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Transfer Learning

Supervised Learning

 
test ≤ ̂train +

complexity
n

Learner: Distribution:

Error Bound:
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Transfer Learning

Transfer Learning

Machine learning across domains of di↵erent distributions P 6= Q
IDD: Independent and Di↵erently Distributed (a case of Non-IID)

How to e↵ectively bound the generalization error on target domain?

Model ModelRepresentation

P(x,y)≠Q(x,y)

Simulation Real

Source Domain Target Domain

f :x→ y f :x→ y
"# "$

Image Annotation

static fine (SF) static coarse (SC)

GT segmentation w/ SF GT segmentation w/ SC

GT segmentation w/ [41] GT subsampled by 2

GT subsampled by 8 GT subsampled by 32

GT subsampled by 128 nearest training neighbor

Figure 8. Exemplary output of our control experiments for the pixel-level semantic labeling task, see the main paper for details. The image
is part of our test set and has both, the largest number of instances and persons.
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Transfer Learning

Transfer Learning

Transfer learning setups (P 6= Q): Feature Space X , Label Space Y
Domain Adaptation: common X , common Y , unlabeled T
Inductive Transfer Learning: common X , di↵erent Y , labeled T

Model ModelRepresentation

P(x,y)≠Q(x,y)

Source Domain Target Domain

f :x→ y f :x→ y

"# "$

Image Annotation

static fine (SF) static coarse (SC)

GT segmentation w/ SF GT segmentation w/ SC

GT segmentation w/ [41] GT subsampled by 2

GT subsampled by 8 GT subsampled by 32

GT subsampled by 128 nearest training neighbor

Figure 8. Exemplary output of our control experiments for the pixel-level semantic labeling task, see the main paper for details. The image
is part of our test set and has both, the largest number of instances and persons.
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Inductive Transfer Learning
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Transfer Learning

Bias-Variance-Shift Tradeo↵

Training Error high?

Train-Dev Error high?

Dev Error high?

Test Error high?

Training Set Train-Dev Set Dev Set Test Set

Done!

Bias

Variance

Dataset Shift

Overfit Dev Set

No

No

No

No

Yes

Yes

Yes

Yes

Deeper Model
Longer Training

Bigger Data
Regularization

Transfer Learning
Data Generation

Bigger Dev Data

Andrew Ng. The Nuts and Bolts of Building Applications using Deep 
Learning. NIPS 2016 Tutorial.

Optimal Bayes Rate
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Transfer Learning

Bridging Theory and Algorithm

Everything should be made as simple as possible, but no simpler.
—Albert Einstein

There is nothing more practical than a good theory.
—Vladimir Vapnik
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Transfer Learning

Bridging Theory and Algorithm

ℋ"ℋ-Distance

Margin Disparity
Discrepancy

����
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CDAN

MDD

MCD

DANN

DAN

ℋ"ℋ-Distance

Theory Algorithm Performance
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Domain Adaptation H�H-Divergence

Outline

1 Transfer Learning

2 Domain Adaptation
H�H-Divergence
MDD: Margin Disparity Discrepancy
DEV: Deep Embedded Validation

3 Inductive Transfer Learning
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Domain Adaptation H�H-Divergence

Notations and Assumptions

Source risk: ✏
P

(h) = E(x,y)⇠P

[h (x) 6= y ], {(x
i

, y
i

)}n
i=1 ⇠ Pn

Target risk: ✏
Q

(h) = E(x,y)⇠Q

[h (x) 6= y ], {(x
i

, y
i

)}m
i=1 ⇠ Qm

Source disparity: ✏
P

(h1, h2) = E(x,y)⇠P

[h1 (x) 6= h2 (x)]
Target disparity: ✏

Q

(h1, h2) = E(x,y)⇠Q

[h1 (x) 6= h2 (x)]

Ideal joint hypothesis: h⇤ = argmin
h

✏
P

(h) + ✏
Q

(h)
Assumption: ideal hypothesis has small risk ✏

ideal

= ✏
P

(h⇤) + ✏
Q

(h⇤)

Distribution
discrepancy

Ideal hypothesis
with small error

Mingsheng Long Transfer Learning October 17, 2019 9 / 50



Domain Adaptation H�H-Divergence

Relating the Target Risk to the Source Risk

Theorem

Assuming small ✏
ideal

, the bound of the target risk ✏
Q

(h) of hypothesis
h 2 H is given by the source risk ✏

P

(h) plus the disparity di↵erence:

✏
Q

(h) 6 ✏
P

(h) + [✏
P

(h⇤) + ✏
Q

(h⇤)] + |✏
P

(h, h⇤) � ✏
Q

(h, h⇤)| (1)

Proof.

