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Transfer Learning

Supervised Learning
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Transfer Learning

Transfer Learning

Machine learning across domains of different distributions P 6= Q
Independent and Differently Distributed (IDD)

How to effectively bound the generalization error on target domain?

Model ModelRepresentation

P(x,y)≠Q(x,y)

Simulation Real

Source Domain Target Domain

f :x→ y f :x→ y
𝝐# 𝝐$

Image Annotation

static fine (SF) static coarse (SC)

GT segmentation w/ SF GT segmentation w/ SC

GT segmentation w/ [41] GT subsampled by 2

GT subsampled by 8 GT subsampled by 32

GT subsampled by 128 nearest training neighbor

Figure 8. Exemplary output of our control experiments for the pixel-level semantic labeling task, see the main paper for details. The image
is part of our test set and has both, the largest number of instances and persons.
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Transfer Learning

Bias-Variance-Shift Tradeoff

Training Error high?

Train-Dev Error high?

Dev Error high?

Test Error high?

Training Set Train-Dev Set Dev Set Test Set

Done!

Bias

Variance

Dataset Shift

Overfit Dev Set

No

No

No

No

Yes

Yes

Yes

Yes

Deeper Model
Longer Training

Bigger Data
Regularization

Transfer Learning
Data Generation

Bigger Dev Data

Andrew Ng. The Nuts and Bolts of Building Applications using Deep 
Learning. NIPS 2016 Tutorial.

Optimal Bayes Rate
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Transfer Learning

Bridging Theory and Algorithm

Everything should be made as simple as possible, but no simpler.
—Albert Einstein

There is nothing more practical than a good theory.
—Vladimir Vapnik
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Transfer Learning

Bridging Theory and Algorithm

ℋ𝚫ℋ-Distance
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H∆H-Divergence

Notations and Assumptions

Source risk: εP (h) = E(x,y)∼P [h (x) 6= y ], {(xi , yi )}ni=1 ∼ Pn

Target risk: εQ (h) = E(x,y)∼Q [h (x) 6= y ], {(xi , yi )}mi=1 ∼ Qm

Source disparity: εP (h1, h2) = E(x,y)∼P [h1 (x) 6= h2 (x)]

Target disparity: εQ (h1, h2) = E(x,y)∼Q [h1 (x) 6= h2 (x)]

Ideal joint hypothesis: h∗ = arg minh εP (h) + εQ (h)

Assumption: ideal hypothesis has small risk εideal = εP (h∗) + εQ (h∗)

Distribution
discrepancy

Ideal hypothesis
with small error
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H∆H-Divergence

Relating the Target Risk to the Source Risk

Theorem

Assuming small εideal , the bound of the target risk εQ(h) of hypothesis
h ∈ H is given by the source risk εP(h) plus the disparity difference:

εQ (h) 6 εP (h) + [εP (h∗) + εQ (h∗)] + |εP (h, h∗)− εQ (h, h∗)| (1)

Proof.

Simply by using the triangle inequalities, we have

εQ (h) 6 εQ (h∗) + εQ (h, h∗)

6 εQ (h∗) + εP (h, h∗) + εQ (h, h∗)− εP (h, h∗)

6 εQ (h∗) + εP (h, h∗) + |εQ (h, h∗)− εP (h, h∗)|
6 εP (h) + [εP (h∗) + εQ (h∗)] + |εP (h, h∗)− εQ (h, h∗)|

(2)
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H∆H-Divergence

How to Bound the Disparity Difference?

We can illustrate the disparity difference |εP (h, h∗)− εQ (h, h∗)| as

low low high
h h h

h' h' h'

H∆H-Divergence1: dH∆H(P,Q) , sup
h,h′∈H

|εP (h, h′)− εQ (h, h′)|

Hypothesis-independent discrepancy—depending on hypothesis space.

1Ben-David et al. A Theory of Learning from Different Domains. Machine Learning, 2010.
Mingsheng Long Transfer Learning August 21, 2019 11 / 37



H∆H-Divergence

Generalization Bound with H∆H-Divergence

Theorem (Generalization Bound)

Denote by d the VC-dimension of hypothesis space H. For any hypothesis
h ∈ H,

εQ(h) ≤ εP̂(h) + dH∆H(P̂, Q̂) + εideal

+ O(

√
d log n

n
+

√
d logm

m
)

(3)

εP(h) depicts the performance of h on source domain.

dH∆H bounds the generalization gap caused by domain shift.

εideal quantifies the inverse of “adaptability” between domains.

