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Transfer Learning

Supervised Learning

Learner: f:x —y  Distribution: (x,y)~ P(x,y)

fish
bird
mammal

tree

flower

. complexity
Error Bound: €,... S € +

test — “train

Mingsheng Long Transfer Learning October 17, 2019 2 /50



Transfer Learning

Transfer Learning

@ Machine learning across domains of different distributions P # @
o IDD: Independent and Differently Distributed (a case of Non-1ID)

@ How to effectively bound the generalization error on target domain?
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Transfer Learning

Transfer Learning

o Transfer learning setups (P # Q): Feature Space X, Label Space Y

e Domain Adaptation: common X, common Y, unlabeled T
o Inductive Transfer Learning: common X, different Y, labeled T

Source Domain

Target Domain

Domain Adaptation

Inductive Transfer Learning

Sy |\ e >
e

Representation
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Transfer Learning

Bias-Variance-Shift Trade

off

Training Set Train-Dev Set Dev Set | Test Set
Optimal Bayes Rate
Training Error high? ,“ Deeper Mo.de_l
Yes Longer Training
. Bigger Data
ey S hD R
Train-Dev Error high? Yoo , Regularization
. Transfer Learning
o R
Dev Error high? Yoo g Dataset Shift Data Generation
Test Error high? v »LOIaia IS5 Bigger Dev Data
es
1 No
Andrew Ng. The Nuts and Bolts of Building Applications using Deep
Learning. NIPS 2016 Tutorial.
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Bridging Theory and Algorithm

Everything should be made as simple as possible, but no simpler.
—Albert Einstein
There is nothing more practical than a good theory.
—Vladimir Vapnik
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Bridging Theory and Algorithm

Theory

Algorithm

H A -Distance

Performance

Margin Disparity ‘
Discrepancy
!
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Domain Adaptation HAH-Divergence

Outline

@ Transfer Learning

© Domain Adaptation
o HAH-Divergence

© Inductive Transfer Learning

Mingsheng Long Transfer Learning October 17, 2019 8 /50



Domain Adaptation HAH-Divergence

Notations and Assumptions

@ Source risk: ep (h) = E(x,y)NP [h (X) 75 y], {(X,’,y,') ;7:1 ~ P"
) Target risk: €Q (h) = E(x,y)NQ [h (X) 75 y], {(X,’,y,')}?;l ~ QM
@ Source disparity: €p (hl, hz) = E(x,y)NP [h1 (X) % hy (X)]
o Target disparity: eq (h1, h2) = Exy)~q [h1 (X) # h2 (x)]

Ideal joint hypothesis: h* = argmin, ep (h) + €q (h)
Assumption: ideal hypothesis has small risk €jgea) = €p (h*) + €g (h*)

® x

Distribution Ideal hypothesis
discrepancy with small error
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R e
Relating the Target Risk to the Source Risk

Theorem

Assuming small €;q4ea1, the bound of the target risk eq(h) of hypothesis
h € H is given by the source risk ep(h) plus the disparity difference:

€q(h) <ep(h) +lep (h") +eq (M) + lep (h, h") —eq (h,h")| (1)

Proof.
Simply by using the triangle inequalities, we have
€Q (h) < eq(h) +eq(h,h)
S €Q (h*)+€P (hv h*)+€Q (hv h*)_EP (h7 h*) (2)
< eq (M) +ep(h,h") +leq (h, h™) —ep (h, h")]
<ep(h) +[ep (h) +eq (W)l + lep (h, h*) — eq (h, h™)]|
DJ
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R e
How to Bound the Disparity Difference?

o We can illustrate the disparity difference |ep (h, h*) —eq (h, h*)| as

high

’e I A

o HAH-Divergencel: dyan(P, Q)= sup |ep(h,h') —eq(h, h)|
h,h' eH

@ Hypothesis-independent discrepancy—depending on hypothesis space.