Simply by using the triangle inequalities, we have

✏
Q

(h) 6 ✏
Q

(h⇤) + ✏
Q

(h, h⇤)
6 ✏

Q

(h⇤) + ✏
P

(h, h⇤) + ✏
Q

(h, h⇤) � ✏
P

(h, h⇤)
6 ✏

Q

(h⇤) + ✏
P

(h, h⇤) + |✏
Q

(h, h⇤) � ✏
P

(h, h⇤)|
6 ✏

P

(h) + [✏
P

(h⇤) + ✏
Q

(h⇤)] + |✏
P

(h, h⇤) � ✏
Q

(h, h⇤)|

(2)
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Domain Adaptation H�H-Divergence

How to Bound the Disparity Di↵erence?

We can illustrate the disparity di↵erence |✏
P

(h, h⇤) � ✏
Q

(h, h⇤)| as

low low high
h h h

h' h' h'

H�H-Divergence1: dH�H(P ,Q) , sup
h,h02H

|✏
P

(h, h0) � ✏
Q

(h, h0)|

Hypothesis-independent discrepancy—depending on hypothesis space.

1
Ben-David et al. A Theory of Learning from Di↵erent Domains. Machine Learning, 2010.
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Domain Adaptation H�H-Divergence

Generalization Bound with H�H-Divergence

Theorem (Generalization Bound)

Denote by d the VC-dimension of hypothesis space H. For any hypothesis
h 2 H,

✏
Q

(h)  ✏
P̂

(h) + dH�H(bP , bQ) + ✏
ideal

+ O(

r

d log n

n
+

r

d logm

m
)

(3)

✏
P

(h) depicts the performance of h on source domain.

dH�H bounds the generalization gap caused by domain shift.

✏
ideal

quantifies the inverse of “adaptability” between domains.

The order of the complexity term is O(
p

d log n/n +
p

d logm/m).
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Domain Adaptation H�H-Divergence

Approximating H�H-Divergence by Statistical Distance

For binary hypothesis h, the H�H-Divergence can be bounded by

dH�H(P ,Q) , sup
h,h02H

|✏
P

(h, h0) � ✏
Q

(h, h0)|

= sup
h,h02H

|E
P

[|h (x) � h0 (x)| 6= 0] � E
Q

[|h (x) � h0 (x)| 6= 0]|

= sup
�2H�H

|E
P

[�(x) 6= 0] � E
Q

[� (x) 6= 0]|
(4)

The last term takes the form of Integral Probability Metric (IPM):

dF (P ,Q) = sup
f2F

|Ex⇠P

f (x) � Ex⇠Q

f (x)| (5)

Assuming F can be approximated by kernel functions in RKHS, dF (P ,Q)
turns into Maximum Mean Discrepancy (MMD) (a statistical distance)
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Domain Adaptation H�H-Divergence

DAN: Deep Adaptation Network2

MK-
MMD

MK-
MMD

MK-
MMD

input conv1 conv2 conv3 conv4 conv5 fc6 fc7 fc8

source
output

target
output

frozen frozenfrozen fine-
tune

fine-
tune

learn learnlearn learn

Distribution matching: yield the upper-bound by multiple kernel learning

d2
k

(P ,Q) ,
�

�E
P

[� (xs)] � E
Q

⇥

�
�

xt
�⇤

�

�

2

H
k

(6)

min
✓2⇥

max
k2K

1

n
a

n

a

X

i=1

L (✓ (xa
i

) , ya
i

) + �
l2
X

`=l1

d2
k

⇣

bP`, bQ`
⌘

(7)

2
Long et al. Learning Transferable Features with Deep Adaptation Networks. ICML 2015.
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Domain Adaptation H�H-Divergence

Approximating H�H-Divergence by Domain Discriminator

For binary hypothesis h, the H�H-Divergence can be bounded by

dH�H(P ,Q) , sup
h,h02H

|✏
P

(h, h0) � ✏
Q

(h, h0)|

= sup
�2H�H

|E
P

[�(x) 6= 0] � E
Q

[� (x) 6= 0]|

6 sup
D2H

D

|E
P

[D(x) = 1] + E
Q

[D (x) = 0]|
(8)

This upper-bound can be yielded by training a domain discriminator D(x)