The order of the complexity term is O(
√
d log n/n +

√
d logm/m).
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H∆H-Divergence DAN: Deep Adaptation Network

Approximating H∆H-Divergence by Statistical Distance

For binary hypothesis h, the H∆H-Divergence can be bounded by

dH∆H(P,Q) , sup
h,h′∈H

|εP (h, h′)− εQ (h, h′)|

= sup
h,h′∈H

|EP [|h (x)− h′ (x)| 6= 0]− EQ [|h (x)− h′ (x)| 6= 0]|

= sup
δ∈H∆H

|EP [δ(x) 6= 0]− EQ [δ (x) 6= 0]|

(4)

The last term takes the form of Integral Probability Metric (IPM):

dF (P,Q) = sup
f∈F
|Ex∼P f (x)− Ex∼Q f (x)| (5)

Assuming F can be approximated by kernel functions in RKHS, dF (P,Q)
turns into Maximum Mean Discrepancy (MMD) (a statistical distance)
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H∆H-Divergence DAN: Deep Adaptation Network

DAN: Deep Adaptation Network2

MK-

MMD

MK-

MMD

MK-

MMD

input conv1 conv2 conv3 conv4 conv5 fc6 fc7 fc8

source

output

target

output

frozen frozenfrozen
fine-

tune

fine-

tune

learn learnlearn learn

Distribution matching: yield the upper-bound by multiple kernel learning

d2
k (P,Q) ,

∥∥EP [φ (xs)]− EQ

[
φ
(
xt
)]∥∥2

Hk
(6)

min
θ∈Θ

max
k∈K

1

na

na∑

i=1

L (θ (xai ) , yai ) + λ

l2∑

`=l1

d2
k

(
P̂`, Q̂`

)
(7)

2Long et al. Learning Transferable Features with Deep Adaptation Networks. ICML 2015.
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H∆H-Divergence DANN: Domain Adversarial Neural Network

Approximating H∆H-Divergence by Domain Discriminator

For binary hypothesis h, the H∆H-Divergence can be bounded by

dH∆H(P,Q) , sup
h,h′∈H

|εP (h, h′)− εQ (h, h′)|

= sup
δ∈H∆H

|EP [δ(x) 6= 0]− EQ [δ (x) 6= 0]|

6 sup
D∈HD

|EP [D(x) = 1] + EQ [D (x) = 0]|

(8)

This upper-bound can be yielded by training a domain discriminator D(x)

Distribution
discrepancy

Hypothesis-based
distribution discrepancy

h

h'
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H∆H-Divergence DANN: Domain Adversarial Neural Network

DANN: Domain Adversarial Neural Network3

Unsupervised Domain Adaptation by Backpropagation

Figure 1. The proposed architecture includes a deep feature extractor (green) and a deep label predictor (blue), which together form
a standard feed-forward architecture. Unsupervised domain adaptation is achieved by adding a domain classifier (red) connected to the
feature extractor via a gradient reversal layer that multiplies the gradient by a certain negative constant during the backpropagation-
based training. Otherwise, the training proceeds in a standard way and minimizes the label prediction loss (for source examples) and
the domain classification loss (for all samples). Gradient reversal ensures that the feature distributions over the two domains are made
similar (as indistinguishable as possible for the domain classifier), thus resulting in the domain-invariant features.

and (Long & Wang, 2015) is thus different from our idea
of matching distribution by making them indistinguishable
for a discriminative classifier. Below, we compare our ap-
proach to (Tzeng et al., 2014; Long & Wang, 2015) on the
Office benchmark. Another approach to deep domain adap-
tation, which is arguably more different from ours, has been
developed in parallel in (Chen et al., 2015).

3. Deep Domain Adaptation
3.1. The model
We now detail the proposed model for the domain adap-
tation. We assume that the model works with input sam-
ples x 2 X , where X is some input space and cer-
tain labels (output) y from the label space Y . Below,
we assume classification problems where Y is a finite set
(Y = {1, 2, . . . L}), however our approach is generic and
can handle any output label space that other deep feed-
forward models can handle. We further assume that there
exist two distributions S(x, y) and T (x, y) on X ⌦ Y ,
which will be referred to as the source distribution and
the target distribution (or the source domain and the tar-
get domain). Both distributions are assumed complex and
unknown, and furthermore similar but different (in other
words, S is “shifted” from T by some domain shift).
Our ultimate goal is to be able to predict labels y given
the input x for the target distribution. At training time,
we have an access to a large set of training samples
{x1,x2, . . . ,xN} from both the source and the target do-
mains distributed according to the marginal distributions
S(x) and T (x). We denote with di the binary variable (do-
main label) for the i-th example, which indicates whether
xi come from the source distribution (xi⇠S(x) if di=0) or
from the target distribution (xi⇠T (x) if di=1). For the ex-
amples from the source distribution (di=0) the correspond-

ing labels yi 2 Y are known at training time. For the ex-
amples from the target domains, we do not know the labels
at training time, and we want to predict such labels at test
time.
We now define a deep feed-forward architecture that for
each input x predicts its label y 2 Y and its domain label
d 2 {0, 1}. We decompose such mapping into three parts.
We assume that the input x is first mapped by a mapping
Gf (a feature extractor) to a D-dimensional feature vector
f 2 RD. The feature mapping may also include several
feed-forward layers and we denote the vector of parame-
ters of all layers in this mapping as ✓f , i.e. f = Gf (x; ✓f ).
Then, the feature vector f is mapped by a mapping Gy (la-
bel predictor) to the label y, and we denote the parameters
of this mapping with ✓y . Finally, the same feature vector f
is mapped to the domain label d by a mapping Gd (domain
classifier) with the parameters ✓d (Figure 1).
During the learning stage, we aim to minimize the label
prediction loss on the annotated part (i.e. the source part)
of the training set, and the parameters of both the feature
extractor and the label predictor are thus optimized in or-
der to minimize the empirical loss for the source domain
samples. This ensures the discriminativeness of the fea-
tures f and the overall good prediction performance of the
combination of the feature extractor and the label predictor
on the source domain.
At the same time, we want to make the features f
domain-invariant. That is, we want to make the dis-
tributions S(f) = {Gf (x; ✓f ) |x⇠S(x)} and T (f) =
{Gf (x; ✓f ) |x⇠T (x)} to be similar. Under the covariate
shift assumption, this would make the label prediction ac-
curacy on the target domain to be the same as on the source
domain (Shimodaira, 2000). Measuring the dissimilarity
of the distributions S(f) and T (f) is however non-trivial,
given that f is high-dimensional, and that the distributions