! Ben-David et al. A Theory of Learning from Different Domains. Machine Learning, 2010.
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R e
Generalization Bound with HAH-Divergence

Theorem (Generalization Bound)

Denote by d the VC-dimension of hypothesis space H. For any hypothesis
he™H,

eq(h) < ep(h) + drunn(P, Q) + €idear
(3)
O(\/dl(;gn + \/dl(l)sm)

@ ep(h) depicts the performance of h on source domain.

+

@ dyay bounds the generalization gap caused by domain shift.
@ €;4ea) quantifies the inverse of “adaptability’ between domains.
@ The order of the complexity term is O(y/dlogn/n+ \/dlog m/m).
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R e
Approximating HA?H-Divergence by Statistical Distance

For binary hypothesis h, the HAH-Divergence can be bounded by

sup ‘GP (hv h/) —€Q (ha hl)|
hh EH

sup [Ep[[h(x) = h' (x)| # 0] = Eq [[h(x) = A" ()| # Ol (4)
hh €M

= sup [Ep[d(x) # 0] —Eq [0 (x) # 0]|
SEHAH

duan(P, Q)

The last term takes the form of Integral Probability Metric (IPM):

dr(P, Q) = sup [Expf(x) = Exof(x)] (5)

Assuming F can be approximated by kernel functions in RKHS, dz(P, Q)
turns into Maximum Mean Discrepancy (MMD) (a statistical distance)

Mingsheng Long Transfer Learning October 17, 2019 13 / 50



G
DAN: Deep Adaptation Network?

o B HEKHEB
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Distribution matching: yield the upper-bound by multiple kernel learning

% (P, Q) = [[Er [0 (")) - Eq [¢<xf>]||ik ©)
%ISTEa%FZL(G x7),yf +)\€Z,:1dk (P; Q;) (7)

2Long et al. Learning Transferable Features with Deep AdaptationNetworks. IEML 2015.

Mingsheng Long Transfer Learning October 17, 2019 14 / 50



R e
Approximating HAH-Divergence by Domain Discriminator

For binary hypothesis h, the HAH-Divergence can be bounded by
duan(P, Q)= sup ep(h h')—eq(h H)
h,h' €H

— sup [Ep[5(x) £ 0]~ Eq[5(x) £ 0] (8)
SEHAH

< sup [Ep[D(x) = 1] + Eq[D (x) = 0]
DeHp

This upper-bound can be yielded by training a domain discriminator D(x)

Distribution Hypothesis-based
discrepancy distribution discrepancy
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DANN: Domain Adversarial Neural Network3
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3Ganin et al. Domain Adversarial Training of Neural Networks.  JMLR 2016. = QG



Outline

@ Transfer Learning

© Domain Adaptation

@ MDD: Margin Disparity Discrepancy

© Inductive Transfer Learning
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Towards Informative Margin Theory

@ Towards a rigorous multiclass domain adaptation theory.

o All existing theories are only applicable to binary classification.
e Generalization bound with scoring functions has not been studied.

@ Towards an informative margin theory.

o Explore the idea of margin in measuring domain discrepancy.
e Generalization bound with margin loss has not been studied.

@ Towards a certain function class in the theoretical bound.
o Eliminate approximation assumptions in all existing methods.

e Computing the supremum in previous discrepancies requires an
ergodicity over HAH that increases the difficulty of optimization.

@ Towards bridging the existing gap between theories and algorithms.
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Notations

@ Scoring function: f e F: X xY — R
o Labeling function induced by f: hf : x > arg max, ¢y f(x, y)
e Labeling function class: ‘H = {h¢|f € F}
@ Margin of a hypothesis:
1
Pf(X,)/) = _(f(va) — max f(va/))
2 y'#y
@ Margin Loss: A
0 p < X -1
Pp(x)=S1-x/p 0<x<p :
1 x<0 >

Mingsheng Long Transfer Learning October 17, 2019 19 / 50
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DD: Disparity Discrepancy

Definition (Disparity Discrepancy, DD)

Given a hypothesis space H and a specific classifier h€ H, the Disparity

Discrepancy (DD) induced by h' € H is defined by

dh (P, Q) = sup [Eq[h" # h] — Ep[h # h]|. (11)
heH )
The supremum in the disparity discrepancy is taken only over the
hypothesis space H and thus can be optimized more easily.
Theorem
For every hypothesis h € H,
e@(h) < ep(h) + dn(P, Q) + €ideas (12)

where €jgea) = €(H, P, Q) is the ideal combined loss.

