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Supervised Learning
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Transfer Learning
Machine learning across domains of different distributions P 6= Q

OOD: Out-of-Distribution (from IID to Non-IID to OOD)

How to bound generalization error on target domain for OOD setup?

pinch grasps, and the motion command has, thus, 5 dimen-
sions: 3 for position, and 2 for a sine-cosine encoding of the
rotation. The second component of the method is a simple,
manually designed servoing function that uses the grasp
probabilities predicted by C to choose the motor command
vi that will continuously control the robot. We can train
the grasp prediction network C using standard supervised
learning objectives, and so it can be optimized independently
from the servoing mechanism. In this work, we focus on
extending the first component to include simulated data in
the training set for the grasp prediction network C, leaving
the other parts of the system unchanged.

The datasets for training the grasp prediction CNN C are
collections of visual episodes of robotic arms attempting to
grasp various objects. Each grasp attempt episode consists of
T time steps which result in T distinct training samples. Each
sample i includes xi,vi, and the success label yi of the entire
grasp sequence. The visual inputs are 640⇥512 images that
are randomly cropped to a 472⇥472 region during training
to encourage translation invariance.

The central aim of our work is to compare different
training regimes that combine both simulated and real-world
data for training C. Although we do consider training entirely
with simulated data, as we discuss in Section IV-A, most of
the training regimes we consider combine medium amounts
of real-world data with large amounts of simulated data.
To that end, we use the self-supervised real-world grasping
dataset collected by Levine et al. [6] using 6 physical Kuka
IIWA arms. The goal of the robots was to grasp any object
within a specified goal region. Grasping was performed using
a compliant two-finger gripper picking objects out of a metal
bin, with a monocular RGB camera mounted behind the arm.
The full dataset includes about 1 million grasp attempts on
approximately 1,100 different objects, resulting in about 9.4
million real-world images. About half of the dataset was
collected using random grasps, and the rest using iteratively
retrained versions of C. Aside from the variety of objects,
each robot differed slightly in terms of wear-and-tear, as well
as the camera pose. The outcome of the grasp attempt was
determined automatically. The particular objects in front of
each robot were regularly rotated to increase the diversity
of the dataset. Some examples of grasping images from the
camera’s viewpoint are shown in Figure 2d.

When trained on the entire real dataset, the best CNN used
in the approach outlined above achieved successful grasps
67.65% of the time. Levine et al. [6] reported an additional
increase to 77.18% from also including 2.7 million images
from a different robot. We excluded this additional dataset
for the sake of a more controlled comparison, so as to avoid
additional confounding factors due to domain shift within
the real-world data. Starting from the Kuka dataset, our
experiments study the effect of adding simulated data and
of reducing the number of real world data points by taking
subsets of varying size (down to only 93,841 real world
images, which is 1% of the original set).

(a) Simulated World (b) Real World

(c) Simulated Samples (d) Real Samples

Fig. 2: Top Row: The setup we used for collecting the (a)
simulated and (b) real-world datasets. Bottom Row: Images
used during training of (c) simulated grasping experience
with procedurally generated objects; and of (d) real-world
experience with a varied collection of everyday physical
objects. In both cases, we see the pairs of image inputs for
our grasp success prediction model C: the images at t = 0
and the images at the current timestamp.

B. Domain Adaptation

As part of our proposed approach we use two domain
adaptation techniques: domain-adversarial training
and pixel-level domain adaptation. Ganin et al. [22]
introduced domain–adversarial neural networks (DANNs),
an architecture trained to extract domain-invariant yet
expressive features. DANNs were primarily tested in the
unsupervised domain adaptation scenario, in the absence
of any labeled target domain samples, although they also
showed promising results in the semi-supervised regime [24].
Their model’s first few layers are shared by two modules:
the first predicts task-specific labels when provided with
source data while the second is a separate domain classifier
trained to predict the domain d̂ of its inputs. The DANN
loss is the cross-entropy loss for the domain prediction task:
LDANN = ÂNs+Nt

i=0

�
di log d̂i + (1�di) log(1� d̂i)

 
, where

di 2 {0,1} is the ground truth domain label for sample i,
and Ns,Nt are the number of source and target samples.

The shared layers are trained to maximize LDANN, while
the domain classifier is trained adversarially to minimize it.
This minimax optimization is implemented by a gradient
reversal layer (GRL). The GRL has the same output as the
identity function, but negates the gradient during backprop.
This lets us compute the gradient for both the domain clas-
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Bias-Variance-Shift Dilemma

Training Error high?

Val Error high?

Dev Error high?

Test Error high?

Training Set Val Set Dev Set Test Set

Done!

Bias

Variance

Dataset Shift

Dev Overfitting

No

No

No

No

Yes

Yes

Yes

Yes

Deeper Model
Longer Training

Bigger Data
Regularization

Data Generation
Transfer Learning

Bigger Dev Data

Under the Bias-Variance-Shift dilemma,
how to train and validate an ML model?

Optimal Bayes Rate

OOD
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Representative Approaches to Transfer Learning

Learning to match distributions across OOD domains s.t. P ≈ Q

Covariate shift: P(X) 6= Q(X) (mainstream work of this setup)

Prior shift: P(Y) 6= Q(Y) (challenging, current hotspot)

Conditional shift: P(Y |X) 6= Q(Y |X) (challenging, future research)

Song et al. Kernel Embeddings of Conditional Distributions. IEEE, 2013. 
Goodfellow et al. Generative Adversarial Networks. NIPS 2014.

Kernel Embedding Adversarial Learning

 IEEE SIGNAL PROCESSING MAGAZINE [102] JULY 2013

embeddings of a joint distribution ( , )P X Y  and the product of its 
marginals ( ) ( ),P X P Y  i.e., hsic ( , ) : .X Y C F FXY X Y

27n n= - 7  
Similarly, this statistic also has advantages over the kde-based 
statistic. We will further discuss these tests in the next section, 
following our introduction of finite sample estimates of the 
distribution embeddings and test statistics.

FINITE SAMPLE KERNEL ESTIMATOR
While we rarely have access to the true underlying distribution, 

( ),P X  we can readily estimate its embedding using a finite sample 
average. Given a sample { , , }D x xX m1 f=  of size m drawn inde-
pendent and identically distributed (i.i.d.) from ( ),P X  the empiri-
cal kernel embedding is

 ( ) .m x1
X i

i

m

1
n z=

=

t /  (4)

See Figure 3 for an illustration of the kernel embedding and its 
empirical estimator. This empirical estimate converges to its pop-
ulation counterpart in RKHS norm, ,FX Xn n-t  with a rate of 

( )O m ( / )
p

1 2-  [15], [16]. We note that this rate is independent of the 
dimension of ,X  meaning that statistics based on kernel embed-
dings circumvent the curse of dimensionality.

Kernel embeddings of joint distributions inherit the 
previous two properties of general embeddings: injectivity 

and easy empirical estimation. Given 
m pairs of training examples DXY = 
{( , ), , ( , )}x y x ym m1 1 f  drawn i.i.d. from 

( , ),P X Y  the covariance operator CXY  
can then be estimated as

 ( ) ( ) .C m x y1
XY i i

i

m

1
7z z=

=

t /  (5)

See Figure 4 for an illustration of the 
kernel joint embedding and its empirical 
estimator.

By virtue of the kernel trick, most of 
the computation required for statistical 
inference using kernel embeddings can 
be reduced to the Gram matrix manipu-
lation. The entries in the Gram matrix K  
correspond to the kernel value between 
data points xi and ,x j  i.e., ( , ),K k x xij i j=  
and therefore its size is determined by 
the number of data points in the sample 
(similarly Gram matrix G has entries 

( , )) .G k y yij i j=  The size of the Gram 
matrices is in general much smaller than 
the dimension of the feature spaces 
(which can be infinite). This enables effi-
cient nonparametric methods using the 
kernel embedding representation. For 
instance, the empirical mmd can be com-
puted using kernel evaluations,

 
mmd ( , ) ( ) ( )

( ( , ) ( , ) ( , )) .

P Q m x m y

m
k x x k y y k x y

1 1

1 2
,

F

i
i

m

i
i

m

i j i j i j
i j

m
1 1

2

2
1

z z= -

= + -

= =

=

\ / /

/

For comparison, the L2 distance between kernel density esti-
mates is
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u/ , respectively. Furthermore, it can be shown that a 

two-sample test based on the L2 distance between kernel density 
estimates has less power against local departures from the null 
hypothesis than the mmd\  [19, Sec. 3.3], [19, Sec. 5], due to the 
shrinking kernel bandwidth with increasing sample size. There 
are also many domains such as strings and graphs [13] where 
kernel methods can be used, but where probability densities may 
not be defined. Finally, hyperparameters of the kernel func-
tions, such as the bandwidth v in the Gaussian kernel 

v( ),exp x x 2-- l  can be chosen to maximize the test power, 
and minimize the probability of Type II error in two-sample tests 

[FIG3] Kernel embedding of a distribution and finite sample estimate.