Adversarial adaptation: learning features indistinguishable across domains

E (θf , θy , θd) =
∑

xi∼P̂

Ly (Gy (Gf (xi )) , yi )− λ
∑

xi∼P̂∪Q̂

Ld (Gd (Gf (xi )) , di ) (9)

(θ̂f , θ̂y ) = arg min
θf ,θy

E (θf , θy , θd) (θ̂d) = arg max
θd

E (θf , θy , θd) (10)

3Ganin et al. Domain Adversarial Training of Neural Networks. JMLR 2016.
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H∆H-Divergence MCD: Maximum Classifier Discrepancy

Approximating H∆H-Divergence by Classifier Consistency4
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Figure 3. Adversarial training steps of our method. We separate the
network into two modules: generator (G) and classifiers (F1 ,F2 ).
The classifiers learn to maximize the discrepancy Step B on the
target samples, and the generator learns to minimize the discrep-
ancy Step C. Please note that we employ a training Step A to
ensure the discriminative features for source samples.

3.2. Discrepancy Loss

In this study, we utilize the absolute values of the dif-
ference between the two classifiers’ probabilistic outputs as
discrepancy loss:

d(p1, p2) =
1

K

KX

k=1

|p1k � p2k|, (1)

where the p1k and p2k denote probability output of p1 and
p2 for class k respectively. The choice for L1-distance is
based on the Theorem . Additionally, we experimentally
found that L2-distance does not work well.

3.3. Training Steps

To sum up the previous discussion in Section 3.1, we
need to train two classifiers, which take inputs from the gen-
erator and maximize d(p1(y|xt), p2(y|xt)), and the gener-
ator which tries to mimic the classifiers. Both the classifiers
and generator must classify source samples correctly. We
will show the manner in which to achieve this. We solve
this problem in three steps.

Step A First, we train both classifiers and generator to
classify the source samples correctly. In order to make clas-
sifiers and generator obtain task-specific discriminative fea-
tures, this step is crucial. We train the networks to minimize
softmax cross entropy. The objective is as follows:

min
G,F1,F2

L(Xs, Ys). (2)

L(Xs, Ys) = �E(xs,ys)⇠(Xs,Ys)

KX

k=1

1l[k=ys] log p(y|xs)

(3)
Step B In this step, we train the classifiers (F1, F2) as a dis-
criminator for a fixed generator (G). By training the classi-
fiers to increase the discrepancy, they can detect the target
samples excluded by the support of the source. This step
corresponds to Step B in Fig. 3. We add a classification loss
on the source samples. Without this loss, we experimentally
found that our algorithm’s performance drops significantly.
We use the same number of source and target samples to
update the model. The objective is as follows:

min
F1,F2

L(Xs, Ys) � Ladv(Xt). (4)

Ladv(Xt) = Ext⇠Xt
[d(p1(y|xt), p2(y|xt))] (5)

Step C We train the generator to minimize the discrepancy
for fixed classifiers. This step corresponds to Step C in
Fig. 3. The number n indicates the number of times we re-
peat this for the same mini-batch. This number is a hyper-
parameter of our method. This term denotes the trade-off
between the generator and the classifiers. The objective is
as follows:

min
G

Ladv(Xt). (6)

These three steps are repeated in our method. To our un-
derstanding, the order of the three steps is not important.
Instead, our major concern is to train the classifiers and gen-
erator in an adversarial manner under the condition that they
can classify source samples correctly.

3.4. Theoretical Insight

Since our method is motivated by the theory proposed
by Ben-David et al. [1], we want to show the relationship
between our method and the theory in this section.

Ben-David et al. [1] proposed the theory that bounds the
expected error on the target samples, RT (h), by using three
terms: (i) expected error on the source domain, RS(h); (ii)
H�H-distance (dH�H(S, T )), which is measured as the
discrepancy between two classifiers; and (iii) the shared er-
ror of the ideal joint hypothesis, �. S and T denote source
and target domain respectively. Another theory [2] bounds
the error on the target domain, which introduced H-distance
(dH(S, T )) for domain divergence. The two theories and
their relationships can be explained as follows.

Theorem 1 Let H be the hypothesis class. Given two do-
mains S and T , we have

8h 2 H, RT (h)  RS(h) +
1

2
dH�H(S, T ) + �

 RS(h) +
1

2
dH(S, T ) + �

(7)

!

"#

"$

Use two classifiers G1,G2 to approximate sup
h,h′∈H

|εP (h, h′)− εQ (h, h′)|

Assume G1 = h and G2 = h′ should agree on source domain.

