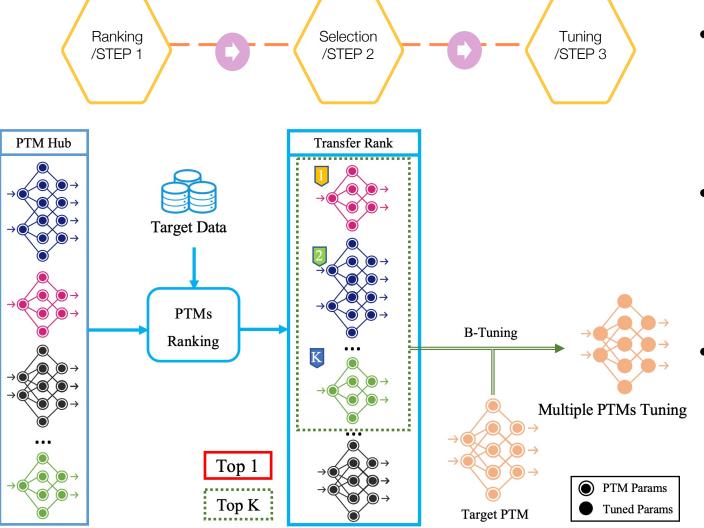
1,542M Parameters

Best ranked models (e.g. DenseNet-201) tend to be large and expensive to deploy.

Transfer from multiple pre-trained models can be more beneficial.

Given a desired target architecture in industrial requirement.

Ranking and Tuning Paradigm



Ranking

LEEP, NCE, LogME...

Selection

Top-K: Heuristic but Effective

Tuning

- Architecture heterogeneity
- Dimensionality of features
- Always challenging part...

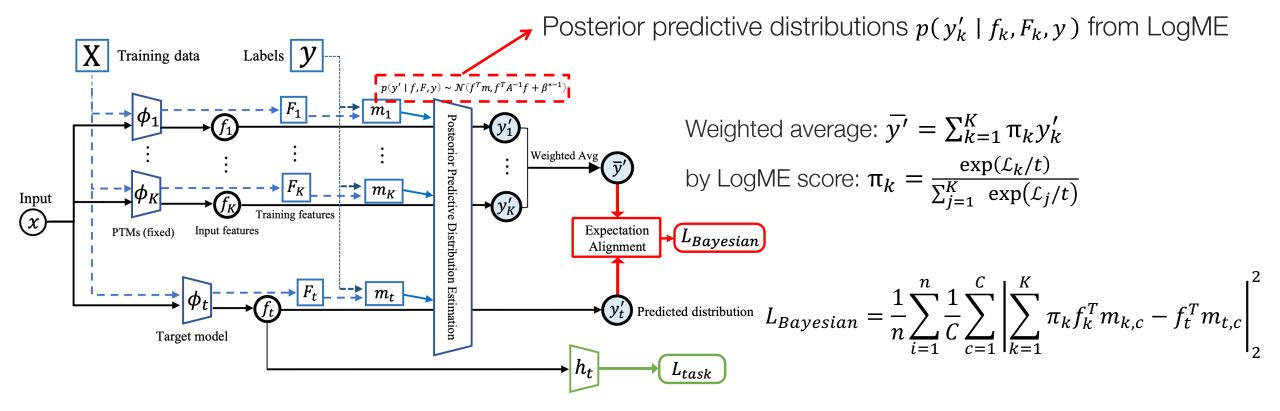
B-Tuning

Consider simple Knowledge Distillation (KD):

$$L_{KD} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{K} \sum_{k=1}^{K} |\phi_k(x_i) - W_k \phi_t(x_i)|_2^2$$

- Needs additional learnable projection W_k for each teacher model.
- Treats all teacher models as equal:
 - No adaptive mechanism to transfer only useful knowledge.
- Violates the "Many could be better than all" theorem (Zhou et al. 2002).

B-Tuning



- Project teacher features into a common output space by LogME.
- Transfer them to target model with weighting from their LogME score.

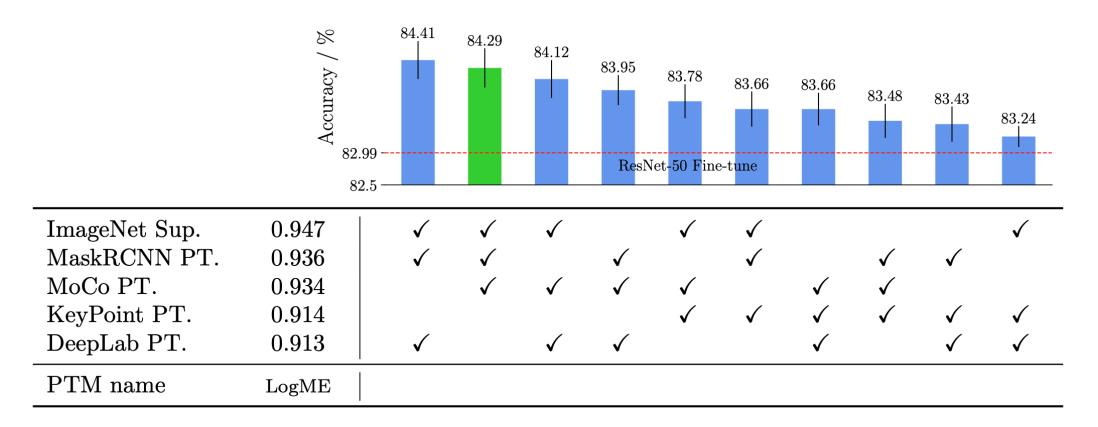
Intuition: encourage the target model to

behave like the best top-K teachers.