Distribution
discrepancy

Hypothesis-based
distribution discrepancy

h

h'
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Domain Adaptation H�H-Divergence

DANN: Domain Adversarial Neural Network3
Unsupervised Domain Adaptation by Backpropagation

Figure 1. The proposed architecture includes a deep feature extractor (green) and a deep label predictor (blue), which together form
a standard feed-forward architecture. Unsupervised domain adaptation is achieved by adding a domain classifier (red) connected to the
feature extractor via a gradient reversal layer that multiplies the gradient by a certain negative constant during the backpropagation-
based training. Otherwise, the training proceeds in a standard way and minimizes the label prediction loss (for source examples) and
the domain classification loss (for all samples). Gradient reversal ensures that the feature distributions over the two domains are made
similar (as indistinguishable as possible for the domain classifier), thus resulting in the domain-invariant features.

and (Long & Wang, 2015) is thus different from our idea
of matching distribution by making them indistinguishable
for a discriminative classifier. Below, we compare our ap-
proach to (Tzeng et al., 2014; Long & Wang, 2015) on the
Office benchmark. Another approach to deep domain adap-
tation, which is arguably more different from ours, has been
developed in parallel in (Chen et al., 2015).

3. Deep Domain Adaptation
3.1. The model
We now detail the proposed model for the domain adap-
tation. We assume that the model works with input sam-
ples x 2 X , where X is some input space and cer-
tain labels (output) y from the label space Y . Below,
we assume classification problems where Y is a finite set
(Y = {1, 2, . . . L}), however our approach is generic and
can handle any output label space that other deep feed-
forward models can handle. We further assume that there
exist two distributions S(x, y) and T (x, y) on X ⌦ Y ,
which will be referred to as the source distribution and
the target distribution (or the source domain and the tar-
get domain). Both distributions are assumed complex and
unknown, and furthermore similar but different (in other
words, S is “shifted” from T by some domain shift).
Our ultimate goal is to be able to predict labels y given
the input x for the target distribution. At training time,
we have an access to a large set of training samples
{x

1

,x
2

, . . . ,xN} from both the source and the target do-
mains distributed according to the marginal distributions
S(x) and T (x). We denote with di the binary variable (do-
main label) for the i-th example, which indicates whether
xi come from the source distribution (xi⇠S(x) if di=0) or
from the target distribution (xi⇠T (x) if di=1). For the ex-
amples from the source distribution (di=0) the correspond-

ing labels yi 2 Y are known at training time. For the ex-
amples from the target domains, we do not know the labels
at training time, and we want to predict such labels at test
time.
We now define a deep feed-forward architecture that for
each input x predicts its label y 2 Y and its domain label
d 2 {0, 1}. We decompose such mapping into three parts.
We assume that the input x is first mapped by a mapping
Gf (a feature extractor) to a D-dimensional feature vector
f 2 RD. The feature mapping may also include several
feed-forward layers and we denote the vector of parame-
ters of all layers in this mapping as ✓f , i.e. f = Gf (x; ✓f ).
Then, the feature vector f is mapped by a mapping Gy (la-
bel predictor) to the label y, and we denote the parameters
of this mapping with ✓y . Finally, the same feature vector f
is mapped to the domain label d by a mapping Gd (domain
classifier) with the parameters ✓d (Figure 1).
During the learning stage, we aim to minimize the label
prediction loss on the annotated part (i.e. the source part)
of the training set, and the parameters of both the feature
extractor and the label predictor are thus optimized in or-
der to minimize the empirical loss for the source domain
samples. This ensures the discriminativeness of the fea-
tures f and the overall good prediction performance of the
combination of the feature extractor and the label predictor
on the source domain.
At the same time, we want to make the features f
domain-invariant. That is, we want to make the dis-
tributions S(f) = {Gf (x; ✓f ) |x⇠S(x)} and T (f) =

{Gf (x; ✓f ) |x⇠T (x)} to be similar. Under the covariate
shift assumption, this would make the label prediction ac-
curacy on the target domain to be the same as on the source
domain (Shimodaira, 2000). Measuring the dissimilarity
of the distributions S(f) and T (f) is however non-trivial,
given that f is high-dimensional, and that the distributions

Adversarial adaptation: learning features indistinguishable across domains

E (✓
f

, ✓
y

, ✓
d

) =
X

x
i

⇠b
P

L
y

(G
y

(G
f

(x
i

)) , y
i

) � �
X

x
i

⇠b
P[ b

Q

L
d

(G
d

(G
f

(x
i

)) , d
i

) (9)