Feature Space
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[FIG4] Kernel embedding of a joint distribution and finite sample estimate.

Feature Space
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Generally, no theoretical guarantees!
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Principal Problem: Bridging Theory and Algorithm

Everything should be made as simple as possible, but no simpler.
—Albert Einstein

There is nothing more practical than a good theory.
—Vladimir Vapnik
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Machine Learning Framework

Unknown target function
𝑙: 	𝒳 → 𝒴

Training examples
𝑥(,𝑦( , … , (𝑥-, 𝑦-)

Hypothesis space
ℋ

Learning
algorithm

𝒜

Final hypothesis
ℎ ≈ 𝑙

Algorithms that (automatically) improve their performance (P) at
some task (T) with experience (E).

Hypothesis space H — all the possible functions to search from.
Learning algorithm A : D → H — search for the best hypothesis.
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Statistical Learning View

 102

Generative Models
µ

latent  
space

 103

Generative Models
µ

latent  
space

𝑃"𝑃

i.i.d

All Statistics: There is a latent data generating distribution PX×Y .

IID Assumption: All training and testing pairs P̂ = {(xi , yi )}ni=1 are
generated i.i.d. from PX×Y .
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Statistical Learning Formulation

Learner
Training

Data
(xi , yi ){ }i=1

n
ℎ

𝑥

𝑦

I.I.D.

Representor

~𝑃

𝑃%

𝑦 = ℎ(𝑥)

Formally analyzing the classification problem with 01-loss [· 6= ·].
Training error: ε

P̂
(h) = 1

n

∑n
i=1 [h (xi ) 6= yi ] = E

(x,y)∼P̂ [h (x) 6= y ].

Test error: εP (h) = E(x,y)∼P [h (x) 6= y ].

Training error is an unbiased estimation of test error.

Principal problem: Can we control εP (h) with observable ε
P̂

(h)?
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Statistical Learning Theory

Model complexity

E
rr

or

Training Error

Test ErrorBest Fit

Overfitting àß Underfitting

Generalization error: The gap between training error and test error.

Generalization error depends on sample size n and model complexity.

For hypothesis space H with VC-dimension d , we have bound:

εP(h) ≤ ε
P̂

(h) + O



√

d log n + log 2
δ

n



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Transfer Learning Formulation

Learner
Training
Data
(xi , yi ){ }i=1

n

I.I.D.

Representor

~𝑃

𝑃# Testing
Data 𝑄#

I.I.D.~𝑄

( ′xi , ′yi ){ }i=1
′n

𝑦 = ℎ(𝑥)

Source
Domain

Target
Domain

𝑷 ≠ 𝑸

Training Error
𝜖/# ℎ

Test Error
𝜖0 ℎ

ℎ

𝑥

𝑦
m

Only have labeled data sampled from a different source domain P.

And unlabeled data sampled from a target domain Q. ε
Q̂

(h) is not
observable!

Principal problem: Can we control target error εQ (h)?

Disparity on D is defined by: εD (h1, h2) = E(x,y)∼D [h1 (x) 6= h2 (x)].

Good news: Computation of disparity does not require (target) label!

Mingsheng Long Transfer Learning August 18, 2020 14 / 59



Relating Target Risk to Source Risk

Theorem (Bound with Disparity)

For classification tasks of transfer learning, define the ideal joint hypothesis
as h∗ = arg minh∈H [εP (h) + εQ (h)], the target risk εQ(h) can be bounded
by the source risk εP(h), the ideal joint error, and the disparity difference:

εQ (h) 6 εP (h) + [εP (h∗) + εQ (h∗)] + |εP (h, h∗)− εQ (h, h∗)| (1)

Proof.

Simply using the triangle inequalities of the 01-loss, we have

εQ (h) 6 εQ (h∗) + εQ (h, h∗)

= εQ (h∗) + εP (h, h∗) + εQ (h, h∗)− εP (h, h∗)

6 εQ (h∗) + εP (h, h∗) + |εQ (h, h∗)− εP (h, h∗)|
6 εP (h) + [εP (h∗) + εQ (h∗)] + |εP (h, h∗)− εQ (h, h∗)|

(2)
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H∆H-Divergence1

Assumption: Small ideal joint error εideal = εP (h∗) + εQ (h∗).

We can illustrate the disparity difference |εP (h, h∗)− εQ (h, h∗)|:

low high

ℎ ℎ

ℎ∗ℎ∗
ℋ ℋ

ℎ

ℎ∗
Δ

Supremum over all pairs

However, h∗ is unknown and h is undefined!

H∆H-Divergence: dH∆H(P,Q) , sup
h,h′∈H

|εP (h, h′)− εQ (h, h′)|

Can be estimated from finite unlabeled samples of source and target.

1Ben-David et al. A Theory of Learning from Different Domains. Machine Learning, 2010.
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Bound H∆H-Divergence with Domain Discriminator

Theorem (Generalization Bound with H∆H-Divergence)

Denote by d the VC-dimension of hypothesis space H. We have

εQ(h) ≤ εP̂(h) + dH∆H(P̂, Q̂) + εideal + O

(√
d log n

n
+

√
d logm

m

)
(3)

However, H∆H-Divergence is hard to compute and optimize.

For binary hypothesis h, H∆H-Divergence can be further bounded by

dH∆H(P,Q) , sup
h,h′∈H

|εP (h, h′)− εQ (h, h′)|

= sup
δ∈H∆H

|EP [δ(x) 6= 0]− EQ [δ (x) 6= 0]|

6 sup
D∈HD

|EP [D(x) = 1] + EQ [D (x) = 0]|

(4)

This bound can be estimated by training a domain discriminator D(x).

Under strong assumption that H∆H ⊂ HD (universal 2-layer DNN).
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Domain Adversarial Neural Network (DANN)2

Unsupervised Domain Adaptation by Backpropagation

Figure 1. The proposed architecture includes a deep feature extractor (green) and a deep label predictor (blue), which together form
a standard feed-forward architecture. Unsupervised domain adaptation is achieved by adding a domain classifier (red) connected to the
feature extractor via a gradient reversal layer that multiplies the gradient by a certain negative constant during the backpropagation-
based training. Otherwise, the training proceeds in a standard way and minimizes the label prediction loss (for source examples) and
the domain classification loss (for all samples). Gradient reversal ensures that the feature distributions over the two domains are made
similar (as indistinguishable as possible for the domain classifier), thus resulting in the domain-invariant features.

and (Long & Wang, 2015) is thus different from our idea
of matching distribution by making them indistinguishable
for a discriminative classifier. Below, we compare our ap-
proach to (Tzeng et al., 2014; Long & Wang, 2015) on the
Office benchmark. Another approach to deep domain adap-
tation, which is arguably more different from ours, has been
developed in parallel in (Chen et al., 2015).

3. Deep Domain Adaptation
3.1. The model
We now detail the proposed model for the domain adap-
tation. We assume that the model works with input sam-
ples x 2 X , where X is some input space and cer-
tain labels (output) y from the label space Y . Below,
we assume classification problems where Y is a finite set
(Y = {1, 2, . . . L}), however our approach is generic and
can handle any output label space that other deep feed-
forward models can handle. We further assume that there
exist two distributions S(x, y) and T (x, y) on X ⌦ Y ,
which will be referred to as the source distribution and
the target distribution (or the source domain and the tar-
get domain). Both distributions are assumed complex and
unknown, and furthermore similar but different (in other
words, S is “shifted” from T by some domain shift).
Our ultimate goal is to be able to predict labels y given
the input x for the target distribution. At training time,
we have an access to a large set of training samples
{x1,x2, . . . ,xN} from both the source and the target do-
mains distributed according to the marginal distributions
S(x) and T (x). We denote with di the binary variable (do-
main label) for the i-th example, which indicates whether
xi come from the source distribution (xi⇠S(x) if di=0) or
from the target distribution (xi⇠T (x) if di=1). For the ex-
amples from the source distribution (di=0) the correspond-