Effectiveness of B-Tuning

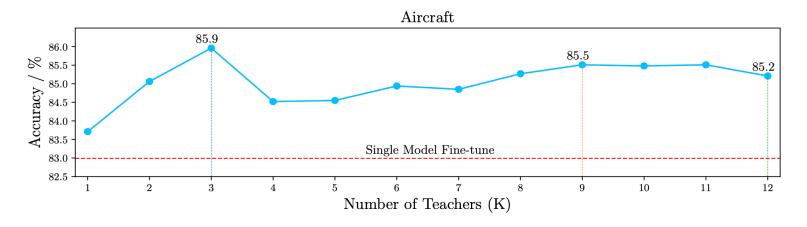
Reduced burden of Selection and Adaptation.

- Exhaustively fine-tune 10 times: 84.41% accuracy.
- Rank by LogME and fine-tune once: 84.29% accuracy.

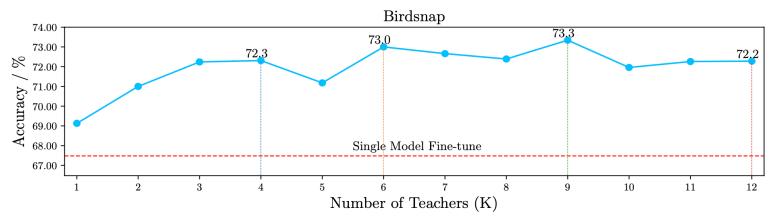


Effectiveness of B-Tuning

Fully utilization of transferable knowledge in Model Hub.



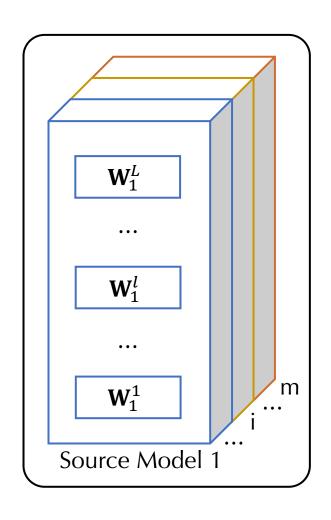
 Just fine-tune the most popular model is suboptimal.

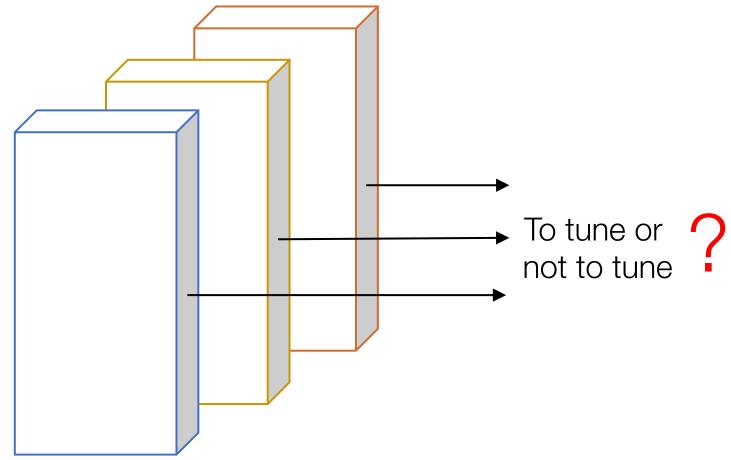


 The ranking and B-Tuning paradigm brings 3%~5% accuracy gain.

Homogeneous Model Zoo

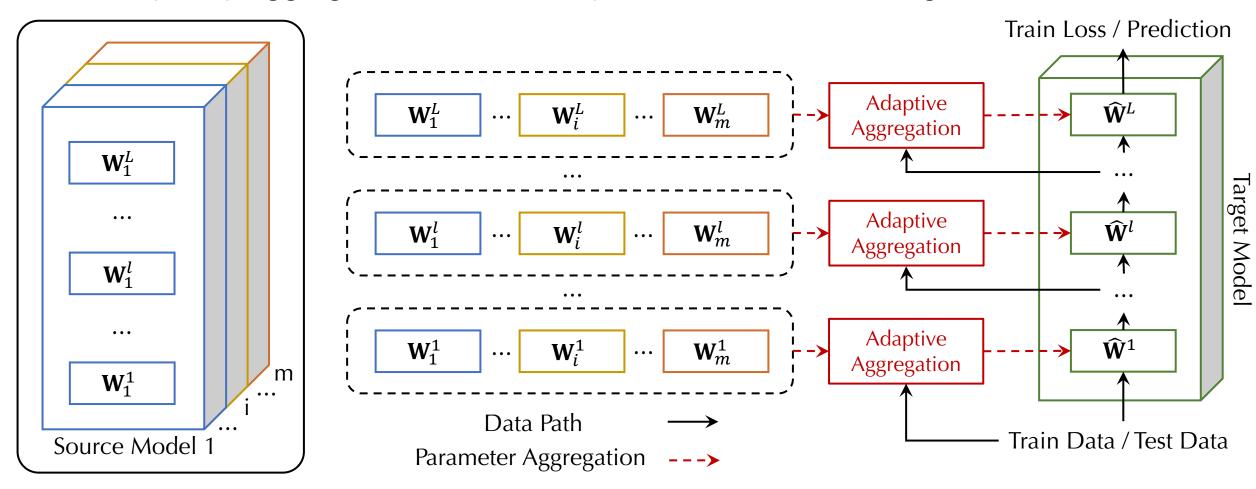
Considering models with same architecture but different knowledge.