(✓̂
f

, ✓̂
y

) = arg min
✓
f

,✓
y

E (✓
f

, ✓
y

, ✓
d

) (✓̂
d

) = argmax
✓
d

E (✓
f

, ✓
y

, ✓
d

) (10)

3
Ganin et al. Domain Adversarial Training of Neural Networks. JMLR 2016.
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Domain Adaptation MDD: Margin Disparity Discrepancy

Outline

1 Transfer Learning

2 Domain Adaptation
H�H-Divergence
MDD: Margin Disparity Discrepancy
DEV: Deep Embedded Validation

3 Inductive Transfer Learning
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Domain Adaptation MDD: Margin Disparity Discrepancy

Towards Informative Margin Theory

Towards a rigorous multiclass domain adaptation theory.
All existing theories are only applicable to binary classification.
Generalization bound with scoring functions has not been studied.

Towards an informative margin theory.
Explore the idea of margin in measuring domain discrepancy.
Generalization bound with margin loss has not been studied.

Towards a certain function class in the theoretical bound.
Eliminate approximation assumptions in all existing methods.
Computing the supremum in previous discrepancies requires an
ergodicity over H�H that increases the di�culty of optimization.

Towards bridging the existing gap between theories and algorithms.
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Domain Adaptation MDD: Margin Disparity Discrepancy

Notations

Scoring function: f 2 F : X ⇥ Y ! R
Labeling function induced by f : h

f

: x 7! argmax
y2Y f (x , y)

Labeling function class: H = {h
f

|f 2 F}
Margin of a hypothesis:

⇢
f

(x , y) =
1

2
(f (x , y) � max

y

0 6=y

f (x , y 0))

Margin Loss:

�⇢(x) =

8

>

<

>

:

0 ⇢ 6 x

1 � x/⇢ 0 6 x 6 ⇢

1 x 6 0

1

0 ρ 1
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Domain Adaptation MDD: Margin Disparity Discrepancy

DD: Disparity Discrepancy

Definition (Disparity Discrepancy, DD)

Given a hypothesis space H and a specific classifier h2H, the Disparity
Discrepancy (DD) induced by h0 2 H is defined by

d
h,H(P ,Q) = sup

h

02H

�

�E
Q

[h0 6= h] � E
P

[h0 6= h]
�

� . (11)

The supremum in the disparity discrepancy is taken only over the
hypothesis space H and thus can be optimized more easily.

Theorem

For every hypothesis h 2 H,

✏
Q

(h)  ✏
P

(h) + d
h,H(P ,Q) + ✏

ideal

, (12)

where ✏
ideal

= ✏(H,P ,Q) is the ideal combined loss.
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Domain Adaptation MDD: Margin Disparity Discrepancy

CDAN: Conditional Domain Adversarial Network4

loss

xs

xt gt

gsfs

ft

ys

yt

DNN:
AlexNet
ResNet
……

D

×

×

Conditional adaptation of distributions over representation & prediction

min
G

E(G ) � �E(D,G )

min
D

E(D,G ),
(13)

E(D,G ) = �Exs
i

⇠D
s

log [D (fs
i

⌦ gs
i

)] � Ext
j

⇠D
t

log
⇥

1 � D
�

ft
j

⌦ gt
j

�⇤

(14)

4
Long et al. Conditional Adversarial Domain Adaptation. NIPS 2018.
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Domain Adaptation MDD: Margin Disparity Discrepancy

MDD: Margin Disparity Discrepancy5

Margin risk: ✏(⇢)
D

(f ) = E(x ,y)⇠D

[�⇢(⇢
f

(x , y))]

Margin disparity: ✏(⇢)
D

(f 0, f ) , E
x⇠D

X

[�⇢(⇢
f

0(x , h
f

(x)))]

Definition (Margin Disparity Discrepancy, MDD)

With above definitions, we define Margin Disparity Discrepancy (MDD)
and its empirical version by

d (⇢)
f ,F (P ,Q) , sup

f

02F

⇣

✏(⇢)
Q

(f 0, f ) � ✏(⇢)
P

(f 0, f )
⌘

,

d (⇢)
f ,F (bP , bQ) , sup

f

02F

⇣

✏(⇢)b
Q

(f 0, f ) � ✏(⇢)b
P

(f 0, f )
⌘

.
(15)

MDD satisfies d (⇢)
f ,F (P ,P) = 0 as well as nonnegativity and subadditivity.