Use L1-loss of two classifiers’ outputs to approximate disagreement:

min
φ
{min
G1,G2

E
P̂

[L(G1(x), y) + L(G2(x), y)] + max
G1,G2

E
Q̂
|G1(x)− G2(x)|} (11)

4Saito, et al. Maximum classifier discrepancy for unsupervised domain adaptation. CVPR

2018.
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Margin Disparity Discrepancy

Towards Informative Margin Theory5

Towards a rigorous multiclass domain adaptation theory.

All existing theories are only applicable to binary classification.

Towards an informative margin theory.

Explore the idea of margin in measuring domain discrepancy.

Towards a certain function class in the theoretical bound.

Eliminate approximation assumptions in all existing methods.

Towards bridging the existing gap between theories and algorithms.

5Zhang et al. Bridging Theory and Algorithm for Domain Adaptation. ICML 2019.
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Margin Disparity Discrepancy

Notations

Scoring function: f ∈ F : X × Y → R
Labeling function induced by f : hf : x 7→ arg maxy∈Y f (x , y)

Labeling function class: H = {hf |f ∈ F}
Margin of a hypothesis:

ρf (x , y) =
1

2
(f (x , y)−max

y ′ 6=y
f (x , y ′))

Margin Loss:

Φρ(x) =





0 ρ 6 x

1− x/ρ 0 6 x 6 ρ

1 x 6 0

1

0 ρ 1
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Margin Disparity Discrepancy

MDD: Margin Disparity Discrepancy

Margin risk: ε
(ρ)
D (f ) = E(x ,y)∼D [Φρ(ρf (x , y))]

Margin disparity: ε
(ρ)
D (f ′, f ) , Ex∼DX

[Φρ(ρf ′(x , hf (x)))]

Definition (Margin Disparity Discrepancy, MDD)

With above definitions, we define Margin Disparity Discrepancy (MDD)
and its empirical version by

d
(ρ)
f ,F (P,Q) , sup

f ′∈F

(
ε

(ρ)
Q (f ′, f )− ε(ρ)

P (f ′, f )
)
,

d
(ρ)
f ,F (P̂, Q̂) , sup

f ′∈F

(
ε

(ρ)

Q̂
(f ′, f )− ε(ρ)

P̂
(f ′, f )

)
.

(12)

MDD satisfies d
(ρ)
f ,F (P,P) = 0 as well as nonnegativity and subadditivity.
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Margin Disparity Discrepancy

Bounding the Target Risk by MDD

Theorem

Let F ⊆ RX×Y be a hypothesis set with label set Y = {1, · · · , k} and
H ⊆ YX be the corresponding Y-valued labeling function class. For every
scoring function f ∈ F ,

εQ(f ) ≤ ε(ρ)
P (f ) + d

(ρ)
f ,F (P,Q) + ε

(ρ)
ideal , (13)

where ε
(ρ)
ideal is the margin error of ideal joint hypothesis f ∗:

ε
(ρ)
ideal = min

f ∗∈F
{ε(ρ)

P (f ∗) + ε
(ρ)
Q (f ∗)}. (14)

Main proof difficulties: margin loss does not satisfy triangle inequality.

Solution: One-sided triangle inequality for the margin loss.

A new tool for analyzing transfer learning with margin theory.

Mingsheng Long Transfer Learning August 21, 2019 22 / 37



Margin Disparity Discrepancy

Definitions

Definition (Function Class Π1F)

Given a class of scoring functions F , Π1F is defined as

Π1F = {x 7→ f (x , y)
∣∣y ∈ Y, f ∈ F}. (15)

Definition (Function Class ΠHF)

Given a class of scoring functions F and a class of the induced labeling
functions H, we define ΠHF as

ΠHF , {x 7→ f (x , h(x))|h ∈ H, f ∈ F}. (16)

By applying the margin error over each entry in ΠHF , we obtain the
”scoring” version of H∆H (symmetric difference hypothesis space)

Mingsheng Long Transfer Learning August 21, 2019 23 / 37



Margin Disparity Discrepancy

Definitions

Definition (Rademacher Complexity)

The empirical Rademacher complexity of function class G with respect to
the sample D̂ is defined as

R̂
D̂

(G) = Eσ sup
g∈G

1

n

n∑

i=1

σig(zi ). (17)

where σi ’s are independent uniform random variables taking values in
{−1,+1}. The Rademacher complexity is

Rn,D(G) = E
D̂∼DnR̂D̂

(G). (18)

Definition (Covering Number)

(Informal) A covering number N2(τ,G) is the minimal number of L2 balls
of radius τ > 0 needed to cover a class G of bounded functions g : X → R
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Margin Disparity Discrepancy

Generalization Bound with Rademacher Complexity

Theorem (Generalization Bound with Rademacher Complexity)

Let F ⊆ RX×Y be a hypothesis set with label set Y = {1, · · · , k} and
H ⊆ YX be the corresponding Y-valued labeling function class. Fix ρ > 0.
For all δ > 0, with probability 1− 3δ the following inequality holds for all
hypothesis f ∈ F :

εQ(f ) ≤ε(ρ)

P̂
(f ) + d

(ρ)
f ,F (P̂, Q̂) + εideal

+
2k2

ρ
Rn,P(Π1F) +

k

ρ
Rn,P(ΠHF) + 2

√
log 2

δ

2n

+
k

ρ
Rm,Q(ΠHF) +

√
log 2

δ

2m
.