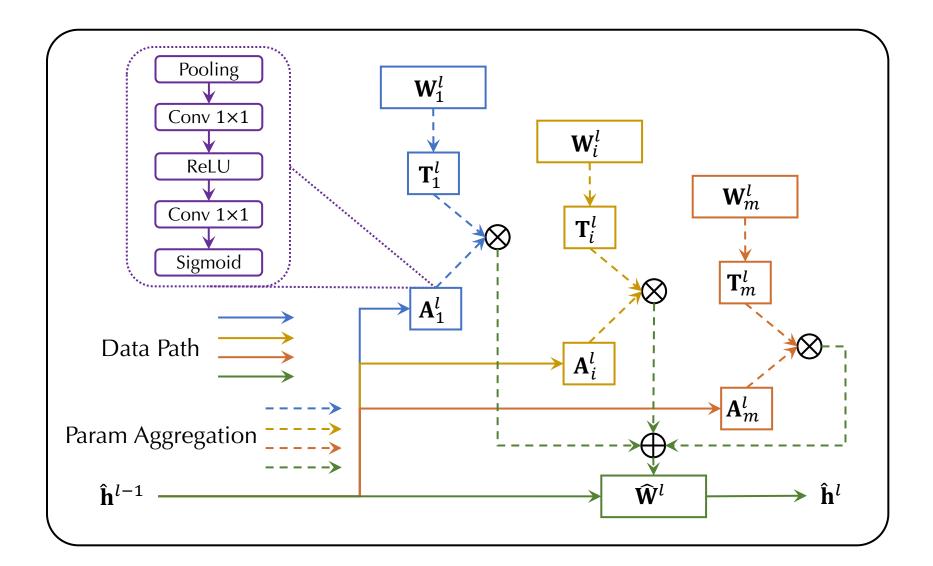


Zoo-Tuning

Adaptively aggregate source model parameters to derive target model.



Adaptive Aggregation



Channel alignment

$$\widetilde{\mathbf{W}}_i^l = \mathbf{T}_i^l * \mathbf{W}_i^l$$

Data-dependent gating

$$\widehat{\mathbf{W}}^l = \sum_{i=1}^m a_i^l \widetilde{\mathbf{W}}_i^l$$

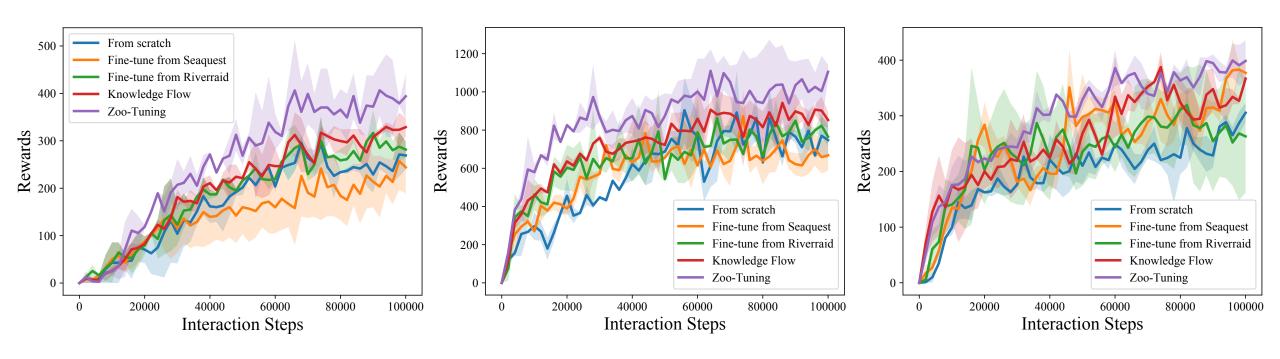
Experiments

- Adaptive transfer from multiple models → Better accuracy.
- Adaptive aggregation of model parameters → More efficient than ensemble.

	GEN	ERAL	Fin	VE-GRAIN	NED	SPECIA	ALIZED		T	RAIN	Inf	ERENCE
Model	CIFAR-100	COCO-70	AIRCRAFT	CARS	INDOORS	DMLAB	EUROSAT	Avg. Acc	GFLOPs	Params	GFLOPs	Params
IMAGENET SUP.	81.18	81.97	84.63	89.38	73.69	74.57	98.43	83.41	4.12	23.71M	4.12	23.71M
MOCO PT.	75.31	75.66	83.44	85.38	70.98	75.06	98.82	80.66	4.12	23.71M	4.12	23.71M
MASKRCNN PT.	79.12	81.64	84.76	87.12	73.01	74.73	98.65	82.72	4.12	23.71M	4.12	23.71M
DEEPLAB PT.	78.76	80.70	84.97	88.03	73.09	74.34	98.54	82.63	4.12	23.71M	4.12	23.71M
KEYPOINT PT.	76.38	76.53	84.43	86.52	71.35	74.58	98.34	81.16	4.12	23.71M	4.12	23.71M
ENSEMBLE	82.26	82.81	87.02	91.06	73.46	76.01	98.88	84.50	20.60	118.55M	20.60	118.55M
DISTILL	82.32	82.44	85.00	89.47	73.97	74.57	98.95	83.82	24.72	142.28M	4.12	23.71M
Knowledge Flow	81.56	81.91	85.27	89.22	73.37	75.55	97.99	83.55	28.83	169.11M	4.12	23.71M
LITE ZOO-TUNING	83.39	83.50	85.51	89.73	75.12	75.22	99.12	84.51	4.53	130.43M	4.12	23.71M
Zoo-Tuning	83.77	84.91	86.54	90.76	75.39	75.64	99.12	85.16	4.53	130.43M	4.18	122.54M

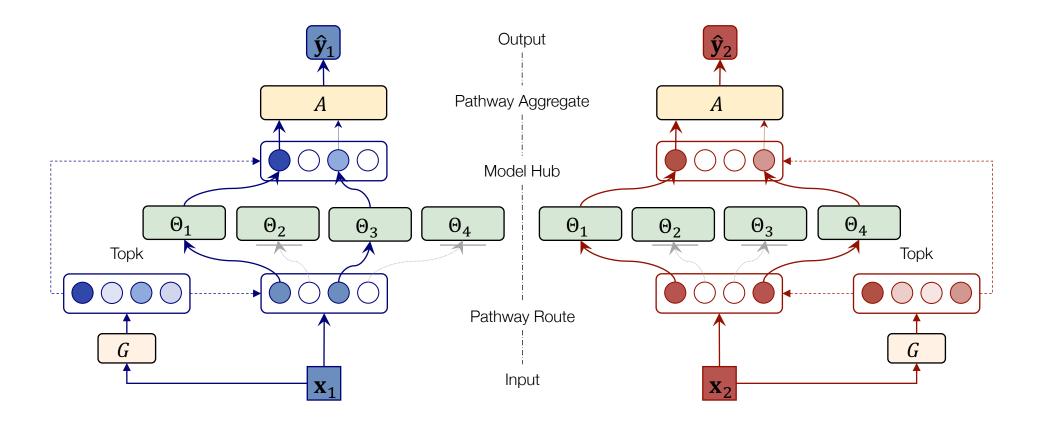
Applied to RL tasks

- Reinforcement Learning: Atari Games.
- Pre-trained Models: Models trained from other games.