ing labels yi 2 Y are known at training time. For the ex-
amples from the target domains, we do not know the labels
at training time, and we want to predict such labels at test
time.
We now define a deep feed-forward architecture that for
each input x predicts its label y 2 Y and its domain label
d 2 {0, 1}. We decompose such mapping into three parts.
We assume that the input x is first mapped by a mapping
Gf (a feature extractor) to a D-dimensional feature vector
f 2 RD. The feature mapping may also include several
feed-forward layers and we denote the vector of parame-
ters of all layers in this mapping as ✓f , i.e. f = Gf (x; ✓f ).
Then, the feature vector f is mapped by a mapping Gy (la-
bel predictor) to the label y, and we denote the parameters
of this mapping with ✓y . Finally, the same feature vector f
is mapped to the domain label d by a mapping Gd (domain
classifier) with the parameters ✓d (Figure 1).
During the learning stage, we aim to minimize the label
prediction loss on the annotated part (i.e. the source part)
of the training set, and the parameters of both the feature
extractor and the label predictor are thus optimized in or-
der to minimize the empirical loss for the source domain
samples. This ensures the discriminativeness of the fea-
tures f and the overall good prediction performance of the
combination of the feature extractor and the label predictor
on the source domain.
At the same time, we want to make the features f
domain-invariant. That is, we want to make the dis-
tributions S(f) = {Gf (x; ✓f ) |x⇠S(x)} and T (f) =
{Gf (x; ✓f ) |x⇠T (x)} to be similar. Under the covariate
shift assumption, this would make the label prediction ac-
curacy on the target domain to be the same as on the source
domain (Shimodaira, 2000). Measuring the dissimilarity
of the distributions S(f) and T (f) is however non-trivial,
given that f is high-dimensional, and that the distributions

ℎ

𝐷

𝜙

Adversarial domain adaptation: learn φ to minimize dH∆H(φ(P), φ(Q)).

min
φ,h

{
E(x,y)∼PL(h(φ(x)), y) + max

D
(EPL(D(φ(x)), 1) + EQL(D(φ(x)), 0))

}
(5)

Supervised Learning on source + Upper-Bound of dH∆H on source/target
2Ganin et al. Domain Adversarial Training of Neural Networks. JMLR 2016.
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Theory and Practice: Gap Exists for Decade

Theory vs. Practice:

Binary Classification vs. Multiclass Classification.

Discrete Classifier vs. Classifier with Scoring Function.

dH∆H does not need label vs. dH∆H is hard to compute and optimize.

Principal problem: How to bridge theory and algorithm?
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Step I: Disparity Discrepancy (DD)3

Definition (Disparity Discrepancy (DD))

Given a hypothesis space H and a specific hypothesis h∈H, the Disparity
Discrepancy (DD) induced by h′ ∈ H is defined by

dh,H(P,Q) = sup
h′∈H

(
EQ [h′ 6= h]− EP [h′ 6= h]

)
(6)

The supremum in Disparity Discrepancy (DD) is taken over only one
hypothesis space H without | · |, which can be optimized more easily.

Theorem (Bound with Disparity Discrepancy)

For every hypothesis h ∈ H,

εQ(h) ≤ εP(h) + dh,H(P,Q) + εideal , (7)

where εideal = ε(H,P,Q) is the ideal joint error.

3Zhang & Long. Bridging Theory and Algorithm for Domain Adaptation. ICML 2019.
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Step I: Disparity Discrepancy (DD)

Disparity Discrepancy (DD) is tighter than H∆H-Divergence.

ℋ ℋ

Δ

Supremum over all pairs

ℋ ℋ

Δ

Supremum over single space

ℎ

ℋΔℋ-Divergence Disparity Discrepancy

DD can be estimated by a joint domain discriminator D(x, h(x)).

dh,H(P,Q) , sup
h′∈H

(εP (h, h′)− εQ (h, h′))

= sup
h′∈H

(EP [|h(x)− h′(x)| 6= 0]− EQ [|h(x)− h′(x)| 6= 0])

6 sup
D∈HD

(EP [D(x, h(x)) = 1] + EQ [D (x, h(x)) = 0])

(8)
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Conditional Domain Adversarial Network (CDAN)4

loss

xs

xt gt

gsfs

ft

ys

yt

DNN:
AlexNet
ResNet
……

D

×

×

Conditional adversarial domain adaptation: minimize dh,H(φ(P), φ(Q)).

min
G
E(G )− λE(D,G )

min
D
E(D,G ),

(9)

E(D,G ) = −Exsi∼Ds log [D (fsi ⊗ gs
i )]− Extj∼Dt

log
[
1− D

(
ftj ⊗ gt

j

)]
(10)

4Long et al. Conditional Adversarial Domain Adaptation. NIPS 2018.
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Multiclass Classification Formulation

Scoring function: f ∈ F : X × Y → R
Labeling function induced by f : hf : x 7→ arg maxy∈Y f (x, y)

Labeling function class: H = {hf |f ∈ F}
Margin of a hypothesis f :

ρf (x, y) =
1

2
(f (x, y)−max

y ′ 6=y
f (x, y ′))

Margin Loss:

Φρ(x) =





0 ρ 6 x

1− x/ρ 0 6 x 6 ρ

1 x 6 0

1

0 ρ 1
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Complexity Measurement

Definition (Rademacher Complexity)

The empirical Rademacher complexity of function class G w.r.t. sample D̂
is defined as

R̂
D̂

(G) = Eσ sup
g∈G

1

n

n∑

i=1

σig(zi ), (11)

where σi ’s are independent uniform random variables taking values in
{−1,+1}. The Rademacher complexity is defined as

Rn,D(G) = E
D̂∼DnR̂D̂

(G). (12)

Definition (Covering Number)

(Informal) A covering number N2(τ,G) is the minimal number of L2 balls
of radius τ > 0 needed to cover a class G of bounded functions g : X → R.

These complexity measures can be viewed as extensions of VC-dimensions.
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Margin Theory

Margin error: ε
(ρ)
D (f ) = E(x,y)∼D [Φρ(ρf (x, y))]

This error takes the margin of the hypothesis f into consideration:

1

0 ρ 10

1

2

3

4

5

6

7

�� 1 �� 2 �� 3 �� 4 �� 5 �� 6 �� 7 �� 8 �� 9

�� 1

�� 1

𝜌!

The Margin of 𝑓

𝑓

Decrease
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论。值得一提的是，间隔理论目前也是多类别分类的主流理论，为了更好地联系

实际，这里直接介绍多类别分类的情形。

考虑基于打分函数的模型，假定假设空间为 ༳，其中的打分函数 ো ҧ ཅ · ཆ Ќϗ}ཆ} > ϗ৏. 在每一个数据点上为每一个类别输出一个实数作为分数。这个打分
函数将分数最大的类别作为输出，从而可以诱导得到一个输出离散类别的分类器ωো ҧ ཅ Ќ ཆ：

ωো ҧ ড় Р �a< L�uঢ়ѹཆ ো)ড়- ঢ়*/ VlA4W

所有这样的分类器构成输出离散类别的假设空间 ༵。
根据打分函数的结构，可以定义 ো 在数据 )ড়- ঢ়*上的间隔：

౪ো )ড়- ঢ়* Ӎ 23)ো)ড়- ঢ়* ҃ L�uঢ়༧ӑঢ় ো)ড়- ঢ়༠**/ VlAOW

间隔即为正确的类别打分与其他的类别最高分之间的差。当间隔为负时分类错误，

间隔为正时，间隔的值越大，也就代表该分类器给正确的类别一个相对更高的分

数，置信度越高。

可以看到，经典的 12损失函数可以认为是 cC<N)౪ো )ড়- ঢ়**，能够反映输出标签
的正确性，却不能区分置信度的大小。基于间隔的定义，可以引进新的损失函数

的定义，该损失函数首先应当能够保证可以是 12损失函数的一个上界，同时应该
可以将置信度纳入考量。间隔损失函数即为符合这些优点的损失函数：

定义 lY: V间隔损失函数 )lS*W： ো 在联合分布 ঻ 及相应的经验分布 ห঻ 上间隔参数
为 ౪ ? 1的间隔损失函数定义如下：

3aa)౪*঻ )ো * Ӎ ઢড়ҭযౕ౪ ҉ ౪ো )ড়- ঢ়*-
3aa)౪*ห঻ )ো * Ӎ ઢড়ҭ ห঻ ౕ౪ ҉ ౪ো )ড়- ঢ়* > 2৒

৒
্ุ>2 ౕ౪)౪ো )ড়্- ঢ়্**- VlASzW

其中，间隔变换 ౕ౪的定义如下：

ౕ౪)ড়* Ӎ
֪֭֭
֭֭֫
֬

1 ౪ ࢮ ড়
2 ҃ ড়0౪ 1 ࢮ ড় ࢮ ౪
2 ড় ࢮ 1

/ VlASSW

可以看到间隔损失函数和 12损失函数都是取值在 \1- 2^之间的函数，同时有
性质 3aa)౪*য )ো* ࢯ 3aaয)ωো *。由于 3aaয)ωো *实际上反映了分类器的准确率，所以间
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Given a class of scoring functions F , Π1F is defined as

Π1F = {x 7→ f (x, y)
∣∣y ∈ Y, f ∈ F}. (13)

Margin Bound for IID setup (generalization error controlled by ρ):

err
(ρ)
P (f ) 6 err

(ρ)

P̂
(f ) +

2k2

ρ
Rn,P (Π1F) +

√
log 2

δ

2n
(14)
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Step II: Margin Disparity Discrepancy (MDD)5

Margin Disparity: ε
(ρ)
D (f ′, f ) , Ex∼DX

[Φρ(ρf ′(x, hf (x)))].