Mingsheng Long Transfer Learning
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MDD: Margin Disparity Discrepancy
CDAN: Conditional Domain Adversarial Network*

S S S

=

DNN:
AlexNet
ResNet

0000 _I-l

|booo--

Conditional adaptation of distributions over representation & prediction
mGln E(G) — XE(D, G)
mDin E(D, G),
E(D,G) = ~Exp, log [D (ff @ &)] — Extup, log [1 - D (ff @ gf)] (14)

(13)

4Long et al. Conditional Adversarial Domain Adaptation. NIPS 2018.

Mingsheng Long Transfer Learning October 17, 2019 21 / 50



bR alsve v
MDD: Margin Disparity Discrepancy®

o Margin risk: €%) (f) = E(,yp [®o(pr(x, ¥))]
e Margin disparity: e(Dp)(f’, £) £ Exony [Pp(pr(x, he(x)))]
Definition (Margin Disparity Discrepancy, MDD)

With above definitions, we define Margin Disparity Discrepancy (MDD)
and its empirical version by

dH(P. Q) 2 sup ((F.F) — (£, 5)).
fleF

(15)

(1>

dUHP.Q) £ sup ((r.1) - (1),

MDD satisfies d;p}(P, P) = 0 as well as nonnegativity and subadditivity.

v

5Zhang et al. Bridging Theory and Algorithm for Domain Adaptation. ICML 2019.
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bR alsve v
Bounding the Target Risk by MDD

Theorem

Let F C RY*Y be a hypothesis set with label set ) = {1,--- , k} and

H C V¥ be the corresponding YV-valued labeling function class. For every
scoring function f € F,

co(f) < ) (F) + dH(P. Q) + gl (16)
where 6(52»3/ is the margin error of ideal joint hypothesis f*:
) — min {E(P (F) + e8)()}. (17)

v

@ This upper bound has a similar form with previous bound.

° e(Pp)(f) depicts the performance of f on source domain.

o MDD bounds the performance gap caused by domain shift.
@ €jdeas quantifies the inverse of “adaptability”.

@ A new tool for analyzing transfer learning with margin theory.
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MDD: Margin Disparity Discrepancy
Definitions

Definition (Function Class ;F)

Given a class of scoring functions F, 11 F is defined as

MF ={x— f(x,y)|ly € V,f € F}. (18)

v

Definition (Function Class Ny F)

Given a class of scoring functions F and a class of the induced labeling
functions H, we define Ny F as

My 2 {x = f(x, h(x))|h € H,f € F}. (19)

v

By applying the margin error over each entry in Ny F, we obtain the
"scoring” version of HAH (symmetric difference hypothesis space)
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MDD: Margin Disparity Discrepancy
Definitions

Definition (Rademacher Complexity)

The empirical Rademacher complexity of function class G with respect to
the sample D is defined as

R5(0) = Eq sup = ng z). (20)
geg n

where o;'s are independent uniform random variables taking values in
{—1,+1}. The Rademacher complexity is

Rnp(G) =Ep_pR5(G). (21)

v

Definition (Covering Number)

(Informal) A covering number N>(7,G) is the minimal number of £, balls
of radius 7 > 0 needed to cover a class G of bounded functions g : X — R

Mingsheng Long Transfer Learning October 17, 2019 25 / 50



Generalization Bound with Rademacher Complexity

Theorem (Generalization Bound with Rademacher Complexity)

Let F C R**Y be a hypothesis set with label set ) = {1,--- , k} and
H C Y be the corresponding )-valued labeling function class. Fix p > 0.