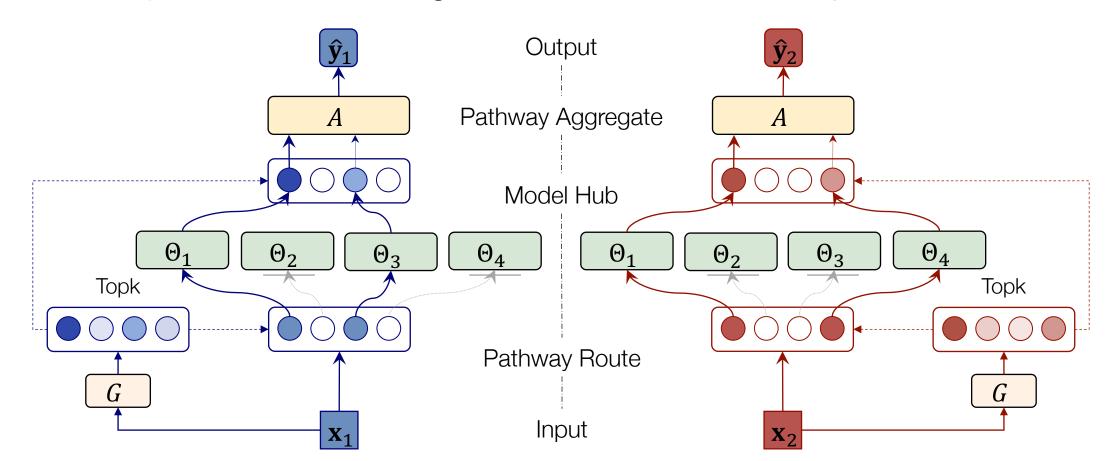
Heterogeneous Model Hub

Design data-dependent pathways throughout the Model Hub.



Hub-Pathway

- Input level: route different data to different models.
- Output level: aggregate transferred knowledge to make predictions.
- Pathway flow: control training and inference costs with Top-K activation.



Experiments

Data dependent pathways → General for heterogenous models.

Model	General			ne-Grain		Spec	Avg.	
	CIFAR	COCO	Aircraft	Cars	Indoors	DMLab	EuroSAT	
MaskRCNN	79.12	81.64	84.76	87.12	73.01	74.73	98.65	82.72
MobileNetV3	83.14	83.28	80.26	86.37	75.09	70.09	98.95	82.45
EffNet-B3	87.28	86.97	83.99	89.34	78.16	72.69	99.13	85.37
Swin-T	84.37	84.12	80.82	89.10	73.39	72.22	98.69	83.24
ConvNeXt-T	86.96	87.15	84.23	90.67	81.66	73.80	98.65	86.16
Ensemble	87.72	88.04	87.11	92.68	82.79	74.86	99.23	87.49
Distill	87.33	88.09	85.26	91.39	81.51	74.75	99.24	86.80
Hub-Pathway	89.01	89.14	88.12	92.93	84.40	74.80	99.26	88.24

Control the costs with top-k activation → More efficient than ensemble.

Model	Acc (%)	Params (M)	FLOPs (G)	Train (iters/s)	Inference (samples/s)
ImageNet	83.41	23.71	4.11	10.87	484.92
Ensemble	84.50	118.55	20.55	2.30	98.64
Hub-Pathway	85.63	128.43	9.11	4.68	240.48

Adaptive Pathways

Remarks on Task Adaptation

	Adaptation Accuracy ¹	Data Efficiency ²	Parameter Efficiency ³	Modality Scalability ⁴	$\begin{array}{c} {\rm Task} \\ {\rm Scalability}^5 \end{array}$
Feature Transfer	*	**	***	***	***
Vanilla Fine-tuning	***	*	*	***	***
Domain Adaptive Tuning	***	**	*	**	***
Regularization Tuning	***	**	*	***	*
Residual Tuning	**	**	**	**	**
Parameter Difference Tuning	**	**	**	***	***
Metric Learning	*	***	***	***	*
Prompt Learning	**	***	***	*	*

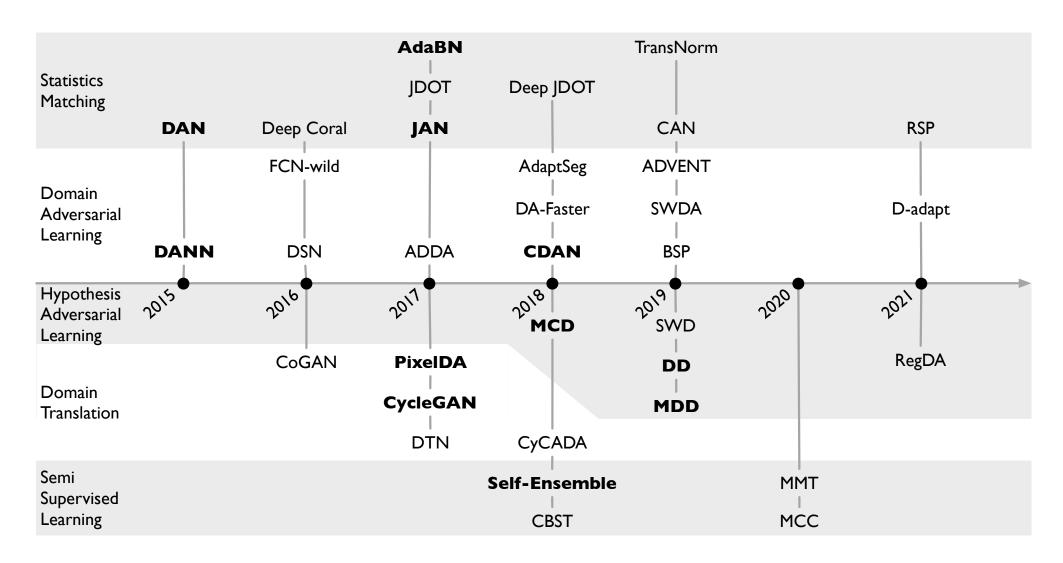
¹ Accuracy when there are large-scale labeled data in downstream tasks.