We further define the margin version of Disparity Discrepancy (DD):

Definition (Margin Disparity Discrepancy (MDD))

Given a hypothesis space F and a specific hypothesis f ∈F , the Margin
Disparity Discrepancy (MDD) induced by f ′ ∈ F and its empirical version
are defined by

d
(ρ)
f ,F (P,Q) , sup

f ′∈F

(
ε

(ρ)
Q (f ′, f )− ε(ρ)

P (f ′, f )
)
,

d
(ρ)
f ,F (P̂, Q̂) , sup

f ′∈F

(
ε

(ρ)

Q̂
(f ′, f )− ε(ρ)

P̂
(f ′, f )

)
.

(15)

MDD satisfies d
(ρ)
f ,F (P,P) = 0 as well as nonnegativity and subadditivity.

5Zhang & Long. Bridging Theory and Algorithm for Domain Adaptation. ICML 2019.
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Bound with Margin Disparity Discrepancy

Theorem (Bound with MDD)

Let F ⊆ RX×Y be a hypothesis set with label set Y = {1, · · · , k} and
H ⊆ YX be the corresponding Y-valued labeling function class. For every
scoring function f ∈ F ,

εQ(f ) ≤ ε(ρ)
P (f ) + d

(ρ)
f ,F (P,Q) + ε

(ρ)
ideal , (16)

and ε
(ρ)
ideal is the ideal joint margin error: ε

(ρ)
ideal = min

f ∗∈F
{ε(ρ)

P (f ∗) + ε
(ρ)
Q (f ∗)}.

This upper-bound has a similar form with the classic bound:

ε
(ρ)
P (f ) measures the performance of f on the source domain.

MDD bounds the performance gap caused by the domain shift.

ε
(ρ)
ideal is the margin version of the ideal joint error.

A new tool for analyzing transfer learning with margin theory.
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Definitions for Generalization Bounds

Two function classes for deriving the generalization bounds with MDD:

Definition (Function Class Π1F , for supervised bound)

Given a class of scoring functions F , Π1F is defined as

Π1F = {x 7→ f (x, y)
∣∣y ∈ Y, f ∈ F}. (17)

Definition (Function Class ΠHF , for Margin Disparity Discrepancy)

Given a class of scoring functions F and another class of induced labeling
functions H, we define ΠHF as

ΠHF , {x 7→ f (x, h(x))|h ∈ H, f ∈ F}. (18)

Applying margin loss over f ∈ ΠHF yields the “scoring” version of H∆H
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Margin Theory for Transfer Learning

Theorem (Generalization Bound with Rademacher Complexity)

Let F ⊆ RX×Y be a hypothesis set with label set Y = {1, · · · , k} and
H ⊆ YX be the corresponding Y-valued labeling function class. Fix ρ > 0.
For all δ > 0, with probability 1− 3δ the following inequality holds for all
hypothesis f ∈ F :

εQ(f ) ≤ε(ρ)

P̂
(f ) + d

(ρ)
f ,F (P̂, Q̂) + εideal

+
2k2

ρ
Rn,P(Π1F) +

k

ρ
Rn,P(ΠHF) + 2

√
log 2

δ

2n

+
k

ρ
Rm,Q(ΠHF) +

√
log 2

δ

2m
.

(19)

An expected observation is that the generalization risk is controlled by ρ.
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Margin Theory for Transfer Learning

Theorem (Generalization Bound with Covering Numbers)

Let F ⊆ RX×Y be a hypothesis set with label set Y = {1, · · · , k} and
H ⊆ YX be the corresponding Y-valued labeling function class. Suppose
Π1F is bounded in L2 by L. Fix ρ > 0. For all δ > 0, with probability
1− 3δ the following inequality holds for all hypothesis f ∈ F :

εQ(f ) ≤ε(ρ)

P̂
(f ) + d

(ρ)
f ,F (P̂, Q̂) + εideal + 2

√
log 2

δ

2n

+

√
log 2

δ

2m
+

16k2
√
k

ρ
inf
ε≥0

{
ε+ 3

( 1√
n

+
1√
m

)

(∫ L

ε

√
logN2(τ,Π1F)dτ+L

∫ 1

ε/L

√
logN2(τ,Π1H)dτ

)}
.

(20)

The margin bound for OOD has same order with the margin bound for IID.
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Margin Theory Implied Algorithm (MDD)6

Minimax domain adaptation implied directly through the margin theory

min
f ,ψ

ε
(ρ)

ψ(P̂)
(f ) +

(
ε

(ρ)

ψ(Q̂)
(f ∗, f )− ε(ρ)

ψ(P̂)
(f ∗, f )

)

f ∗ = max
f ′

(
ε

(ρ)

ψ(Q̂)
(f ′, f )− ε(ρ)

ψ(P̂)
(f ′, f )

) (21)

1. Multiclass learning with scoring functions
2. Tight bound with only one hypothesis space
3. Informative bound with computable margin

Theory Algorithm
Bridge the Gap

6Zhang & Long. Bridging Theory and Algorithm for Domain Adaptation. ICML 2019.
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Margin Theory Implied Algorithm (MDD)

𝜓

Source
Risk
𝓔(𝑷%)

𝑓

MDD
𝓓𝜸 𝑷%,𝑸%

GRL

𝒚-

𝒚-′

𝑓′

Min

Max

E(P̂) = −E
(xs ,y s)∼P̂ log[σy s (f (ψ(xs)))]

Dγ(P̂, Q̂) = Ext∼Q̂ log[1− σhf (ψ(xt))(f ′(ψ(xt)))]

+ γExs∼P̂ log[σhf (ψ(xs))(f ′(ψ(xs)))]

(22)

Theorem (Margin Implementation)

(Informal) Assuming that there is no restriction on the choice of f ′ and
γ > 1, the global minimum of Dγ(P,Q) is P = Q. The value of σhf (f ′(·))
at equilibrium is γ/(1 + γ) and the corresponding margin of f ′ is ρ = log γ.
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Theory and Practice: Final Gap to Close
Previous discrepancies are supremum over the whole hypothesis space
— will include bad hypotheses that make the bound excessively large.

ℋ ℋ

Δ

Supremum over all pairs

ℋ ℋ

Δ

Supremum over single space

ℎ

ℋΔℋ-Divergence Disparity Discrepancy

A common observation is that the difficulty of transfer is asymmetric
— Previous bounds will remain unchanged after switching P and Q.

pinch grasps, and the motion command has, thus, 5 dimen-
sions: 3 for position, and 2 for a sine-cosine encoding of the
rotation. The second component of the method is a simple,
manually designed servoing function that uses the grasp
probabilities predicted by C to choose the motor command
vi that will continuously control the robot. We can train
the grasp prediction network C using standard supervised
learning objectives, and so it can be optimized independently
from the servoing mechanism. In this work, we focus on
extending the first component to include simulated data in
the training set for the grasp prediction network C, leaving
the other parts of the system unchanged.

The datasets for training the grasp prediction CNN C are
collections of visual episodes of robotic arms attempting to
grasp various objects. Each grasp attempt episode consists of
T time steps which result in T distinct training samples. Each
sample i includes xi,vi, and the success label yi of the entire
grasp sequence. The visual inputs are 640⇥512 images that
are randomly cropped to a 472⇥472 region during training
to encourage translation invariance.