5
Zhang et al. Bridging Theory and Algorithm for Domain Adaptation. ICML 2019.
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Domain Adaptation MDD: Margin Disparity Discrepancy

Bounding the Target Risk by MDD

Theorem

Let F ✓ RX⇥Y be a hypothesis set with label set Y = {1, · · · , k} and
H ✓ YX be the corresponding Y-valued labeling function class. For every
scoring function f 2 F ,

✏
Q

(f )  ✏(⇢)
P

(f ) + d (⇢)
f ,F (P ,Q) + ✏(⇢)

ideal

, (16)

where ✏(⇢)
ideal

is the margin error of ideal joint hypothesis f ⇤:

✏(⇢)
ideal

= min
f

⇤2F
{✏(⇢)

P

(f ⇤) + ✏(⇢)
Q

(f ⇤)}. (17)

This upper bound has a similar form with previous bound.
✏(⇢)
P

(f ) depicts the performance of f on source domain.
MDD bounds the performance gap caused by domain shift.
✏
ideal

quantifies the inverse of “adaptability”.

A new tool for analyzing transfer learning with margin theory.
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Domain Adaptation MDD: Margin Disparity Discrepancy

Definitions

Definition (Function Class ⇧1F)

Given a class of scoring functions F , ⇧1F is defined as

⇧1F = {x 7! f (x , y)
�

�y 2 Y, f 2 F}. (18)

Definition (Function Class ⇧HF)

Given a class of scoring functions F and a class of the induced labeling
functions H, we define ⇧HF as

⇧HF , {x 7! f (x , h(x))|h 2 H, f 2 F}. (19)

By applying the margin error over each entry in ⇧HF , we obtain the
”scoring” version of H�H (symmetric di↵erence hypothesis space)
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Domain Adaptation MDD: Margin Disparity Discrepancy

Definitions

Definition (Rademacher Complexity)

The empirical Rademacher complexity of function class G with respect to
the sample bD is defined as

bR b
D

(G) = E� sup
g2G

1

n

n

X

i=1

�
i

g(z
i

). (20)

where �
i

’s are independent uniform random variables taking values in
{�1,+1}. The Rademacher complexity is

R
n,D(G) = E b

D⇠D

n

bR b
D

(G). (21)

Definition (Covering Number)

(Informal) A covering number N2(⌧, G) is the minimal number of L2 balls
of radius ⌧ > 0 needed to cover a class G of bounded functions g : X ! R
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Domain Adaptation MDD: Margin Disparity Discrepancy

Generalization Bound with Rademacher Complexity

Theorem (Generalization Bound with Rademacher Complexity)

Let F ✓ RX⇥Y be a hypothesis set with label set Y = {1, · · · , k} and
H ✓ YX be the corresponding Y-valued labeling function class. Fix ⇢ > 0.
For all � > 0, with probability 1 � 3� the following inequality holds for all
hypothesis f 2 F :

✏
Q

(f ) ✏(⇢)b
P

(f ) + d (⇢)
f ,F (bP , bQ) + ✏

ideal

+
2k2

⇢
R

n,P(⇧1F) +
k

⇢
R

n,P(⇧HF) + 2

s

log 2
�

2n

+
k

⇢
R

m,Q(⇧HF) +

s

log 2
�

2m
.

(22)
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Domain Adaptation MDD: Margin Disparity Discrepancy

Rademacher Bound of Linear Classifier

We need to check the variation of R
n,D(⇧HF) with the growth of n.

First, we include a simple example of binary linear classifiers.

Theorem

Let S ✓ X = {x 2 Rs |kxk2  r} be a sample of size m and suppose

F =
�

f : X ⇥ {±1} ! R
�

� f (x, y) = sgn(y) w · x, kwk2  ⇤
 

,

H =
�

h | h(x) = sgn(w · x), kwk2  ⇤}.

Then the empirical Rademacher complexity of ⇧HF can be bounded as
follows:

bR
S

(⇧HF)  2⇤r

r

d log em

d

m
,

where d is the VC-dimension of H.
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Domain Adaptation MDD: Margin Disparity Discrepancy

Generalization Bound with Covering Numbers

Theorem (Generalization Bound with Covering Numbers)

Let F ✓ RX⇥Y be a hypothesis set with label set Y = {1, · · · , k} and
H ✓ YX be the corresponding Y-valued labeling function class. Suppose
⇧1F is bounded in L2 by L. Fix ⇢ > 0. For all � > 0, with probability
1 � 3� the following inequality holds for all hypothesis f 2 F :

✏
Q

(f ) ✏(⇢)b
P

(f ) + d (⇢)
f ,F (bP , bQ) + ✏

ideal

+ 2

s

log 2
�

2n

+

s

log 2
�

2m
+

16k2
p
k

⇢
inf
✏�0

n

✏ + 3
� 1p

n
+

1p
m

�

�

Z

L

✏

p

logN2(⌧,⇧1F)d⌧+L

Z 1

✏/L

p

logN2(⌧,⇧1H)d⌧
�

o

.