(19)
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Margin Disparity Discrepancy

Generalization Bound with Covering Numbers

Theorem (Generalization Bound with Covering Numbers)

Let F ⊆ RX×Y be a hypothesis set with label set Y = {1, · · · , k} and
H ⊆ YX be the corresponding Y-valued labeling function class. Suppose
Π1F is bounded in L2 by L. Fix ρ > 0. For all δ > 0, with probability
1− 3δ the following inequality holds for all hypothesis f ∈ F :

εQ(f ) ≤ε(ρ)

P̂
(f ) + d

(ρ)
f ,F (P̂, Q̂) + εideal + 2

√
log 2

δ

2n

+

√
log 2

δ

2m
+

16k2
√
k

ρ
inf
ε≥0

{
ε+ 3

( 1√
n

+
1√
m

)

(∫ L

ε

√
logN2(τ,Π1F)dτ+L

∫ 1

ε/L

√
logN2(τ,Π1H)dτ

)}
.

(20)
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Margin Disparity Discrepancy MDD: Margin Disparity Discrepancy

MDD: Margin Disparity Discrepancy

!

Source
Risk
"($%)

'

MDD
() $%,+%

GRL

,-

,-′

One-hot

'′

Min

Max

Minimax game: Adversarial learning induced by informative margin theory

min
f ,ψ

ε
(ρ)

ψ(P̂)
(f ) + (ε

(ρ)

ψ(Q̂)
(f ∗, f )− ε(ρ)

ψ(P̂)
(f ∗, f )),

f ∗ = max
f ′

(ε
(ρ)

ψ(Q̂)
(f ′, f )− ε(ρ)

ψ(P̂)
(f ′, f )).

(21)
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Transfer Model Selection
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1 Transfer Learning

2 H∆H-Divergence
DAN: Deep Adaptation Network
DANN: Domain Adversarial Neural Network
MCD: Maximum Classifier Discrepancy

3 Margin Disparity Discrepancy
MDD: Margin Disparity Discrepancy

4 Transfer Model Selection
DEV: Deep Embedded Validation

5 Evaluation and Implementation
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Transfer Model Selection

Model Selection in Domain Adaptation

Supervised Learning

Training

(x1, y1) ⇠ p
<latexit sha1_base64="bK92VyX2Dp5SeGibfl0IGf6O6Xk=">AAACIXicbVDLSsNAFJ34rPUVdelmsAgVSkmqYJdFNy4r2AckIUymk3bo5MHMRAwhv+LGX3HjQpHuxJ9xmragrRcGzpxzz507x4sZFdIwvrS19Y3Nre3STnl3b//gUD867ooo4Zh0cMQi3veQIIyGpCOpZKQfc4ICj5GeN76d6r1HwgWNwgeZxsQJ0DCkPsVIKsrVm9Un16ylrnlhCxrAzC5GWnzoOZlZN4qqGcsgj3NXryxucBUsrBUwr7arT+xBhJOAhBIzJIRlGrF0MsQlxYzkZTsRJEZ4jIbEUjBEARFOVqyTw3PFDKAfcXVCCQv2tyNDgRBp4KnOAMmRWNam5H+alUi/6WQ0jBNJQjx7yE8YlBGcxgUHlBMsWaoAwpyqXSEeIY6wVKGWVQjm8pdXQbdRNy/rjfurSutmHkcJnIIzUAUmuAYtcAfaoAMweAav4B18aC/am/apTWata9rccwL+lPb9A7DdntM=</latexit>

Validation

(x2, y2) ⇠ p
<latexit sha1_base64="eGrEMJ2gD5vb42vhxD79bvCVvJY=">AAACIXicbVDLSsNAFJ34rPUVdelmsAgVSkmiYJdFNy4r2Ac0IUymk3bo5MHMRAwhv+LGX3HjQpHuxJ9xmragrRcGzpxzz507x4sZFdIwvrS19Y3Nre3STnl3b//gUD867ogo4Zi0ccQi3vOQIIyGpC2pZKQXc4ICj5GuN76d6t1HwgWNwgeZxsQJ0DCkPsVIKsrVG9Un16qlrnVhCxrAzC5G9vnQczKzbhRVM5ZBHueuXlnc4CpYWCtgXi1Xn9iDCCcBCSVmSIi+acTSyRCXFDOSl+1EkBjhMRqSvoIhCohwsmKdHJ4rZgD9iKsTSliwvx0ZCoRIA091BkiOxLI2Jf/T+on0G05GwziRJMSzh/yEQRnBaVxwQDnBkqUKIMyp2hXiEeIISxVqWYVgLn95FXSsunlZt+6vKs2beRwlcArOQBWY4Bo0wR1ogTbA4Bm8gnfwob1ob9qnNpm1rmlzzwn4U9r3D7RJntU=</latexit>

