Transfer Learning: Theories and Algorithms

Mingsheng Long

School of Software, Tsinghua University National Engineering Laboratory for Big Data Software

mingsheng@tsinghua.edu.cn http://ise.thss.tsinghua.edu.cn/~mlong Chinese Conference on Data Mining, CCDM 2020

Outline

Transfer Learning

2) Theory and Algorithm

- Classic Theory
- Margin Theory
- Localization Theory

Model Assessment

- Transferable Validation
- Transferable Calibration

Open-Source Library

Supervised Learning

Learner: $f : \mathbf{x} \to y$ Distribution: $(\mathbf{x}, y) \sim P(\mathbf{x}, y)$

イロト イポト イヨト イヨト 二日

Transfer Learning

- Machine learning across domains of different distributions P ≠ Q
 OOD: Out-of-Distribution (from IID to Non-IID to OOD)
- How to bound generalization error on target domain for OOD setup?

Bias-Variance-Shift Dilemma

Representative Approaches to Transfer Learning

Learning to match distributions across OOD domains s.t. $P \approx Q$

- Covariate shift: $P(X) \neq Q(X)$ (mainstream work of this setup)
- Prior shift: $P(\mathbf{Y}) \neq Q(\mathbf{Y})$ (challenging, current hotspot)
- Conditional shift: $P(Y|\mathbf{X}) \neq Q(Y|\mathbf{X})$ (challenging, future research)

・ロト ・同ト ・ヨト ・ヨト

Principal Problem: Bridging Theory and Algorithm

Everything should be made as simple as possible, but no simpler. —Albert Einstein There is nothing more practical than a good theory. —Vladimir Vapnik

Outline

Transfer Learning

2 Theory and Algorithm

- Classic Theory
- Margin Theory
- Localization Theory

Model Assessment

- Transferable Validation
- Transferable Calibration

Open-Source Library

Outline

Transfer Learning

Theory and AlgorithmClassic Theory

- Margin Theory
- Localization Theory

Model Assessment

- Transferable Validation
- Transferable Calibration

Open-Source Library

Machine Learning Framework

- Algorithms that (automatically) improve their performance (P) at some task (T) with experience (E).
 - Hypothesis space \mathcal{H} all the possible functions to search from.
 - Learning algorithm $\mathcal{A}: \mathcal{D} \to \mathcal{H}$ search for the *best* hypothesis.

(日) (同) (三) (三)

Statistical Learning View

All Statistics: There is a latent data generating distribution P_{X×Y}.
IID Assumption: All training and testing pairs P̂ = {(x_i, y_i)}ⁿ_{i=1} are generated *i.i.d.* from P_{X×Y}.

Statistical Learning Formulation

- Formally analyzing the classification problem with **01-loss** $[\cdot \neq \cdot]$.
- Training error: $\epsilon_{\widehat{P}}(h) = \frac{1}{n} \sum_{i=1}^{n} [h(\mathbf{x}_i) \neq y_i] = \mathbb{E}_{(\mathbf{x}, y) \sim \widehat{P}}[h(\mathbf{x}) \neq y].$
- Test error: $\epsilon_{P}(h) = \mathbb{E}_{(\mathbf{x}, y) \sim P}[h(\mathbf{x}) \neq y].$
- Training error is an unbiased estimation of test error.
- Principal problem: Can we control $\epsilon_P(h)$ with observable $\epsilon_{\widehat{P}}(h)$?

Statistical Learning Theory

- Generalization error: The gap between training error and test error.
- Generalization error depends on sample size *n* and model complexity.
- For hypothesis space \mathcal{H} with VC-dimension d, we have bound:

$$\epsilon_{\mathcal{P}}(h) \leq \epsilon_{\widehat{\mathcal{P}}}(h) + O\left(\sqrt{rac{d\log n + \log rac{2}{\delta}}{n}}
ight)$$

Transfer Learning Formulation

- Only have labeled data sampled from a different source domain *P*.
- And unlabeled data sampled from a target domain Q. $\epsilon_{\widehat{Q}}(h)$ is not observable!
- Principal problem: Can we control target error $\epsilon_Q(h)$?
- **Disparity on** *D* is defined by: $\epsilon_D(h_1, h_2) = \mathbb{E}_{(\mathbf{x}, y) \sim D}[h_1(\mathbf{x}) \neq h_2(\mathbf{x})].$
- Good news: Computation of disparity does not require (target) label!

Relating Target Risk to Source Risk

Theorem (Bound with Disparity)

For classification tasks of transfer learning, define the ideal joint hypothesis as $h^* = \arg \min_{h \in \mathcal{H}} [\epsilon_P(h) + \epsilon_Q(h)]$, the target risk $\epsilon_Q(h)$ can be bounded by the source risk $\epsilon_P(h)$, the ideal joint error, and the disparity difference:

 $\epsilon_{Q}(h) \leq \epsilon_{P}(h) + \left[\epsilon_{P}(h^{*}) + \epsilon_{Q}(h^{*})\right] + \left|\epsilon_{P}(h, h^{*}) - \epsilon_{Q}(h, h^{*})\right|$ (1)

Proof.