² Accuracy when there are only small-scale labeled data in downstream tasks.

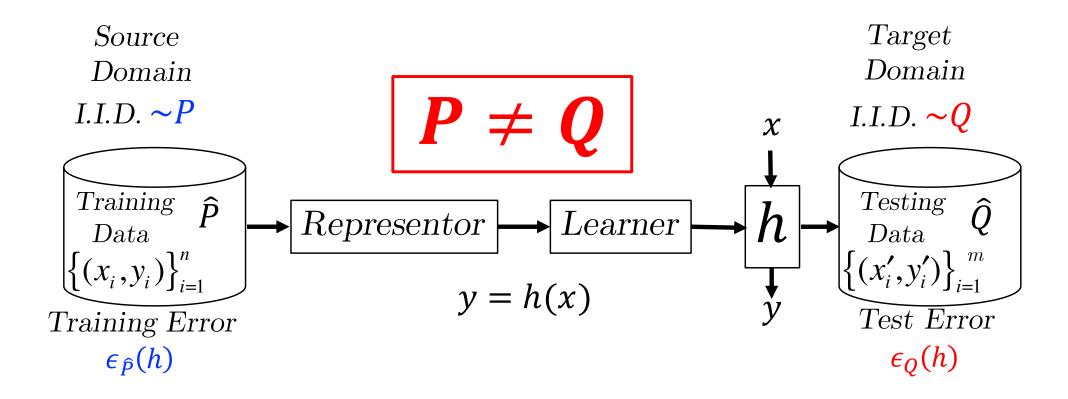
³ Whether parameters can be controlled when the number of downstream tasks increases.

⁴ Whether pre-trained model can be adapted to various modalities, such as text, graph.
⁵ Whether pre-trained model can be adapted to different downstream tasks, such as detection.

Domain Adaptation



Domain Adaptation

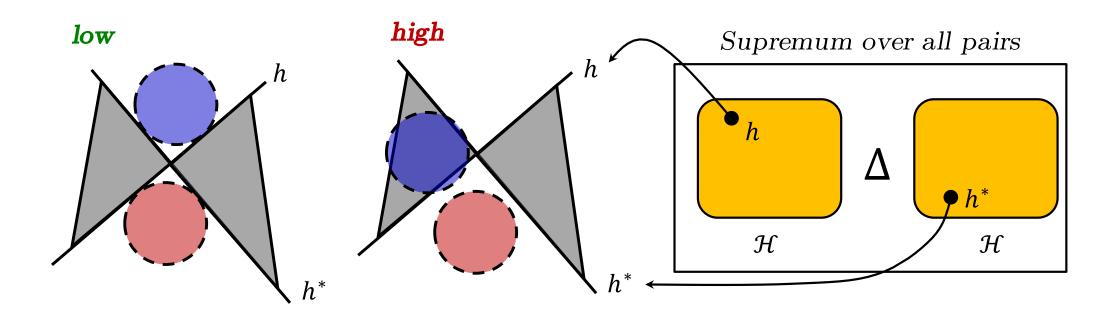


- How to measure the discrepancy between *P* and *Q*?
- Can we control target error $\epsilon_O(h)$?

HΔH-Divergence

HΔH-Divergence

$$d_{\mathcal{H}\Delta\mathcal{H}}(P,Q) = \sup_{h,h'\in\mathcal{H}} \left| \epsilon_Q(h,h') - \epsilon_P(h,h') \right|$$



HΔH-Divergence

HΔH-Divergence

$$d_{\mathcal{H}\Delta\mathcal{H}}(P,Q) = \sup_{h,h'\in\mathcal{H}} \left| \epsilon_Q(h,h') - \epsilon_P(h,h') \right|$$

- Theorem (Generalization Bound with HΔH-Divergence)
- Denote by d the VC-dimension of hypothesis space ${\mathcal H}$ and ideal joint error

$$\epsilon_{ideal} = \epsilon_P(h^*) + \epsilon_Q(h^*)$$
. We have

$$\epsilon_{Q}(h) \leq \epsilon_{\hat{P}}(h) + \frac{d_{\mathcal{H}\Delta\mathcal{H}}(\hat{P},\hat{Q})}{m} + \epsilon_{ideal} + O\left(\sqrt{\frac{d \log n}{n}} + \sqrt{\frac{d \log m}{m}}\right)$$

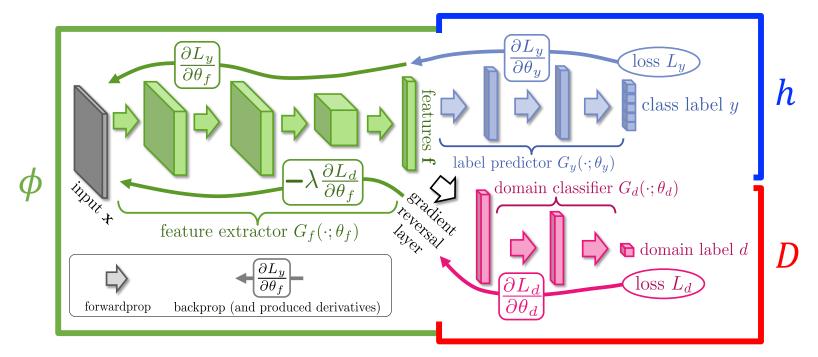
Domain Adversarial Learning

• Learning representation ϕ to minimize $d_{\mathcal{H}\Delta\mathcal{H}}(\phi(P),\phi(Q))$:

$$\min_{\phi,h} \left\{ \mathbb{E}_{(x,y)\sim P} L(h(\phi(x)),y) + \max_{D} \left(\mathbb{E}_{P} L(D(\phi(x)),1) + \mathbb{E}_{Q} L(D(\phi(x)),0) \right) \right\}$$