(23)
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Domain Adaptation MDD: Margin Disparity Discrepancy

MDD: Margin Disparity Discrepancy

!

Source
Risk
"($%)

'

MDD
() $%,+%

GRL

,-

,-′

One-hot

'′

Min

Max

Minimax game: Adversarial learning induced by informative margin theory

min
f , 

✏(⇢)
 (bP)

(f ) + (✏(⇢)
 ( bQ)

(f ⇤, f ) � ✏(⇢)
 (bP)

(f ⇤, f )),
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f

0 (✏(⇢)
 ( bQ)
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 (bP)

(f 0, f )).
(24)
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Domain Adaptation MDD: Margin Disparity Discrepancy

Results

Table: Accuracy (%) on O�ce-31 for unsupervised domain adaptation

Method A ! W D ! W W ! D A ! D D ! A W ! A Avg
ResNet-50 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1
DANN 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
JAN 85.4±0.3 97.4±0.2 99.8±0.2 84.7±0.3 68.6±0.3 70.0±0.4 84.3
MCD 88.6±0.2 98.5±0.1 100.0±.0 92.2±0.2 69.5±0.1 69.7±0.3 86.5
CDAN 94.1±0.1 98.6±0.1 100.0±.0 92.9±0.2 71.0±0.3 69.3±0.3 87.7

MDD (Proposed) 94.5±0.3 98.4±0.1 100.0±.0 93.5±0.2 74.6±0.3 72.2±0.1 88.9

Table: Accuracy (%) on O�ce-Home for unsupervised domain adaptation

Method Ar-Cl Ar-Pr Ar-Rw Cl-Ar Cl-Pr Cl-Rw Pr-Ar Pr-Cl Pr-Rw Rw-Ar Rw-Cl Rw-Pr Avg
ResNet-50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
CDAN 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8

MDD (Proposed) 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
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Domain Adaptation MDD: Margin Disparity Discrepancy

Results
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(e) Equilibrium on Target

Figure: Test accuracy and empirical values of �
h

f

� f 0 (dashed line: �
�+1 ).

Table: Accuracy (%) on O�ce-31 by di↵erent margins.

Margin � 1 2 3 4 5 6

A ! W 92.5 93.7 94.0 94.5 93.8 93.5
D ! A 72.4 73.0 73.7 74.6 74.3 74.2

Avg on O�ce-31 87.6 88.1 88.5 88.9 88.7 88.6
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Domain Adaptation DEV: Deep Embedded Validation

Outline

1 Transfer Learning

2 Domain Adaptation
H�H-Divergence
MDD: Margin Disparity Discrepancy
DEV: Deep Embedded Validation

3 Inductive Transfer Learning
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Domain Adaptation DEV: Deep Embedded Validation

Model Selection in Domain Adaptation
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Domain Adaptation DEV: Deep Embedded Validation

IWCV: Importance-Weighted Cross-Validation6

Covariate shift assumption: P(y |x) = Q(y |x)
Model selection by estimating Target Risk ✏

Q

(h) = E
Q

[h (x) 6= y ]

Importance-Weighted Cross-Validation (IWCV)

E
P

w(x) · [h (x) 6= y ] = E
P

Q(x)
P(x)

· [h (x) 6= y ] = E
Q

[h (x) 6= y ] = ✏
Q

(h)

The estimation is unbiased but the variance is unbounded
Density ratio is not accessible due to unknownness of P and Q
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6
Covariate shift adaptation by importance weighted cross validation, JMLR’2007
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Domain Adaptation DEV: Deep Embedded Validation

DEV: Deep Embedded Validation10

Variance of IWCV (bounded by Rényi divergence)7:

Varx⇠P

[w(x) · [h(x) 6= y ]]  d↵+1(QkP)✏
Q

(h)1�
1
↵ � ✏

Q

(h)2

Density ratio w(x) = Q(x)
P(x) is estimated by discriminative learning8

Feature adaptation reduces distribution discrepancy d↵+1(QkP)9
Control variate explicitly reduces the variance of E