For all § > 0, with probability 1 — 36§ the following inequality holds for all
hypothesis f € F:

eq(f) <eD(F) + dL(P, Q) + €idear

2k?2 k log 2
FZ R p(MhF) 9 p(ThiF) + 2 2gn5

(22)

k log 2
“R, oM L
+p mQ(MuF) + >

Mingsheng Long
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Rademacher Bound of Linear Classifier

We need to check the variation of R, p(MF) with the growth of n.
First, we include a simple example of binary linear classifiers.

Theorem
Let S C X = {x € R*|||x||2 < r} be a sample of size m and suppose
F={f:Xx{+l} - R ‘ f(x,y) =sgn(y) w-x, [|wll2 <A},
H ={h|h(x) =sgn(w-x), w2 <A}

Then the empirical Rademacher complexity of My F can be bounded as

follows:
~ d log &M
Rs(MyF) < 2Ary/ O,i d

where d is the VC-dimension of H.
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Generalization Bound with Covering Numbers

Theorem (Generalization Bound with Covering Numbers)

Let F C RY*Y be a hypothesis set with label set ) = {1,--- , k} and
H C V¥ be the corresponding YV-valued labeling function class. Suppose
My F is bounded in L5 by L. Fix p > 0. For all § > 0, with probability

1 — 30 the following inequality holds for all hypothesis f € F:

log 2
eq(F) <eD(F) + dPL(P. Q) + civeat + 2 2gn5

. /Iog5 16k2\/_ {6+3(\f \1F) (23)
Mog]\/2 (r. M F dT—i-L/\/log./\fz 7 H)dr) }.

Mingsheng Long
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bR alsve v
MDD: Margin Disparity Discrepancy

al % Min Source
s S e
y E(P)
BN
£A
Minimax game: Adversarial learning induced by informative margin theory

OR * _ (P ex
rpg‘ €0 (P) (F) + (¢! (@)(f f)—e P)(f,f)),

* (p) / (p) /
f*=max (e 5 (f',f) — w(P)(f,f)).

>

MDD
(P.Q)

~

N < S
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QaaQ
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=
:
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S

(24)
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Results

Table: Accuracy (%) on Office-31 for unsupervised domain adaptation

Method A—W D—-W W — D A—D D—A W — A Avg
ResNet-50 68.44+0.2  96.7+0.1  99.3+0.1 68.9+0.2 62.5+0.3 60.7+0.3 76.1
DANN 82.0+0.4 96.9+0.2 99.1£0.1  79.7+0.4 68.2+04 67.4+05 822

JAN 854403 97.4+0.2 99.8£0.2 84.7+£0.3 68.6+£0.3 70.0+0.4 843

MCD 88.6+0.2  98.5+0.1 100.0+.0 92.2+0.2 69.5+0.1 69.7+0.3 86.5
CDAN 94.1+0.1 98.6+0.1 100.0+.0 92.9+0.2 71.0+0.3 69.3£0.3 87.7
MDD (Proposed) 94.5+0.3  98.4+0.1 100.0+.0 93.5+0.2 74.6+0.3 72.2+0.1 88.9

Table: Accuracy (%) on Office-Home for unsupervised domain adaptation

Method Ar-Cl Ar-Pr Ar-Rw CI-Ar

CI-Pr CI-Rw Pr-Ar Pr-Cl Pr-Rw Rw-Ar Rw-Cl Rw-Pr Avg

ResNet-50 349 50.0 580 374 419 462 385 312 604 539 412 599 46.1

DANN 456 593 70.1 470 585 609 46.1 437 685 632 51.8 768 57.6

JAN 459 612 689 504 59.7 610 458 434 703 639 524 768 583

CDAN 50.7 70.6 76.0 57.6 70.0 70.0 574 509 773 709 567 816 658

MDD (Proposed) 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 725 60.2 823 68.1
October 17,2010 30 / 50
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)

Table: Accuracy (%) on Office-31 by different margins.