Supervised Learning on source

Minimize Upper bound of $d_{\mathcal{H}\Delta\mathcal{H}}$



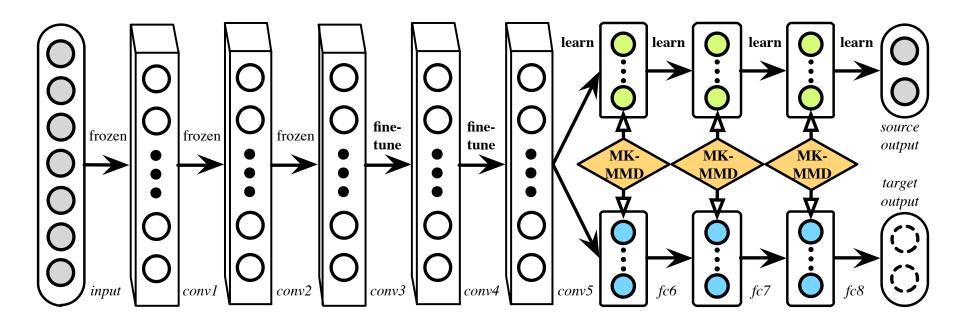
Domain Adversarial Learning

• Learning representation ϕ to minimize $d_{\mathrm{MMD}}(\phi(P), \phi(Q))$:

$$\min_{\phi,h} \left\{ \mathbb{E}_{(x,y)\sim P} L(h(\phi(x)),y) + \lambda \max_{k\in\mathcal{K}} \left\| \mathbb{E}_{P}[\phi(x^{s})] - \mathbb{E}_{Q}[\phi(x^{t})] \right\|_{\mathcal{K}}^{2} \right\}$$

Supervised Learning on source

Minimize Upper bound of $d_{\mathcal{H}\Delta\mathcal{H}}$



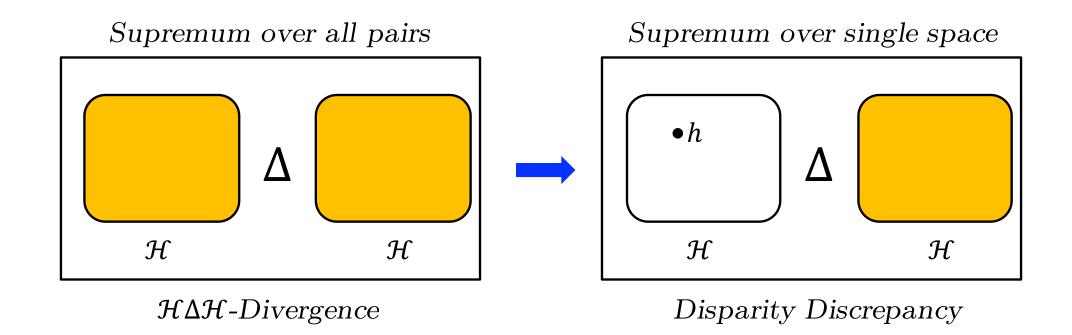
Theory vs. Practice

- Binary Classification vs. Multiclass Classification
- Discrete Classifier vs. Classifier with Scoring Function
- HΔH is excessively large that is hard to estimate and optimize

Disparity Discrepancy

Disparity Discrepancy

$$d_{h,\mathcal{H}}(P,Q) = \sup_{h' \in \mathcal{H}} \left(\epsilon_Q(h,h') - \epsilon_P(h,h') \right)$$



Disparity Discrepancy

Disparity Discrepancy

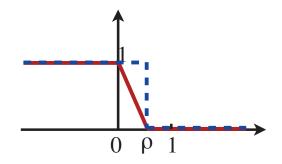
$$d_{h,\mathcal{H}}(P,Q) = \sup_{h' \in \mathcal{H}} \left(\epsilon_Q(h,h') - \epsilon_P(h,h') \right)$$

- Theorem (Generalization Bound with Disparity Discrepancy)
- For any $\delta > 0$ and binary classifier $h \in \mathcal{H}$, with probability $1 3\delta$, we have

$$\epsilon_{Q}(h) \leq \epsilon_{\hat{P}}(h) + d_{h,\mathcal{H}}(\hat{P},\hat{Q}) + \epsilon_{ideal} + 2\Re_{n,P}(\mathcal{H})$$

$$+2\Re_{n,P}(\mathcal{H}\Delta\mathcal{H}) + 2\Re_{m,Q}(\mathcal{H}\Delta\mathcal{H}) + 2\sqrt{\frac{\log\frac{2}{\delta}}{2n}} + \sqrt{\frac{\log\frac{2}{\delta}}{2m}}$$