The central aim of our work is to compare different
training regimes that combine both simulated and real-world
data for training C. Although we do consider training entirely
with simulated data, as we discuss in Section IV-A, most of
the training regimes we consider combine medium amounts
of real-world data with large amounts of simulated data.
To that end, we use the self-supervised real-world grasping
dataset collected by Levine et al. [6] using 6 physical Kuka
IIWA arms. The goal of the robots was to grasp any object
within a specified goal region. Grasping was performed using
a compliant two-finger gripper picking objects out of a metal
bin, with a monocular RGB camera mounted behind the arm.
The full dataset includes about 1 million grasp attempts on
approximately 1,100 different objects, resulting in about 9.4
million real-world images. About half of the dataset was
collected using random grasps, and the rest using iteratively
retrained versions of C. Aside from the variety of objects,
each robot differed slightly in terms of wear-and-tear, as well
as the camera pose. The outcome of the grasp attempt was
determined automatically. The particular objects in front of
each robot were regularly rotated to increase the diversity
of the dataset. Some examples of grasping images from the
camera’s viewpoint are shown in Figure 2d.

When trained on the entire real dataset, the best CNN used
in the approach outlined above achieved successful grasps
67.65% of the time. Levine et al. [6] reported an additional
increase to 77.18% from also including 2.7 million images
from a different robot. We excluded this additional dataset
for the sake of a more controlled comparison, so as to avoid
additional confounding factors due to domain shift within
the real-world data. Starting from the Kuka dataset, our
experiments study the effect of adding simulated data and
of reducing the number of real world data points by taking
subsets of varying size (down to only 93,841 real world
images, which is 1% of the original set).
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Fig. 2: Top Row: The setup we used for collecting the (a)
simulated and (b) real-world datasets. Bottom Row: Images
used during training of (c) simulated grasping experience
with procedurally generated objects; and of (d) real-world
experience with a varied collection of everyday physical
objects. In both cases, we see the pairs of image inputs for
our grasp success prediction model C: the images at t = 0
and the images at the current timestamp.

B. Domain Adaptation

As part of our proposed approach we use two domain
adaptation techniques: domain-adversarial training
and pixel-level domain adaptation. Ganin et al. [22]
introduced domain–adversarial neural networks (DANNs),
an architecture trained to extract domain-invariant yet
expressive features. DANNs were primarily tested in the
unsupervised domain adaptation scenario, in the absence
of any labeled target domain samples, although they also
showed promising results in the semi-supervised regime [24].
Their model’s first few layers are shared by two modules:
the first predicts task-specific labels when provided with
source data while the second is a separate domain classifier
trained to predict the domain d̂ of its inputs. The DANN
loss is the cross-entropy loss for the domain prediction task:
LDANN = ÂNs+Nt

i=0

�
di log d̂i + (1�di) log(1� d̂i)

 
, where

di 2 {0,1} is the ground truth domain label for sample i,
and Ns,Nt are the number of source and target samples.

The shared layers are trained to maximize LDANN, while
the domain classifier is trained adversarially to minimize it.
This minimax optimization is implemented by a gradient
reversal layer (GRL). The GRL has the same output as the
identity function, but negates the gradient during backprop.
This lets us compute the gradient for both the domain clas-
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pinch grasps, and the motion command has, thus, 5 dimen-
sions: 3 for position, and 2 for a sine-cosine encoding of the
rotation. The second component of the method is a simple,
manually designed servoing function that uses the grasp
probabilities predicted by C to choose the motor command
vi that will continuously control the robot. We can train
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learning objectives, and so it can be optimized independently
from the servoing mechanism. In this work, we focus on
extending the first component to include simulated data in
the training set for the grasp prediction network C, leaving
the other parts of the system unchanged.

The datasets for training the grasp prediction CNN C are
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dataset collected by Levine et al. [6] using 6 physical Kuka
IIWA arms. The goal of the robots was to grasp any object
within a specified goal region. Grasping was performed using
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The full dataset includes about 1 million grasp attempts on
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million real-world images. About half of the dataset was
collected using random grasps, and the rest using iteratively
retrained versions of C. Aside from the variety of objects,
each robot differed slightly in terms of wear-and-tear, as well
as the camera pose. The outcome of the grasp attempt was
determined automatically. The particular objects in front of
each robot were regularly rotated to increase the diversity
of the dataset. Some examples of grasping images from the
camera’s viewpoint are shown in Figure 2d.

When trained on the entire real dataset, the best CNN used
in the approach outlined above achieved successful grasps
67.65% of the time. Levine et al. [6] reported an additional
increase to 77.18% from also including 2.7 million images
from a different robot. We excluded this additional dataset
for the sake of a more controlled comparison, so as to avoid
additional confounding factors due to domain shift within
the real-world data. Starting from the Kuka dataset, our
experiments study the effect of adding simulated data and
of reducing the number of real world data points by taking
subsets of varying size (down to only 93,841 real world
images, which is 1% of the original set).
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Fig. 2: Top Row: The setup we used for collecting the (a)
simulated and (b) real-world datasets. Bottom Row: Images
used during training of (c) simulated grasping experience
with procedurally generated objects; and of (d) real-world
experience with a varied collection of everyday physical
objects. In both cases, we see the pairs of image inputs for
our grasp success prediction model C: the images at t = 0
and the images at the current timestamp.

B. Domain Adaptation

As part of our proposed approach we use two domain
adaptation techniques: domain-adversarial training
and pixel-level domain adaptation. Ganin et al. [22]
introduced domain–adversarial neural networks (DANNs),
an architecture trained to extract domain-invariant yet
expressive features. DANNs were primarily tested in the
unsupervised domain adaptation scenario, in the absence
of any labeled target domain samples, although they also
showed promising results in the semi-supervised regime [24].
Their model’s first few layers are shared by two modules:
the first predicts task-specific labels when provided with
source data while the second is a separate domain classifier
trained to predict the domain d̂ of its inputs. The DANN
loss is the cross-entropy loss for the domain prediction task:
LDANN = ÂNs+Nt

i=0

�
di log d̂i + (1�di) log(1� d̂i)

 
, where

di 2 {0,1} is the ground truth domain label for sample i,
and Ns,Nt are the number of source and target samples.

The shared layers are trained to maximize LDANN, while
the domain classifier is trained adversarially to minimize it.
This minimax optimization is implemented by a gradient
reversal layer (GRL). The GRL has the same output as the
identity function, but negates the gradient during backprop.
This lets us compute the gradient for both the domain clas-
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Localization for Discrepancies
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Step III: Localized Discrepancies

Definition (Localized Hypothesis Space)

For any distributions P and Q on X × Y, any hypothesis space H and any
r ≥ 0, the localized hypothesis space Hr is defined as

Hr = {h ∈ H|EPL(h(x), y) ≤ r}. (23)

Definition (Localized H∆H-Discrepancy (LHH))

Based on Hr , the localized H∆H-discrepancy from P to Q is defined as

dHr∆Hr (P,Q) = sup
h,h′∈Hr

(
EQL(h′, h)− EPL(h′, h)

)
. (24)

Definition (Localized Disparity Discrepancy (LDD))

Based on Hr , for any h ∈ H, the localized disparity discrepancy from P
to Q is

dh,Hr (P,Q) = sup
h′∈Hr

(
EQL(h′, h)− EPL(h′, h)

)
. (25)
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Localization Theory for Transfer Learning7

Recall the generalization bound induced by previous discrepancies:

εQ(h) ≤ ε
P̂

(h) + dH∆H(P̂, Q̂) + εideal + O(

√
d log n

n
+

√
d logm

m
)

Theorem (Generalization Bound with Localized H∆H-Discrepancy)

Set fixed r > λ. Let ĥ be the solution of the source error minimization.
Then with probability no less than 1− δ, we have

errQ(ĥ) ≤ err
P̂

(ĥ) + dHr∆Hr (P̂, Q̂) + λ+ O(
d log n

n
+

d logm

m
)

+ O



√

2rd log n

n
+

√
(dHr∆Hr (P̂, Q̂) + 2r)d logm

m


 .

(26)

To make domain adaptation feasible, we require dHr∆Hr (P̂, Q̂) + r � 1.
7Zhang & Long. On Localized Discrepancy for Domain Adaptation. Preprint 2020.
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Localization Theory for Transfer Learning8

Recall that Disparity Discrepancy is tighter than H∆H-Discrepancy:

min
h̄∈H
{err

P̂
(h̄) + dh̄,Hr

(P̂, Q̂)} ≤ min
ĥ∈H

err
P̂

(ĥ) + dHr∆Hr (P̂, Q̂) (27)

Theorem (Generalization bound with localized disparity discrepancy)

Set fixed r > λ. Let h̄ be the solution of above left objective function.
Then with probability no less than 1− δ, we have

errQ(ĥ) ≤ err
P̂

(h̄) + dh̄,Hr
(P̂, Q̂) + λ+ O(

d log n

n
+

d logm

m
)

+ O



√

(err
P̂

(h̄) + r)d log n

n
+

√
(err

P̂
(h̄) + dh̄,Hr

(P̂, Q̂) + r)d logm

m


 .