P

w(x) · [h (x) 6= y ]

E[z ] = ⇣,E[t] = ⌧
z? = z + ⌘(t � ⌧)
E[z?] = E[z ] + ⌘E[t � ⌧ ] = ⇣ + ⌘(E[t] � E[⌧ ]) = ⇣.
Var[z?] = Var[z + ⌘(t � ⌧)] = ⌘2

Var[t] + 2⌘Cov(z , t) + Var[z ]

minVar[z?] = (1 � ⇢2
z,t)Var[z ], when ⌘̂ = �Cov(z,t)

Var[t]

7
Learning Bounds for Importance Weighting, NeurIPS 2010

8
Discriminative learning for di↵ering training and test distributions, ICML 2007

9
Conditional Adversarial Domain Adaptation, NeurIPS 2018

10
You et al. Towards Accurate Model Selection in Deep Unsupervised Domain Adaptation.

ICML 2019.
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Domain Adaptation DEV: Deep Embedded Validation

DEV: Deep Embedded Validation

Algorithm 1 Deep Embedded Validation (DEV)

1: Input: Candidate model g(x) = T (F (x))
Training set Dtr = {(xtr

i

, y tr
i

)}ntr
i=1

Validation set Dv = {(xv
i

, y v
i

)}nv
i=1

Test set Dts = {(xts
i

)}nts
i=1

2: Output: DEV Risk RDEV(g) of model g

3: Compute features and predictions using model g :
Ftr = {f tr

i

}ntr
i=1, Fts = {f ts

i

}nts
i=1, Fv = {f v

i

}nv
i=1, Yv = {ŷ v

i

}nv
i=1

4: Train a two-layer logistic regression model M to classify Ftr and Fts

(label Ftr as 1 and Fts as 0)

5: Compute wf (xv
i

) = ntr
nts

1�M(f v
i

)
M(f v

i

) , W = {wf (xv
i

)}nv
i=1

6: Compute weighted loss L = {wf (xv
i

)`(ŷ v
i

, y v
i

)}nv
i=1

7: Estimate coe�cient ⌘ = � d
Cov(L,W )
d
Var[W ]

8: Compute DEV Risk RDEV(g) = mean(L) + ⌘mean(W ) � ⌘
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Inductive Transfer Learning

Outline

1 Transfer Learning

2 Domain Adaptation
H�H-Divergence
MDD: Margin Disparity Discrepancy
DEV: Deep Embedded Validation

3 Inductive Transfer Learning
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Inductive Transfer Learning

Inductive Transfer Learning11

Successful of transfer learning: Pre-train a model on a large-scale source
dataset, and use the parameters as initialization for training a target task.

Compared to training from scratch:

Generalization: better accuracy

Optimization: faster convergence

How to understand the transferability of deep representations?

!" !#
(%#, '#)

!)*
(%), '))

(%), '))
!)+,(!)*, -)) < ,(!)+, -)) ?

11
Liu et al. Towards Understanding the Transferability of Deep Representations, arXiv, 2019
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Inductive Transfer Learning

Transferred Parameters Induce Better Generalization

We can quantify how pre-trained knowledge is preserved when transferring
to the target dataset with 1p

n

kW
Q

� W
P

k
F

.

For more similar target datasets, 1p
n

kW
Q

� W
P

k
F

is smaller

For more similar target datasets, generalization error is smaller
Is 1p

n

kW
Q

� W
P

k
F

implicitly bounded? (we will formally study this)
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Inductive Transfer Learning

Transferred Parameters Induce Better Generalization

Staying close to the transferred parameters benefits generalization

Even for the same target dataset, di↵erent pre-trained parameters
lead to significantly di↵erent solutions

At the convergence point, pre-trained networks stay in the original flat
region, leading to flatter minima than random initialization

(a) t-SNE of parameters (b) Randomly initialized (c) ImageNet pre-trained

Mingsheng Long Transfer Learning October 17, 2019 40 / 50



Inductive Transfer Learning

Transferred Parameters Enable Faster Optimization

Modern neural networks are equipped with Batch Normalization (BN) and
skip connections to enable better loss landscapes

However, at the initialization point, the loss landscapes are still very
messy even in the presence of Batch-Norm and residual connections

(d) Randomly initialized (e) ImageNet pre-trained
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Inductive Transfer Learning

Transferred Parameters Enable Faster Optimization

Pre-trained parameters help smoothen the loss landscape and accelerate
training in the early stages

The landscapes can be described with the Lipschitzness of the loss
function, i.e. the magnitude of gradient

(f) Randomly initialized. (g) ImageNet pre-trained.
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Inductive Transfer Learning

Transferred Parameters Enable Better Optimization

Why is the magnitude of gradient better controlled with the pre-trained
representations?