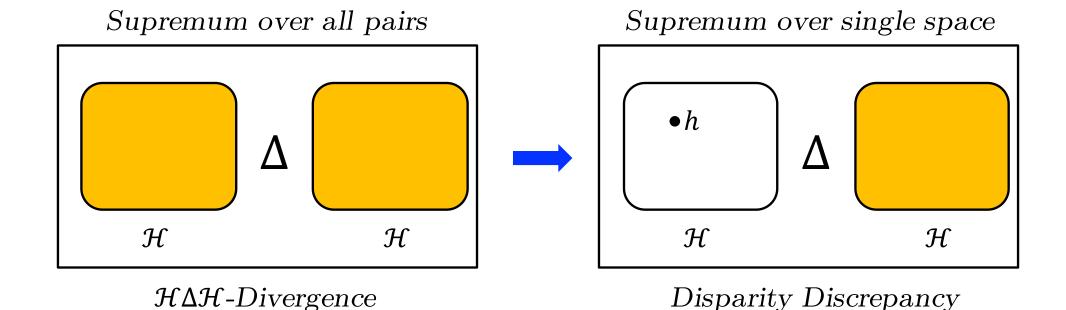
Margin Disparity Discrepancy



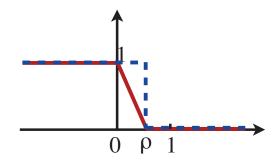
Margin Disparity Discrepancy

$$d_{f,\mathcal{F}}^{(\rho)}(P,Q) = \sup_{f' \in \mathcal{F}} \left(\epsilon_Q^{(\rho)}(f',f) - \epsilon_P^{(\rho)}(f',f) \right)$$

Margin Loss



Margin Disparity Discrepancy



Margin Disparity Discrepancy

$$d_{f,\mathcal{F}}(P,Q) = \sup_{f' \in \mathcal{F}} \left(\epsilon_Q^{(\rho)}(f',f) - \epsilon_P^{(\rho)}(f',f) \right)$$

Margin Loss

- Theorem (Generalization Bound with Margin Disparity Discrepancy)
- For any $\delta > 0$ and scoring classifier $f \in \mathcal{F}$, with probability $1 3\delta$, we have

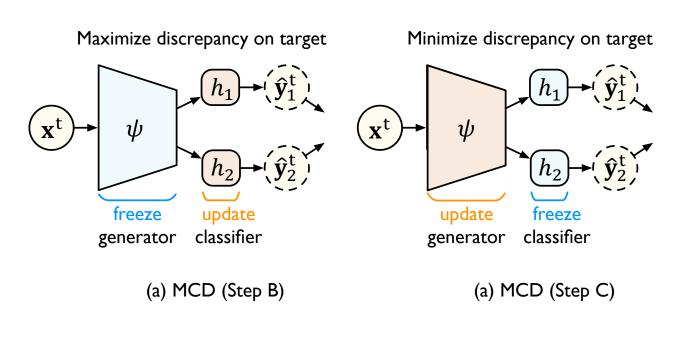
$$\epsilon_{Q}(f) \leq \epsilon_{\hat{P}}^{(\rho)}(f) + d_{h,\mathcal{H}}^{(\rho)}(\hat{P},\hat{Q}) + \epsilon_{ideal} + \frac{2k^{2}}{\rho} \Re_{n,P}(\Pi_{1}\mathcal{F})$$

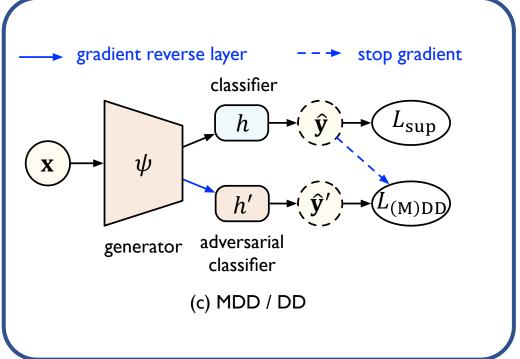
$$+\frac{k}{\rho}\Re_{n,P}(\Pi_{\mathcal{H}}\mathcal{F}) + \frac{k}{\rho}\Re_{m,Q}(\Pi_{\mathcal{H}}\mathcal{F}) + 2\sqrt{\frac{\log\frac{2}{\delta}}{2n}} + \sqrt{\frac{\log\frac{2}{\delta}}{2m}}$$

Hypothesis Adversarial Learning

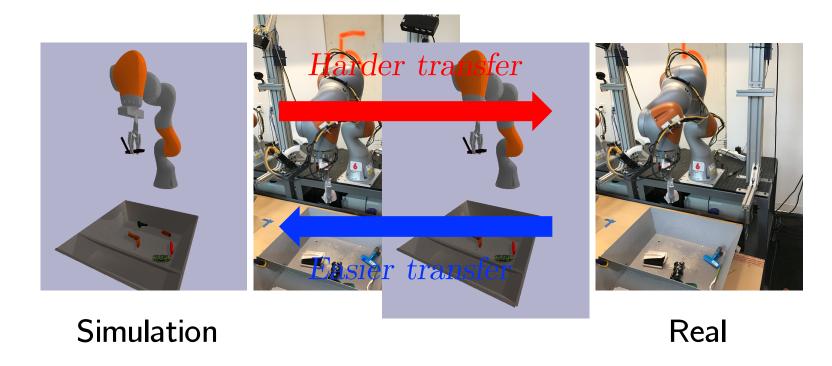
Margin Disparity Discrepancy

$$\min_{\psi,f} \max_{f'} \epsilon_{\widehat{P}}^{(\rho)}(f) + \left(\epsilon_{\widehat{Q}}^{(\rho)}(f',f) - \epsilon_{\widehat{P}}^{(\rho)}(f',f)\right)$$





Theory vs. Practice



- A common observation is that difficulty of transfer is asymmetric.
- Previous bounds will remain unchanged after switching P and Q.
- Previous discrepancies are supremum over the whole hypothesis space.