(28)

8Zhang & Long. On Localized Discrepancy for Domain Adaptation. Preprint 2020.
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Model Selection in Transfer Learning

Supervised Learning

Training

(x1, y1) ⇠ p
<latexit sha1_base64="bK92VyX2Dp5SeGibfl0IGf6O6Xk=">AAACIXicbVDLSsNAFJ34rPUVdelmsAgVSkmqYJdFNy4r2AckIUymk3bo5MHMRAwhv+LGX3HjQpHuxJ9xmragrRcGzpxzz507x4sZFdIwvrS19Y3Nre3STnl3b//gUD867ooo4Zh0cMQi3veQIIyGpCOpZKQfc4ICj5GeN76d6r1HwgWNwgeZxsQJ0DCkPsVIKsrVm9Un16ylrnlhCxrAzC5GWnzoOZlZN4qqGcsgj3NXryxucBUsrBUwr7arT+xBhJOAhBIzJIRlGrF0MsQlxYzkZTsRJEZ4jIbEUjBEARFOVqyTw3PFDKAfcXVCCQv2tyNDgRBp4KnOAMmRWNam5H+alUi/6WQ0jBNJQjx7yE8YlBGcxgUHlBMsWaoAwpyqXSEeIY6wVKGWVQjm8pdXQbdRNy/rjfurSutmHkcJnIIzUAUmuAYtcAfaoAMweAav4B18aC/am/apTWata9rccwL+lPb9A7DdntM=</latexit>

Validation

(x2, y2) ⇠ p
<latexit sha1_base64="eGrEMJ2gD5vb42vhxD79bvCVvJY=">AAACIXicbVDLSsNAFJ34rPUVdelmsAgVSkmiYJdFNy4r2Ac0IUymk3bo5MHMRAwhv+LGX3HjQpHuxJ9xmragrRcGzpxzz507x4sZFdIwvrS19Y3Nre3STnl3b//gUD867ogo4Zi0ccQi3vOQIIyGpC2pZKQXc4ICj5GuN76d6t1HwgWNwgeZxsQJ0DCkPsVIKsrVG9Un16qlrnVhCxrAzC5G9vnQczKzbhRVM5ZBHueuXlnc4CpYWCtgXi1Xn9iDCCcBCSVmSIi+acTSyRCXFDOSl+1EkBjhMRqSvoIhCohwsmKdHJ4rZgD9iKsTSliwvx0ZCoRIA091BkiOxLI2Jf/T+on0G05GwziRJMSzh/yEQRnBaVxwQDnBkqUKIMyp2hXiEeIISxVqWYVgLn95FXSsunlZt+6vKs2beRwlcArOQBWY4Bo0wR1ogTbA4Bm8gnfwob1ob9qnNpm1rmlzzwn4U9r3D7RJntU=</latexit>

Test

(x3, y3) ⇠ p
<latexit sha1_base64="oUDa6Gl8ObWvPKuVhBfxJsdt9pQ=">AAACIXicbVDLSgMxFM3UV62vUZdugkWoUMpMK9hl0Y3LCvYBnWHIpJk2NPMgyYjDML/ixl9x40KR7sSfMZ22oK0XAifn3HNzc9yIUSEN40srbGxube8Ud0t7+weHR/rxSVeEMcekg0MW8r6LBGE0IB1JJSP9iBPku4z03MntTO89Ei5oGDzIJCK2j0YB9ShGUlGO3qw8OY1q4jQuLUF9mFr5yAEfuXZq1oy8qsYqyKLM0cvLG1wHS2sZLKrt6FNrGOLYJ4HEDAkxMI1I2inikmJGspIVCxIhPEEjMlAwQD4Rdpqvk8ELxQyhF3J1Aglz9rcjRb4Qie+qTh/JsVjVZuR/2iCWXtNOaRDFkgR4/pAXMyhDOIsLDiknWLJEAYQ5VbtCPEYcYalCLakQzNUvr4NuvWY2avX7q3LrZhFHEZyBc1ABJrgGLXAH2qADMHgGr+AdfGgv2pv2qU3nrQVt4TkFf0r7/gG3tZ7X</latexit>

Bias-Variance-Shift Dilemma of model selection in Transfer Learning

Training Set Val Set Dev Set Test Set
OOD

𝑥"#, 𝑦"# ~𝑃 𝑥()*, 𝑦()* ~𝑃 𝑥+,(, 𝑦+,( ~𝑄 𝑥",, ?	 ~𝑄𝑷 ≠ 𝑸

Source Risk
• High Bias

Fixed Hyperparameters
• No model selection

Target Risk
• High Variance

This is not model assessment!
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Importance-Weighted Cross-Validation (IWCV)9

Covariate shift assumption: P(y |x) = Q(y |x)

Model selection by estimating Target Risk εQ (h) = EQ [h (x) 6= y ]

Importance-Weighted Cross-Validation (IWCV)

EPw(x) · [h (x) 6= y ] = EP
Q(x)

P(x)
· [h (x) 6= y ] = EQ [h (x) 6= y ] = εQ(h) (29)

Q1: How to estimate density ratio w(x) given unknown P and Q

Density ratio w(x) is estimated by discriminative learning (LogReg)

w(x) =
Q(x)

P(x)
=

Jf (x|d = 0)

Jf (x|d = 1)

=
Jf (d = 1)

Jf (d = 0)

Jf (x)Jf (d = 0|x)

Jf (x)Jf (d = 1|x)

=
Jf (d = 1)

Jf (d = 0)

Jf (d = 0|x)

Jf (d = 1|x)
≈ ns

nt

Jf (d = 0|x)

Jf (d = 1|x)

(30)

9Sugiyama et al. Covariate Shift Adaptation by Importance Weighted Cross Validation.
JMLR 2007.
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Transferable Validation (TransVal)10

Q2: How to reduce the variance when estimating Target Risk εQ (h)?
Variance of IWCV can be bounded by the Rényi divergence:

Varx∼P [w(x) · [h(x) 6= y ]] ≤ dα+1(Q‖P)εQ(h)1− 1
α − εQ(h)2 (31)

Feature matching reduces the distribution discrepancy dα+1(Q‖P)
Control variate reduces the variance of estimating EPw(x) [h (x) 6= y ]

1 Given two unbiased estimators: E[z ] = ζ,E[t] = τ
2 Construct a new estimator: z? = z + η(t − τ)
3 z? is still unbiased: E[z?] = E[z ] + ηE[t − τ ] = ζ + η(E[t]− E[τ ]) = ζ
4 Var[z?] = Var[z + η(t − τ)] = η2Var[t] + 2ηCov(z , t) + Var[z ]
5 minVar[z?] = (1− ρ2

z,t)Var[z ], when η̂ = −Cov(z,t)
Var[t]

6 Since 0 ≤ ρ2
z,t ≤ 1, Var[z?] ≤ Var[z ], the variance is reduced explicitly
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10You & Long. Towards Accurate Model Selection in Deep Unsupervised Domain Adaptation.

ICML 2019.
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Confidence Calibration in Deep Learning11

A model should output a probability reflecting the true frequency:

P(Ŷ = Y |P̂ = c) = c , ∀ c ∈ [0, 1] (32)

where Ŷ is the class prediction and P̂ is its associated confidence.

Deep networks learn high accuracy at the expense of over-confidence.

On Calibration of Modern Neural Networks

Chuan Guo * 1 Geoff Pleiss * 1 Yu Sun * 1 Kilian Q. Weinberger 1

Abstract
Confidence calibration – the problem of predict-
ing probability estimates representative of the
true correctness likelihood – is important for
classification models in many applications. We
discover that modern neural networks, unlike
those from a decade ago, are poorly calibrated.
Through extensive experiments, we observe that
depth, width, weight decay, and Batch Normal-
ization are important factors influencing calibra-
tion. We evaluate the performance of various
post-processing calibration methods on state-of-
the-art architectures with image and document
classification datasets. Our analysis and exper-
iments not only offer insights into neural net-
work learning, but also provide a simple and
straightforward recipe for practical settings: on
most datasets, temperature scaling – a single-
parameter variant of Platt Scaling – is surpris-
ingly effective at calibrating predictions.

1. Introduction
Recent advances in deep learning have dramatically im-
proved neural network accuracy (Simonyan & Zisserman,
2015; Srivastava et al., 2015; He et al., 2016; Huang et al.,
2016; 2017). As a result, neural networks are now entrusted
with making complex decisions in applications, such as ob-
ject detection (Girshick, 2015), speech recognition (Han-
nun et al., 2014), and medical diagnosis (Caruana et al.,
2015). In these settings, neural networks are an essential
component of larger decision making pipelines.