The gradient is computed through back-prop, @L
@xk�1

i

= W
k

Ik
i

⇣

@L
@xk

i

⌘

.

Pre-trained weight matrices provide more stable scaling factors.

(h) Projection on components of gradient (i) Scaling of gradient
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Inductive Transfer Learning

Feasibility of Transfer Learning

Varying input with fixed labels.
Choosing a model pre-trained on more similar inputs yields a larger
performance gain.

Varying labels with fixed input.
The similarity of the input (images) is just one point. Another factor
of similarity is the relationship between the nature of tasks (labels).
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Inductive Transfer Learning

Feasibility of Transfer Learning

Choices of pre-training epochs.

Although the test accuracy on the pre-training dataset continues
increasing, the test accuracy on the target dataset starts to decline.

(l) Accuracy of pre-training (m) Accuracy of the target dataset
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Inductive Transfer Learning

Theoretical Analysis

Two-layer ReLU network of m hidden units fW,a(x) =
1p
m

a>�(W>x).
x 2 Rd , W = (w1, · · · ,w

m

) 2 Rd⇥m.
w

r

(0) ⇠ N (0, 2I), a
r

⇠unif ({�1, 1}).
L(W) = 1

2(y � fW,a(X))>(y � fW,a(X)).

We first pre-train the model on {x
P,i , yP,i}nP

i=1 drawn i.i.d from P to obtain
W(P), then train on the target dataset {x

Q,i , yQ,i}nQ
i=1 drawn i.i.d from Q.

Definition (Gram matrix of P and Q)

H1
P,ij = Ew⇠N (0,I)[x

>
P,ixP,jI{w>x

P,i � 0, w>x
P,j � 0}]. (25)

H1
Q,ij = Ew⇠N (0,I)[x

>
Q,ixQ,jI{w>x

Q,i � 0, w>x
Q,j � 0}]. (26)

Definition (Gram matrix of transfer learning)

H1
PQ,ij = Ew⇠N (0,I)[x

>
P,ixQ,jI{w>x

P,i � 0, w>x
Q,j � 0}]. (27)
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Inductive Transfer Learning

Theoretical Analysis

Definition (Transformed labels from source label set to target label set)

y
P!Q

, H1
PQ

>H1
P

�1y
P

. (28)

Theorem (Improved Lipschitzness)

Denote by X1 the activations in the target dataset. If

m � poly(n
P

, n
Q

, ��1, ��1
P

, ��1
Q

, �1),  = O

 

�2
P

�

n

2
P

n

1
2
Q

!

, with probability no

less than 1 � � over the random initialization,

k@L(W(P))

@X1
k2 = k@L(W(0))

@X1
k2 � y>

Q

y
Q

+ (y
Q

� y
P!Q

)>(y
Q

� y
P!Q

)

+
poly(n

P

, n
Q

, ��1, ��1
P

, �1)

m
1
4

+ O

0

@

n2
P

n
1
2
Q



�2
P

�

1

A .

(29)
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Inductive Transfer Learning

Theoretical Analysis

Theorem (Improved generalization)

Suppose m � poly(n
P

, n
Q

, ��1, ��1
P

, ��1
Q

, �1),  = O

 

�2
P

�2
Q

�

n

2
P

n

1
2
Q

!

, with probability

no less than 1 � � over the random initialization,

kW(Q) � W(P)k
F


q

(y
Q

� y
P!Q

)>H1
Q

�1(y
Q

� y
P!Q

)

+ O

0

@

n
P

n
1
2

Q


1
2

�
P

�
Q

�
1
2

1

A+
poly(n

P

, n
Q

, ��1, ��1
P

, ��1
Q

, �1)

m
1
4

.
(30)

Lemma (Arora et al., 2019)

Under the same conditions as (30), with probability no less than 1 � �,

E
Q

(L(f (x))) 
s

2

n
Q

kW(Q) � W(P)k
F

+ O

 

s

1

n
Q

!
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Inductive Transfer Learning

Transfer Learning System

Tsinghua Dataway Big Data Software Stack
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