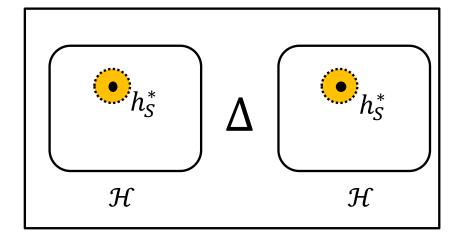
Localized Disparity Discrepancy

Pre-train on source

Margin Disparity Discrepancy

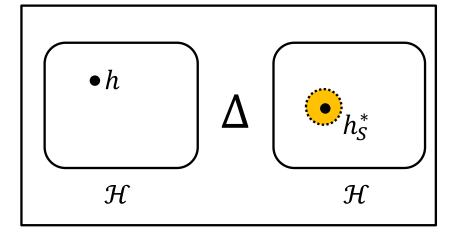
$$d_{h,\mathcal{H}_r}(P,Q) = \sup_{\substack{h' \in \mathcal{H}_r \coloneqq \{h \in \mathcal{H} \mid \mathbb{E}_P L(h(x), y) \le r\}}} \left(\epsilon_Q(h, h') - \epsilon_P(h, h') \right)$$

Supremum over localized space



Localized $\mathcal{H}\Delta\mathcal{H}$ -Divergence

Supremum over localized space



Localized Disparity Discrepancy

Localized Disparity Discrepancy

Pre-train on source

Localized Disparity Discrepancy

$$d_{h,\mathcal{H}_r}(P,Q) = \sup_{\substack{h' \in \mathcal{H}_r \coloneqq \{h \in \mathcal{H} \mid \mathbb{E}_P L(h(x),y) \le r\}}} \left(\epsilon_Q(h,h') - \epsilon_P(h,h') \right)$$

- Theorem (Generalization Bound with Localized Disparity Discrepancy)
- For any $\delta > 0$ and binary classifier $h \in \mathcal{H}$, with probability 1δ , we have

$$\epsilon_{Q}(h) \leq \epsilon_{\hat{P}}(f) + d_{h,\mathcal{H}_{r}}(\hat{P},\hat{Q}) + \epsilon_{ideal} + O\left(\frac{d\log n}{n} + \frac{d\log m}{m}\right) + O\left(\sqrt{\frac{(\epsilon_{\hat{P}}(h) + r)d\log n}{n}} + \sqrt{\frac{(\epsilon_{\hat{P}}(h) + d_{h,\mathcal{H}_{r}}(\hat{P},\hat{Q}) + r)d\log m}{m}}\right)$$

Remarks on Domain Adaptation

	Adaptation Accuracy ²	Data Efficiency	Modality ² Scalability ³	Task Scalability ⁴	Theory Guarantee ⁵
Statistics Matching	*	***	***	**	***
Domain Adversarial Learning	**	**	***	**	***
Hypothesis Adversarial Learning	***	**	***	**	***
Domain Translation	**	*	*	***	*
Semi-Supervised Learning	**	**	**	*	*

¹ Accuracy when there are large-scale data in source and target domains.

² Accuracy when there are only small-scale data in source and target domains.

³ Whether the model can be adapted to various modalities, such as text, time series.

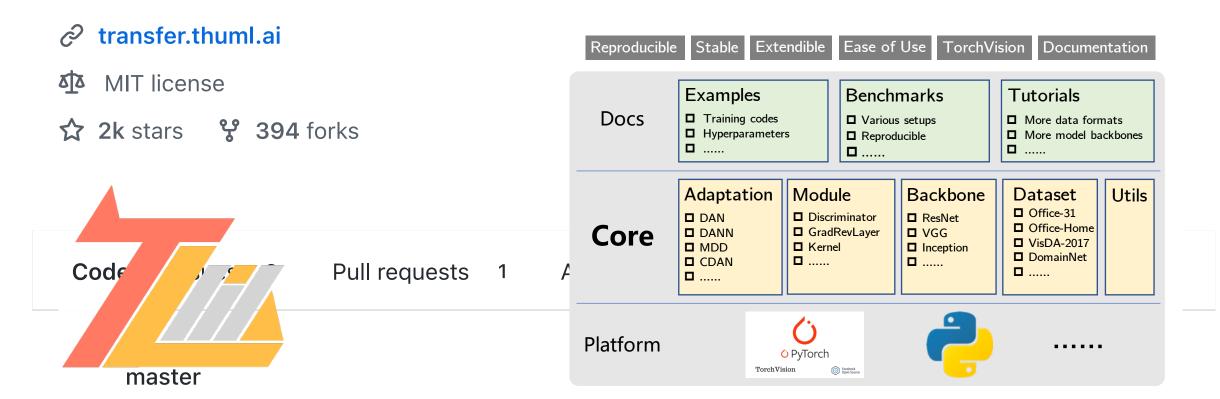
⁴ Whether the model can be adapted to different tasks, such as regression, detection.

⁵ Whether the generalization error of target domain can be theoretically bounded in adaptation.

Transfer Learning Library

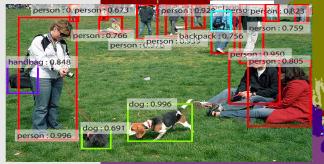
Thuml / Transfer-Learning-Library Public

Transfer Learning Library for Domain Adaptation, Task Adaptation, and Domain Generalization

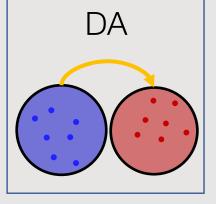


Classification

Task

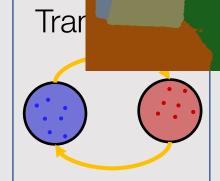


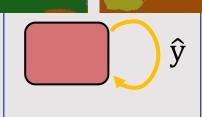
Learning Setup

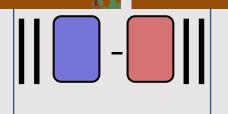




Core







Thank You!

Mingsheng Long (龙明盛) Tsinghua University mingsheng@tsinghua.edu.cn

Jianmin Wang (王建民) Tsinghua University jimwang@tsinghua.edu.cn

Michael I. Jordan (迈克尔・欧文・乔丹) UC Berkeley jordan@cs.berkeley.edu

Yuchen Zhang Zhangjie Cao (张育宸)

(曹张杰)

Han Zhu (朱晗)

Yue Cao (曹越)

(游凯超)

Kaichao You Junguang Jiang Ximei Wang Xinyang Chen (江俊广)

(王希梅)

(陈新阳)

Yang Shu (树扬)