In real-world decision making systems, classification net-
works must not only be accurate, but also should indicate
when they are likely to be incorrect. As an example, con-
sider a self-driving car that uses a neural network to detect
pedestrians and other obstructions (Bojarski et al., 2016).

*Equal contribution, alphabetical order. 1Cornell University.
Correspondence to: Chuan Guo <cg563@cornell.edu>, Geoff
Pleiss <geoff@cs.cornell.edu>, Yu Sun <ys646@cornell.edu>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).
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Figure 1. Confidence histograms (top) and reliability diagrams
(bottom) for a 5-layer LeNet (left) and a 110-layer ResNet (right)
on CIFAR-100. Refer to the text below for detailed illustration.

If the detection network is not able to confidently predict
the presence or absence of immediate obstructions, the car
should rely more on the output of other sensors for braking.
Alternatively, in automated health care, control should be
passed on to human doctors when the confidence of a dis-
ease diagnosis network is low (Jiang et al., 2012). Specif-
ically, a network should provide a calibrated confidence
measure in addition to its prediction. In other words, the
probability associated with the predicted class label should
reflect its ground truth correctness likelihood.

Calibrated confidence estimates are also important for
model interpretability. Humans have a natural cognitive in-
tuition for probabilities (Cosmides & Tooby, 1996). Good
confidence estimates provide a valuable extra bit of infor-
mation to establish trustworthiness with the user – espe-
cially for neural networks, whose classification decisions
are often difficult to interpret. Further, good probability
estimates can be used to incorporate neural networks into
other probabilistic models. For example, one can improve
performance by combining network outputs with a lan-
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11Guo et al. On Calibration of Modern Neural Networks. ICML 2017.
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Temperature Scaling for IID Calibration

Calibration Metric: Expected Calibration Error (ECE)

LECE =
B∑

m=1

|Bm|
n
|A(Bm)− C(Bm)|

A(Bm) = |Bm|−1
∑

i∈Bm

1(ŷi = yi ) (Accuracy)

C(Bm) = |Bm|−1
∑

i∈Bm

p(p̂i |xi ,θ) (Confidence)

(33)

IID Calibration: Temperature Scaling

T ∗ = arg min
T

E(xv ,yv )∈Dv
LNLL (σ(zv/T ), yv ) (34)

σ is the softmax function, LNLL is Negative Log-Likelihood.

Transform logits zte into calibrated probabilities pte = σ(zte/T ∗).
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Dilemma of Accuracy vs Confidence in OOD Setup12

Transfer models yield high accuracy at the expense of over-confidence.
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Figure 1: Left: A comparison between IID Calibration with TransCal, where � denotes the deep
model; Right: an observation on the accuracy and ECE of various DA methods (12 transfer tasks of
Office-Home [47] with ResNet-50 [18]), indicating that DA models learn higher accuracy than the
SourceOnly ones at the expense of well-calibrated probabilities. See more results in D.1 of Appendix.

models and of great significance for decision-making in safety-critical scenarios. With built-in [9, 21]37

or post-hoc [37, 16] recalibration methods, the confidence and accuracy of deep models can be38

well-calibrated in the independent and identically distributed (IID) scenarios. However, it remains39

unclear how to maintain calibration under dataset shifts, especially when we do not have labels from40

the target dataset, as in the general setting of Unsupervised Domain Adaptation (UDA). We identify41

two obstacles in the way of applying calibration to UDA:42

• The lack of labeled examples in the target domain. We know that the existing successful43

post-hoc IID recalibration methods mostly rely on ground-truth labels in the validation set to44

select the optimal temperature [37, 16]. However, since ground-truth labels are not available45

in the target domain, it is not feasible to directly apply IID calibration methods to UDA.46

• Dataset shift entangled with the miscalibration of DNNs. Since DNNs are believed to learn47

more transferable features [30, 50], many domain adaptation methods embed DNNs to48

implicitly close the domain shift and rely on DNNs to achieve higher classification accuracy.49

However, DNNs are prone to over-confidence [16], falling short of a miscalibration problem.50

To this end, we study the open problem of Calibration in DA, which is extremely challenging due to51

the coexistence of domain gap and the lack of target labels. To figure out the calibration error on the52

target domain of domain adaptation models, we first delve into the predictions and confidences of the53

target dataset. By calculating the target accuracy and ECE [16] (a calibration error measure defined54

in 3.1) with various domain adaptation models before calibration, we found something interesting.55

As shown in the right panel of Figure 1, the accuracy increases from the weakest SourceOnly [18]56

model to the latest state-of-the-art MDD [53] model, while the ECE becomes larger as well. That is,57

after applying domain adaptation methods, miscalibration phenomena become severer compared with58

SourceOnly model, indicating that the domain adaptation models learn higher classification accuracy59

at the expense of well-calibrated probabilities. This dilemma is unacceptable in safety-critical60

scenarios, as we need higher accuracy while maintaining calibration. Worse still, the well-performed61

calibration methods in the IID setting cannot be directly applied to DA due to the domain shift.62

To tackle the dilemma between accuracy and calibration, we propose a new Transferable Calibration63

(TransCal) method in DA, achieving accurate calibration with lower bias and variance in a unified64

hyperparameter-free optimization framework, while a comparison with IID calibration is shown65

in the left panel of Figure 1. Specifically, we first define a new calibration measure, Importance66

Weighted Expected Calibration Error (IWECE) to estimate the calibration error in the target domain67

in a transferable calibration framework. Next, we propose a learnable meta parameter to further68

reduce the estimation bias from the perspective of theoretical analysis. Meanwhile, we develop a69

serial control variate method to further reduce the variance of the estimated calibration error. As70

a general post-hoc calibration method, TransCal can be easily applied to recalibrate existing DA71

methods. This paper has the following contributions:72

• We uncover a dilemma in the open problem of Calibration in DA: existing domain adaptation73

models learn higher classification accuracy at the expense of well-calibrated probabilities.74

• We propose a Transferable Calibration (TransCal) method, achieving accurate calibration75

with lower bias and variance in a unified hyperparameter-free optimization framework.76

• We conduct extensive experiments on various DA methods, datasets, and calibration metrics,77

while the effectiveness of our method has been justified both theoretically and empirically.78
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Calibration in transfer learning is challenging due to the coexistence:

Domain shift — ECE should be unbiased to the target domain
Unlabeled target — ECE on the target domain is incomputable

Bias-Variance-Shift Dilemma of conf. calibration in Transfer Learning

12Wang & Long. Transferable Calibration with Lower Bias and Variance in Domain

Adaptation. Preprint 2020.
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Transferable Calibration: Bias Reduction

Importance-weighting for an unbiased estimate of target ECE

The bias between the estimated ECE and the ground-truth ECE
∣∣∣E∗x∼q

[
Lŵ(x)
ECE

]
− Ex∼q

[
Lw(x)
ECE

]∣∣∣
= |Ex∼p [ŵ(x)LECE(φ(x), y)]− Ex∼p [w(x)LECE(φ(x), y)]|
= |Ex∼p [(w(x)− ŵ(x))LECE(φ(x), y)]|

(35)

The discrepancy between ŵ(x) and w(x) can be bounded by

Ex∼p

[
(w(x)− ŵ(x))2

]
= Ex∼p

[(
p(x)− p̂(x)

p(x)p̂(x)

)2
]
≤ (M+1)4Ex∼p

[
(p(x)− p̂(x))2

]
(36)

Use λ (0 ≤ λ ≤ 1) to control the bound M of the importance weights

(T ∗, λ) = arg min
T ,λ

Ex∼p [w̃(x)LECE(φ(x), y)]

w̃(xi ) =
(ŵ(xi ))λ

∑ns
i=1 (ŵ(xi ))λ

(37)
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Transferable Calibration: Variance Reduction

Serial Control Variate: Var[u∗∗] ≤ Var[u∗] ≤ Var[u]

u∗ = u + η1(t1 − τ1)

u∗∗ = u∗ + η2(t2 − τ2)
(38)

First, use importance weight w̃(xs) as a control covariate

E∗q = Ẽq −
1

ns

Cov(Lw̃ECE, w̃(x))

Var[w̃(x)]

ns∑

i=1

[w̃(xis)− 1] (39)

Second, use the source prediction r(xs) as another control variate

E∗∗q = E∗q −
1

ns

Cov(Lw̃∗
ECE, r(x))

Var[r(x)]

ns∑

i=1

[r(xis)− c] (40)

Reduce bias, variance, and shift all-in-one for Transferable Calibration
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Transfer Learning Library: Design Patterns

Tutorials
p More data formats
p More model backbones
p ……

Benchmarks
p Various setups
p Reproducible
p ……

Examples
p Training codes
p Hyperparameters
p ……

Adaptation
p DAN
p DANN
p MDD
p CDAN
p ……

Module
p Discriminator
p GradRevLayer
p Kernel
p ……

Backbone
p ResNet
p VGG
p Inception
p ……

Dataset
p Office-31
p Office-Home
p VisDA-2017
p DomainNet
p ……

Utils

Docs

Core

Platform ……

Reproducible Stable TorchVision DocumentationEase of UseExtendible

Github: https://github.com/thuml/Transfer-Learning-Library
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Transfer Learning Library: Ongoing Implementations

Transfer
Learning

Unsupervised TL

Semi-supervised TL

Inductive TL

No labels in 
both source and 
target domains

Labels avail. 
ONLY in source 
domain

Labels available 
in target 
domain

No labels in 
source domain

Labels available 
in source domain

Transductive TL

Cross-Task TL  

Same source 
and target task

Different source 
and target tasks

Pre-Training

Multi-Task TL 

Universal TL Versatile TL

Fine-Tuning

NIPS’17

NIPS’19

Today’s focus!