Margin ~ 1 2 3 4 5 6
A—>W 925 937 940 945 938 935
D—A 724 73.0 737 74.6 743 742
Avg on Office-31 | 876 88.1 885 88.9 887 886
October 17,2010 31 /50



Outline

@ Transfer Learning

© Domain Adaptation

@ DEV: Deep Embedded Validation

© Inductive Transfer Learning
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Model Selection in Domain Adaptation

@ Supervised Learning

(x1,91) ~p (z2,92) ~p (z3,y3) ~p
I . (| ]
Training Validation Test

@ Semi-Supervised Learning (SSL)?
e Unsupervised Domain Adaptation (UDA)?

Source Domain Target Domain

(z1,91) ~p @ (z2,92) ~ q
)
1] ] L]
(z1,91) Validation To (22, 2)
Training Test
Mingsheng Long Transfer Learning October 17, 2019
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IWCV: Importance-Weighted Cross-Validation®

o Covariate shift assumption: P(y|x) = Q(y|x)
@ Model selection by estimating Target Risk e (h) = Eq [h(x) # y]

@ Importance-Weighted Cross-Validation (IWCV)

Q(x)
Epw(x)-[h(x) # y] = EPW [h(x) # y] =Eq[h(x) # y] = eq(h)
e The estimation is unbiased but the variance is unbounded
e Density ratio is not accessible due to unknownness of P and @

_ Standard Deviation

R DF I a—
A A

8 Covariate shift adaptation by importance weighted cross validation; JMLR'2007
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2[5 (2 EbEed VeI
DEV: Deep Embedded Validation'®

e Variance of IWCV (bounded by Rényi divergence)”:

Vargp[w(x) - [1(x) # y]] < das1(Q||P)eq(h) ™= — eq(h)?

@ Density ratio w(x) = % is estimated by discriminative learning®

o Feature adaptation reduces distribution discrepancy da+1(Q||P)9

e Control variate explicitly reduces the variance of Epw(x) - [h(x) # y]
Elz] = (G E[t] =7

" =z+n(t—7)

E[z*] = E[z] + nE[t — 7] = ¢+ n(E[t] - E[r]) = .

Var[z*] = Var[z + n(t — 7)] = n?Var[t] + 2nCov(z, t) + Var|z]

Cov(z,t)

min Var[z*] = (1 — pZ ;) Var[z], when /) = — =5

7Learning Bounds for Importance Weighting, NeurlPS 2010

8 Discriminative learning for differing training and test distributions, ICML 2007

9 Conditional Adversarial Domain Adaptation, NeurlPS 2018

OYou et al. Towards Accurate Model Selection in Deep Unsupervised Domain Adaptation.
ICML 2019.
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2[5 (2 EbEed VeI
DEV: Deep Embedded Validation

Algorithm 1 Deep Embedded Validation (DEV)

1: Input: Candidate model g(x) = T(F(x))

Training set Dy = {(x!', y)} 1,
Validation set D, = {(x,y¥)} 1,
Test set Ds = {(xI°)}1,
Output: DEV Risk Rpey(g) of model g

Compute features and predictions using model g:

For = {f,-”}?ilv Fis = {ﬂts}Ey {fv}, = {)7;\1},”;1
Train a two-layer logistic regression model M to classify Fi and Fis
(label Fir as 1 and Fis as 0)

g 1-M(F, v
Compute wy(xY) = nftslwffv)) W = {we(x})} 1,

Compute weighted loss L = {we(x})0(9Y, y¥)} i,
Cov(L,W)
Var[W]
Compute DEV Risk Rpev(g) = mean(L) + nmean(W) —n

Estimate coefficient n = —

Mingsheng Long Transfer Learning October 17, 2019
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Inductive Transfer Learning

Inductive Transfer Learning®!

Successful of transfer learning: Pre-train a model on a large-scale source
dataset, and use the parameters as initialization for training a target task.

Compared to training from scratch:
@ Generalization: better accuracy
@ Optimization: faster convergence

How to understand the transferability of deep representations?