Test

(x3, y3) ⇠ p
<latexit sha1_base64="oUDa6Gl8ObWvPKuVhBfxJsdt9pQ=">AAACIXicbVDLSgMxFM3UV62vUZdugkWoUMpMK9hl0Y3LCvYBnWHIpJk2NPMgyYjDML/ixl9x40KR7sSfMZ22oK0XAifn3HNzc9yIUSEN40srbGxube8Ud0t7+weHR/rxSVeEMcekg0MW8r6LBGE0IB1JJSP9iBPku4z03MntTO89Ei5oGDzIJCK2j0YB9ShGUlGO3qw8OY1q4jQuLUF9mFr5yAEfuXZq1oy8qsYqyKLM0cvLG1wHS2sZLKrt6FNrGOLYJ4HEDAkxMI1I2inikmJGspIVCxIhPEEjMlAwQD4Rdpqvk8ELxQyhF3J1Aglz9rcjRb4Qie+qTh/JsVjVZuR/2iCWXtNOaRDFkgR4/pAXMyhDOIsLDiknWLJEAYQ5VbtCPEYcYalCLakQzNUvr4NuvWY2avX7q3LrZhFHEZyBc1ABJrgGLXAH2qADMHgGr+AdfGgv2pv2qU3nrQVt4TkFf0r7/gG3tZ7X</latexit>

Semi-Supervised Learning (SSL)?

Unsupervised Domain Adaptation (UDA)?

Training

(x1, y1) ⇠ p
<latexit sha1_base64="bK92VyX2Dp5SeGibfl0IGf6O6Xk=">AAACIXicbVDLSsNAFJ34rPUVdelmsAgVSkmqYJdFNy4r2AckIUymk3bo5MHMRAwhv+LGX3HjQpHuxJ9xmragrRcGzpxzz507x4sZFdIwvrS19Y3Nre3STnl3b//gUD867ooo4Zh0cMQi3veQIIyGpCOpZKQfc4ICj5GeN76d6r1HwgWNwgeZxsQJ0DCkPsVIKsrVm9Un16ylrnlhCxrAzC5GWnzoOZlZN4qqGcsgj3NXryxucBUsrBUwr7arT+xBhJOAhBIzJIRlGrF0MsQlxYzkZTsRJEZ4jIbEUjBEARFOVqyTw3PFDKAfcXVCCQv2tyNDgRBp4KnOAMmRWNam5H+alUi/6WQ0jBNJQjx7yE8YlBGcxgUHlBMsWaoAwpyqXSEeIY6wVKGWVQjm8pdXQbdRNy/rjfurSutmHkcJnIIzUAUmuAYtcAfaoAMweAav4B18aC/am/apTWata9rccwL+lPb9A7DdntM=</latexit>

Validation

(x2, y2) ⇠ p
<latexit sha1_base64="eGrEMJ2gD5vb42vhxD79bvCVvJY=">AAACIXicbVDLSsNAFJ34rPUVdelmsAgVSkmiYJdFNy4r2Ac0IUymk3bo5MHMRAwhv+LGX3HjQpHuxJ9xmragrRcGzpxzz507x4sZFdIwvrS19Y3Nre3STnl3b//gUD867ogo4Zi0ccQi3vOQIIyGpC2pZKQXc4ICj5GuN76d6t1HwgWNwgeZxsQJ0DCkPsVIKsrVG9Un16qlrnVhCxrAzC5G9vnQczKzbhRVM5ZBHueuXlnc4CpYWCtgXi1Xn9iDCCcBCSVmSIi+acTSyRCXFDOSl+1EkBjhMRqSvoIhCohwsmKdHJ4rZgD9iKsTSliwvx0ZCoRIA091BkiOxLI2Jf/T+on0G05GwziRJMSzh/yEQRnBaVxwQDnBkqUKIMyp2hXiEeIISxVqWYVgLn95FXSsunlZt+6vKs2beRwlcArOQBWY4Bo0wR1ogTbA4Bm8gnfwob1ob9qnNpm1rmlzzwn4U9r3D7RJntU=</latexit>

Test

(x3, y3) ⇠ p
<latexit sha1_base64="oUDa6Gl8ObWvPKuVhBfxJsdt9pQ=">AAACIXicbVDLSgMxFM3UV62vUZdugkWoUMpMK9hl0Y3LCvYBnWHIpJk2NPMgyYjDML/ixl9x40KR7sSfMZ22oK0XAifn3HNzc9yIUSEN40srbGxube8Ud0t7+weHR/rxSVeEMcekg0MW8r6LBGE0IB1JJSP9iBPku4z03MntTO89Ei5oGDzIJCK2j0YB9ShGUlGO3qw8OY1q4jQuLUF9mFr5yAEfuXZq1oy8qsYqyKLM0cvLG1wHS2sZLKrt6FNrGOLYJ4HEDAkxMI1I2inikmJGspIVCxIhPEEjMlAwQD4Rdpqvk8ELxQyhF3J1Aglz9rcjRb4Qie+qTh/JsVjVZuR/2iCWXtNOaRDFkgR4/pAXMyhDOIsLDiknWLJEAYQ5VbtCPEYcYalCLakQzNUvr4NuvWY2avX7q3LrZhFHEZyBc1ABJrgGLXAH2qADMHgGr+AdfGgv2pv2qU3nrQVt4TkFf0r7/gG3tZ7X</latexit>