CVPR’19 ECCV’20ICML’20

Final note: Most transfer learning setups are still open for future research!
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Transfer Learning Library: Reproducible Benchmarks

Table: Accuracy (%) on Office-31 for Unsupervised Domain Adaptation

Method Origin Ours ∆acc A→W D →W W → D A→ D D → A W → A

ResNet-50 76.1 79.5 3.4 75.8 95.5 99.0 79.3 63.6 63.8
DANN 82.2 86.4 4.2 91.7 97.9 100.0 82.9 72.8 73.3
DAN 80.4 83.7 3.3 84.2 98.4 100.0 87.3 66.9 65.2
JAN 84.3 87.3 3.0 93.7 98.4 100.0 89.4 71.2 71.0
CDAN 87.7 88.7 1.0 93.1 98.6 100.0 93.4 75.6 71.5
MCD - 85.9 - 91.8 98.6 100.0 89.0 69.0 66.9
MDD 88.9 89.2 0.3 93.6 98.6 100.0 93.6 76.7 72.9

Table: Accuracy (%) on Office-Home for Unsupervised Domain Adaptation

Method Origin Ours ∆acc Ar-Cl Ar-Pr Ar-Rw Cl-Ar Cl-Pr Cl-Rw Pr-Ar Pr-Cl Pr-Rw Rw-Ar Rw-Cl Rw-Pr

ResNet-50 46.1 58.4 12.3 41.1 65.9 73.7 53.1 60.1 63.3 52.2 36.7 71.8 64.8 42.6 75.2
DANN 57.6 65.2 7.6 53.8 62.6 74.0 55.8 67.3 67.3 55.8 55.1 77.9 71.1 60.7 81.1
DAN 56.3 61.4 5.1 45.6 67.7 73.9 57.7 63.8 66.0 54.9 40.0 74.5 66.2 49.1 77.9
JAN 58.3 65.9 7.6 50.8 71.9 76.5 60.6 68.3 68.7 60.5 49.6 76.9 71.0 55.9 80.5
CDAN 65.8 68.8 3.0 55.2 72.4 77.6 62.0 69.7 70.9 62.4 54.3 80.5 75.5 61.0 83.8
MCD - 67.8 - 51.7 72.2 78.2 63.7 69.5 70.8 61.5 52.8 78.0 74.5 58.4 81.8
MDD 68.1 69.6 1.5 56.4 75.3 78.4 63.2 73.1 73.3 63.9 54.8 79.7 73.2 60.7 83.7
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Transfer Learning Library: Validation and Calibration
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Qualitative Results. As shown in Figure 2, the blue lines indicate the distributions for perfectly247

reliable forecasts with standard deviation, and the red lines denote the conditional distributions of the248

observations. Obviously, If the model is perfectly calibrated, these two lines should be matched. We249

can see that TransCal is much better and approaches the Oracle one on the task: Clipart ! Product.250

More reliability diagrams of other tasks to back up this conclusion are shown in D.3 of Appendix .251

(a) Art ! Clipart (b) Art ! Product (c) Art ! Real-World (d) Clipart ! Art

Figure 3: The estimated calibration error with respect to different values of temperature T and meta
parameter � (both are learnable), showing that different models achieve optimal values at different �.

(a) A! R (b) A ! R (�⇤ = 0.67) (c) P!A (d) P!A (�⇤ = 0.53)

Figure 4: Importance Weight distribution of two DA tasks after transferable calibration with (4(b),
4(d)) and without (4(a), 4(c)) applying the learnable meta parameter, which lowers the value of M .

Table 3: ECE (%) of TransCal with different control variate (CV) methods on MDD [53].
Dataset Office-Home Sketch VisDA
Transfer Task A!C A!P A!R I!S S!R

TransCal (w/o Control Variate) 20.9±4.68 12.1±2.46 6.8±2.22 9.7±3.17 17.2±5.74
TransCal (CV via only w(x)) 13.9±4.45 9.6 ±1.52 5.9±1.91 9.3±1.68 16.4±5.68
TransCal (CV via only r(x)) 13.8±4.32 10.2±0.97 5.2±1.08 8.6±1.37 16.3±3.32
TransCal (Parallel Control Variate) 13.6±4.43 10.6±1.46 5.2±1.45 8.7±1.54 16.3±3.45
TransCal (Serial Control Variate) 13.5±3.51 11.4±0.81 4.8±0.76 8.1±1.09 16.1±1.20

4.3 Insight Analyses252

Why Bias Reduction Term Works. From the perspective of optimization, we explore the estimated253

calibration error with respect to different values of temperature (T ) and lambda (�) in Figure 3,254

showing that different models achieve optimal values at different �. Therefore, it impossible to attain255

optimal estimated calibration error by presetting a fixed �. However, with our unified meta-parameter256

optimization framework, we can adaptively find an optimal � for each task. From the perspective of257

importance weight distribution as shown in Figure 4, after applying learnable meta parameter �, the258

highest values (M in Section 3.3) of importance weight decrease, leading to a smaller bias in Eq. (5).259

Why Serial Control Variate Works. As the theoretical analysis in B.2 of Appendix shows, the260

variance of E⇤⇤
q can be further reduced since Var[E⇤⇤

q ]  Var[E⇤
q ]  Var[eEq], but other variants of261

control variate (CV) method such as Parallel CV may not hold this property. Meanwhile, as shown in262

Table 3, TransCal (Serial CV) not only achieves better calibration performance but also attains lower263

calibration variance than other variants of control variate methods.264

5 Conclusion265

In this paper, we delve into an open and important problem of Calibration in DA. We first reveal266

that domain adaptation models learn higher accuracy at the expense of well-calibrated probabilities.267

Further, we propose a novel transferable calibration (TransCal) approach, achieving more accurate268

calibration with lower bias and variance in a unified hyperparameter-free optimization framework.269
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Transfer Learning Software

Anylearn：Anyone and Anywhere Machine Learning

资源库 数据集 算法库 模型库 服务库

Anylearn 迁移学习算法引擎

模型
训练

模型
迁移

模型
验证

模型
服务

工业
数据

工业
服务
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Tsinghua Dataway Big Data Software
系
统
安
全

企业大
数据应
用软件

工程机械
天远科技
中车四方所

能源
金风科技
青海电力

电子制造
英业达集团
联想集团

气象
国家气象局
31省气象局

遥感
中科遥感所
北京遥感所

环保
部信息中心
福建环保厅

行业大
数据平
台软件

大数据
系统软
件构件

BDIPS
气象大数据平台

KStone
工业大数据平台

DATAX
环保大数据平台

Proto Flok AnylearnQuality AutoVis

数据存储

Storm

Cassandra Kafka

Spark TensorFlowMR计算框架

HDFS PostgreSQL …

…

边缘设备 私有云 公有云异构硬件

核心构件

IoTDB

PyTorch

DevOps

清华数为框架
（DWF）

DWF-Enterprise-Application
企业应用
DWF-Domain-Application
行业支撑组件

DWF-Application-Foundation
应用基础组件

DWF-Optional-Component
大数据可选组件

DWF-Essential-Component
大数据基础组件

数据源

模型库

组织、对象、表单

系统监控

数据处理

功能、权限

系统安全

算法库

数据集

机器学习

图表库

数据展示数据质量

“清华数为”大数据系统软件

Github: https://github.com/thulab/, https://iotdb.apache.org/
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Many thanks for your attention! Any questions?
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