Xp,yp) Xo,¥0)
W > Wp > Wo1

(XQ' yQ)

W,
eWor, fo) <eWpz fo) ? @

Yy et al. Towards Understanding the Transferability of Deep Representations,-arXiv,=2019
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Inductive Transfer Learning

Transferred Parameters Induce Better Generalization

We can quantify how pre-trained knowledge is preserved when transferring
|
to the target dataset with TE”WQ —Wp||F.
@ For more similar target datasets, \/lEHWQ — Wp||F is smaller
@ For more similar target datasets, generalization error is smaller
o ls ﬁ“WQ — Wop|| g implicitly bounded? (we will formally study this)

3.5

w
o

w
s > —— CUB-200
I 20 —— Webcam
S Synthetic
— 15
AN —— Stanford Cars
[ 10

0.5

0.0

6 20600 40600 60600 80600 100600
Step
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Inductive Transfer Learning

Transferred Parameters Induce Better Generalization

Staying close to the transferred parameters benefits generalization
@ Even for the same target dataset, different pre-trained parameters
lead to significantly different solutions

@ At the convergence point, pre-trained networks stay in the original flat
region, leading to flatter minima than random initialization

eee ImageNet Pretrained M —

e0e Places Pretrained
*e Random Initialized

.
XXx CUB-200 x
. '. .
.
& o, .
<o
. s .
:

X
o 25 50 75 100 125 150 175

o 25 50 75 100 125 150 175

(a) t-SNE of parameters (b) Randomly initialized (c) ImageNet pre-trained
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Inductive Transfer Learning

Transferred Parameters Enable Faster Optimization

Modern neural networks are equipped with Batch Normalization (BN) and
skip connections to enable better loss landscapes

@ However, at the initialization point, the loss landscapes are still very
messy even in the presence of Batch-Norm and residual connections

N

25 50 75 100 125 150 175 25 50 75 100 125 150 175

(d) Randomly initialized (e) ImageNet pre-trained

Mingsheng Long Transfer Learning October 17, 2019 41 / 50



Inductive Transfer Learning

Transferred Parameters Enable Faster Optimization

Pre-trained parameters help smoothen the loss landscape and accelerate
training in the early stages
@ The landscapes can be described with the Lipschitzness of the loss
function, i.e. the magnitude of gradient

0.0008

—— Random initialized —— ImageNet pretrained
00007
@ o00s
°
& 00005
]
§ oo
B oo
s
> o002 J
00001
ol Jmlu\ l, |\|l\\ |\l L \.IJ dikat
4000 5000 6000 7000 8000 9000 10000 11000 12000 4000 5000 6000 7000 8000 9000 10000 11000 12000
Step Step
(f) Randomly initialized. (g) ImageNet pre-trained.
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Inductive Transfer Learning

Transferred Parameters Enable Better Optimization

Why is the magnitude of gradient better controlled with the pre-trained
representations?

@ The gradient is computed through back- Prop, =%t ‘_ = Wk]Ik ( )

Pre-trained weight matrices provide more stable scaling factors.

—— Random oo —— ImageNet Pretrained
4
—— ImageNet —— Random Initialization

0.00012

0.00010

0.00008.

0.00006.

0.00004.

0.00002

Projection on singular vector

3 E) 100 0 00 250 o S ) 15 20 %
Index of singular value Layers

(h) Projection on components of gradient (i) Scaling of gradient
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Feasibility of Transfer Learning

Varying input with fixed labels.

@ Choosing a model pre-trained on more similar inputs yields a larger
performance gain.

Varying labels with fixed input.

@ The similarity of the input (images) is just one point. Another factor
of similarity is the relationship between the nature of tasks (labels).

Test Accuracy on CUB-200

Test Accuracy on MIT-indoors

—— Places Pretrained —— Places Pretrained

01 —— ImageNet Pretrained —— ImageNet Pretrained

055

) 2000 2600 5000 8000 10000 12000 14000 ] 2000 400 5000

Step Step

8000 12000
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Feasibility of Transfer Learning

Choices of pre-training epochs.