Training

Validation

(x1, y1) ⇠ p
<latexit sha1_base64="bK92VyX2Dp5SeGibfl0IGf6O6Xk=">AAACIXicbVDLSsNAFJ34rPUVdelmsAgVSkmqYJdFNy4r2AckIUymk3bo5MHMRAwhv+LGX3HjQpHuxJ9xmragrRcGzpxzz507x4sZFdIwvrS19Y3Nre3STnl3b//gUD867ooo4Zh0cMQi3veQIIyGpCOpZKQfc4ICj5GeN76d6r1HwgWNwgeZxsQJ0DCkPsVIKsrVm9Un16ylrnlhCxrAzC5GWnzoOZlZN4qqGcsgj3NXryxucBUsrBUwr7arT+xBhJOAhBIzJIRlGrF0MsQlxYzkZTsRJEZ4jIbEUjBEARFOVqyTw3PFDKAfcXVCCQv2tyNDgRBp4KnOAMmRWNam5H+alUi/6WQ0jBNJQjx7yE8YlBGcxgUHlBMsWaoAwpyqXSEeIY6wVKGWVQjm8pdXQbdRNy/rjfurSutmHkcJnIIzUAUmuAYtcAfaoAMweAav4B18aC/am/apTWata9rccwL+lPb9A7DdntM=</latexit>

Source Domain

(x1, y1)
<latexit sha1_base64="Eo7NgPugphaKdlJ886CdCt0jH00=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBahgpSkCnosevFYwX5IG8Jmu2mXbjZhdyOG0F/hxYMiXv053vw3btsctPXBwOO9GWbm+TFnStv2t1VYWV1b3yhulra2d3b3yvsHbRUlktAWiXgkuz5WlDNBW5ppTruxpDj0Oe3445up33mkUrFI3Os0pm6Ih4IFjGBtpIfqk+ecpZ5z6pUrds2eAS0TJycVyNH0yl/9QUSSkApNOFaq59ixdjMsNSOcTkr9RNEYkzEe0p6hAodUudns4Ak6McoABZE0JTSaqb8nMhwqlYa+6QyxHqlFbyr+5/USHVy5GRNxoqkg80VBwpGO0PR7NGCSEs1TQzCRzNyKyAhLTLTJqGRCcBZfXibtes05r9XvLiqN6zyOIhzBMVTBgUtowC00oQUEQniGV3izpPVivVsf89aClc8cwh9Ynz9DQ49m</latexit>

x2
<latexit sha1_base64="vdTCQWpAcdEoAqjXndSIH2U27gw=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrVindeqd5dlGvXeRwFOIYTOAMPLqEGt1CHBjAYwDO8wpsjnRfn3fmYt644+cwR/IHz+QMOgo2l</latexit>

Test

Target Domain

(x2, y2) ⇠ q
<latexit sha1_base64="Sm0pBIVCaRBpIHu7bbL28M1uIaI=">AAACIXicbVDLSgMxFM3UV62vUZdugkWoUMrMKNhl0Y3LCvYB7TBk0rQNTWbGJCMOQ3/Fjb/ixoUi3Yk/YzptQVsvBE7Ouefm5vgRo1JZ1peRW1vf2NzKbxd2dvf2D8zDo6YMY4FJA4csFG0fScJoQBqKKkbakSCI+4y0/NHNVG89EiFpGNyrJCIuR4OA9ilGSlOeWS09eU458ZzzrqQcpt1sZEcMfDe1K1ZWZWsZjB/Gnllc3OAqWFiLYF51z5x0eyGOOQkUZkjKjm1Fyk2RUBQzMi50Y0kihEdoQDoaBogT6abZOmN4ppke7IdCn0DBjP3tSBGXMuG+7uRIDeWyNiX/0zqx6lfdlAZRrEiAZw/1YwZVCKdxwR4VBCuWaICwoHpXiIdIIKx0qAUdgr385VXQdCr2RcW5uyzWrudx5MEJOAUlYIMrUAO3oA4aAINn8ArewYfxYrwZn8Zk1poz5p5j8KeM7x+1zp7W</latexit>

(x2, y2)
<latexit sha1_base64="o66BGG4QdlsPMXJb0qJHVh0X+fc=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBahgpQkCnosevFYwX5gG8Jmu2mXbjZhdyOW0H/hxYMiXv033vw3btsctPXBwOO9GWbmBQlnStv2t1VYWV1b3yhulra2d3b3yvsHLRWnktAmiXksOwFWlDNBm5ppTjuJpDgKOG0Ho5up336kUrFY3OtxQr0IDwQLGcHaSA/VJ989Q2PfPfXLFbtmz4CWiZOTCuRo+OWvXj8maUSFJhwr1XXsRHsZlpoRTielXqpogskID2jXUIEjqrxsdvEEnRilj8JYmhIazdTfExmOlBpHgemMsB6qRW8q/ud1Ux1eeRkTSaqpIPNFYcqRjtH0fdRnkhLNx4ZgIpm5FZEhlphoE1LJhOAsvrxMWm7NOa+5dxeV+nUeRxGO4Biq4MAl1OEWGtAEAgKe4RXeLGW9WO/Wx7y1YOUzh/AH1ucPnaKPkg==</latexit>
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Transfer Model Selection