@ Although the test accuracy on the pre-training dataset continues
increasing, the test accuracy on the target dataset starts to decline.

o048

Target Performance

Performance in pretraining

30 35 E) 3 3 ) 35 )

T E) 5 T E) %
Epoch of pretraining Epoch of pretraining

(1) Accuracy of pre-training (m) Accuracy of the target dataset
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Inductive Transfer Learning

Theoretical Analysis

@ Two-layer ReLU network of m hidden units fiy a(x) =
o xcRY W= (wy, - ,wp) € RIXm
o w,(0) ~ N(0, x21),a, ~unif ({—1,1}).
o L(W) = 3(y — wa(X)) " (y — fw.a(X)).
We first pre-train the model on {XPJ,_)/P’,'},-,P]_ drawn i.i.d from P to obtain

1=

W(P), then train on the target dataset {xq;,yq,i};%; drawn i.i.d from Q.

a'o(W'x).

s

Definition (Gram matrix of P and Q)
H%ju = EWNN(OJ)[X—,g’,-XPJ]I{WTXPJ > 0, WTXP’J' > 0}] (25)

H%O’U = EWN/\/'(O,I)[X—(,B’,'XQ,J']I{WTXQJ 2 0, WTXQ’J' Z O}] (26)

v

Definition (Gram matrix of transfer learning)

H%OQU = ]EWNN(OJ)[x;,iXQJH{WTXpJ >0, WTXQJ > 0}]. (27)

v
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Inductive Transfer Learning

Theoretical Analysis

Definition (Transformed labels from source label set to target label set)
ypq 2 Hpp 'HE yp. (28)

v

Theorem (Improved Lipschitzness)

Denote by X! the activations in the target dataset. If

m > poly(np, ng, 01, \5" )\_ 1), k=0 ( Af’i), with probability no
2
nPnQ

less than 1 — § over the random initialization,

OL(W(P 0
| PHED 2 PO 12 vy + (vo — yea) (v -~ ¥oma)
1
. Poly(ne, ng. 0 LAt k1) npngk

V%,

IS

m

V.
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Theoretical Analysis

Theorem (Improved generalization)

ApAGS

Suppose m > poly(np, nQ,é_l,)\gl,)\E,l, k1, k=0 <ﬁ—> with probability
2 2

nPnQ
no less than 1 — § over the random initialization,

IW(Q) ~ W(P)[Ir < /(¥ — ¥p—0) THF (o — ¥r—0)

1

1 21 oy—1 y—1 .
npnk2 N poly(np, ng, ¢ I,API,AQI,H b

+0 i
)\p/\Q(S? m

Bl

(30)

Lemma (Arora et al., 2019)

Under the same conditions as (30), with probability no less than 1 — ¢,

2 1
Eo(L(F) < || 2 IW(Q) - W(P)[s + O (, /L
Q nQ
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Inductive Transfer Learning

Transfer Learning System

Tsinghua Dataway Big Data Software Stack

ouk  TEME MR ETHE S8 ] R RO
YRR RiRHR EREHR RIXER ERSRE  PRHERFT  BEESP0
AR RZEPUT5 R BisEN EXIBEEE 31E85%RE  ItmERRT  EENRT DWF-Enterprise-Application
BIVRIF
sk PAS iCast iCast E)WE-DO:am-AppIicahon
cms | HiET KStone BDIPS DATA-X | | Sttt
anp TuwksiEPs | | M6 sgxumera FRABIETE | [ oW Apscator roundaion
RIFELREM
xHiE HR R FR
RFER KEIRER ARG IheE. AR
a1 [ ] DWF-Optional-Component
e Proto Flok Quality Xlearn Vis DEV KEUEA] kA
MEEFS || SuEE |
THEtEsR St Spark  HadoopMR Te rfl Torch ]
paas [1 orm parl ladoop! ‘ensorflow PyTorcl e
DWF-Essential-Component
[ Lt TsFile/loTDB  Cassandra HDFS PostgreSQL Kafka ] 4
leas % [w* PG WER WER ]
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