IWCV: Importance-Weighted Cross-Validation6

Covariate shift assumption: P(y |x) = Q(y |x)

Model selection by estimating Target Risk εQ (h) = EQ [h (x) 6= y ]

Importance-Weighted Cross-Validation (IWCV)

EPw(x) · [h (x) 6= y ] = EP
Q(x)

P(x)
· [h (x) 6= y ] = EQ [h (x) 6= y ] = εQ(h)

The estimation is unbiased but the variance is unbounded
Density ratio is not accessible due to unknownness of P and Q
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6Covariate shift adaptation by importance weighted cross validation, JMLR’2007
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Transfer Model Selection DEV: Deep Embedded Validation

DEV: Deep Embedded Validation10

Variance of IWCV (bounded by Rényi divergence)7:

Varx∼P [w(x) · [h(x) 6= y ]] ≤ dα+1(Q‖P)εQ(h)1− 1
α − εQ(h)2

Density ratio w(x) = Q(x)
P(x) is estimated by discriminative learning8

Feature adaptation reduces distribution discrepancy dα+1(Q‖P)9

Control variate explicitly reduces the variance of EPw(x) · [h (x) 6= y ]

E[z ] = ζ,E[t] = τ
z? = z + η(t − τ)
E[z?] = E[z ] + ηE[t − τ ] = ζ + η(E[t]− E[τ ]) = ζ.
Var[z?] = Var[z + η(t − τ)] = η2Var[t] + 2ηCov(z , t) + Var[z ]

minVar[z?] = (1− ρ2
z,t)Var[z ], when η̂ = −Cov(z,t)

Var[t]

7Learning Bounds for Importance Weighting, NeurIPS 2010
8Discriminative learning for differing training and test distributions, ICML 2007
9Conditional Adversarial Domain Adaptation, NeurIPS 2018

10You et al. Towards Accurate Model Selection in Deep Unsupervised Domain Adaptation.

ICML 2019.
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Evaluation and Implementation

Outline

1 Transfer Learning

2 H∆H-Divergence
DAN: Deep Adaptation Network
DANN: Domain Adversarial Neural Network
MCD: Maximum Classifier Discrepancy

3 Margin Disparity Discrepancy
MDD: Margin Disparity Discrepancy

4 Transfer Model Selection
DEV: Deep Embedded Validation

5 Evaluation and Implementation

Mingsheng Long Transfer Learning August 21, 2019 32 / 37



Evaluation and Implementation

Datasets

Pre-train Fine-tune

VisDA Challenge 2017

Fine-tune

Fine-tune

Office-Caltech 

OfficeHome
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Evaluation and Implementation

Results

Table: Accuracy (%) on Office-31 for unsupervised domain adaptation

Method A → W D → W W → D A → D D → A W → A Avg

ResNet-50 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1
DAN 80.5±0.4 97.1±0.2 99.6±0.1 78.6±0.2 63.6±0.3 62.8±0.2 80.4

DANN 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
CDAN 93.0±0.2 98.4±0.2 100.0±.0 89.2±0.3 70.2±0.4 69.4±0.4 86.7

CDAN+E 93.1±0.1 98.6±0.1 100.0±.0 93.4±0.2 71.0±0.3 70.3±0.3 87.7
MDD 94.5±0.3 98.4±0.1 100.0±.0 93.5±0.2 74.6±0.3 72.2±0.1 88.9

Table: Accuracy (%) on Office-Home for unsupervised domain adaptation

Method Ar�Cl Ar�Pr Ar�Rw Cl�Ar Cl�Pr Cl�Rw Pr�Ar Pr�Cl Pr�Rw Rw�Ar Rw�Cl Rw�Pr Avg

ResNet-50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
DANN 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
MDD 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
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Evaluation and Implementation

Results

Table: Accuracy (%) on VisDA-2017 (ResNet-50)

Method Synthetic → Real

MCD 69.2
GTA 69.5
CDAN 70.0
MDD 74.6

Table: Accuracy (%) of MCD by different validation methods on VisDA-2017

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck mean

Original 87.00 60.90 83.70 64.00 88.90 79.60 84.70 76.90 88.60 40.30 83.00 25.80 71.90
Source Risk 84.39 54.11 69.15 46.37 80.49 80.45 85.04 65.24 87.22 36.86 78.04 28.91 66.36
IWCV 81.21 60.95 76.00 56.53 82.83 72.06 84.05 68.65 86.85 44.37 69.29 23.81 67.22
DEV (w/o control variate) 84.21 63.95 79.00 59.53 85.83 75.06 87.05 71.65 89.85 47.37 72.29 26.81 70.22
DEV 81.83 53.48 82.95 71.62 89.16 72.03 89.36 75.73 97.02 55.48 71.19 29.17 72.42

Target Risk (Upper Bound) 81.95 53.60 83.07 72.02 89.25 72.15 89.55 75.83 97.10 55.57 71.19 29.27 72.55
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Evaluation and Implementation

Transfer Learning Systems

Tsinghua Dataway Big Data Software Stack
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