Simply using the triangle inequalities of the 01-loss, we have

$$\epsilon_{Q}(h) \leq \epsilon_{Q}(h^{*}) + \epsilon_{Q}(h, h^{*})$$

$$= \epsilon_{Q}(h^{*}) + \epsilon_{P}(h, h^{*}) + \epsilon_{Q}(h, h^{*}) - \epsilon_{P}(h, h^{*})$$

$$\leq \epsilon_{Q}(h^{*}) + \epsilon_{P}(h, h^{*}) + |\epsilon_{Q}(h, h^{*}) - \epsilon_{P}(h, h^{*})|$$

$$\leq \epsilon_{P}(h) + [\epsilon_{P}(h^{*}) + \epsilon_{Q}(h^{*})] + |\epsilon_{P}(h, h^{*}) - \epsilon_{Q}(h, h^{*})|$$
(2)

- ∢ ⊒ →

< □ > < 同 > < 回 >

$\mathcal{H} \Delta \mathcal{H}$ -Divergence¹

- Assumption: Small ideal joint error $\epsilon_{ideal} = \epsilon_P(h^*) + \epsilon_Q(h^*)$.
- We can illustrate the disparity difference $|\epsilon_P(h, h^*) \epsilon_Q(h, h^*)|$:

• However, *h*^{*} is unknown and *h* is undefined!

- $\mathcal{H}\Delta\mathcal{H}$ -Divergence: $d_{\mathcal{H}\Delta\mathcal{H}}(P,Q) \triangleq \sup_{\substack{h,h' \in \mathcal{H}}} |\epsilon_P(h,h') \epsilon_Q(h,h')|$
- Can be estimated from finite unlabeled samples of source and target.

¹Ben-David et al. A Theory of Learning from Different Domains. Machine Learning, 2010.

Bound $\mathcal{H} \Delta \mathcal{H}$ -Divergence with Domain Discriminator

Theorem (Generalization Bound with $\mathcal{H} \Delta \mathcal{H}$ -**Divergence)**

Denote by d the VC-dimension of hypothesis space $\mathcal H.$ We have

$$\epsilon_{Q}(h) \leq \epsilon_{\hat{P}}(h) + \frac{d_{\mathcal{H} \Delta \mathcal{H}}(\hat{P}, \hat{Q})}{m} + \epsilon_{ideal} + O\left(\sqrt{\frac{d\log n}{n}} + \sqrt{\frac{d\log m}{m}}\right) (3)$$

- However, $\mathcal{H} \Delta \mathcal{H}$ -Divergence is hard to compute and optimize.
- For binary hypothesis h, $\mathcal{H}\Delta\mathcal{H}$ -Divergence can be further bounded by

$$d_{\mathcal{H}\Delta\mathcal{H}}(P,Q) \triangleq \sup_{\substack{h,h'\in\mathcal{H}\\\delta\in\mathcal{H}\Delta\mathcal{H}}} |\epsilon_{P}(h,h') - \epsilon_{Q}(h,h')|$$

$$= \sup_{\delta\in\mathcal{H}\Delta\mathcal{H}} |\mathbb{E}_{P}[\delta(\mathbf{x})\neq 0] - \mathbb{E}_{Q}[\delta(\mathbf{x})\neq 0]|$$

$$\leq \sup_{D\in\mathcal{H}_{D}} |\mathbb{E}_{P}[D(\mathbf{x})=1] + \mathbb{E}_{Q}[D(\mathbf{x})=0]|$$

(4)

This bound can be estimated by training a domain discriminator D(x).
 Under strong assumption that H∆H ⊂ H_D (universal 2-layer DNN).

Domain Adversarial Neural Network (DANN)²

Adversarial domain adaptation: learn ϕ to minimize $d_{\mathcal{H}\Delta\mathcal{H}}(\phi(P), \phi(Q))$.

$$\min_{\phi,h} \left\{ \mathbb{E}_{(x,y)\sim P} L(h(\phi(x)), y) + \max_{D} \left(\mathbb{E}_{P} L(D(\phi(x)), 1) + \mathbb{E}_{Q} L(D(\phi(x)), 0) \right) \right\}$$
(5)

Supervised Learning on source + Upper-Bound of $d_{H\Delta H}$ on source/target

²Ganin et al. Domain Adversarial Training of Neural Networks. JMLR 2016.

Outline

Transfer Learning

2 Theory and Algorithm

- Classic Theory
- Margin Theory
- Localization Theory

Model Assessment

- Transferable Validation
- Transferable Calibration

Open-Source Library

Theory and Practice: Gap Exists for Decade

• Theory vs. Practice:

- Binary Classification vs. Multiclass Classification.
- Discrete Classifier vs. Classifier with Scoring Function.
- $d_{\mathcal{H}\Delta\mathcal{H}}$ does not need label vs. $d_{\mathcal{H}\Delta\mathcal{H}}$ is hard to compute and optimize.
- Principal problem: How to bridge theory and algorithm?

Step I: Disparity Discrepancy (DD)³

Definition (Disparity Discrepancy (DD))

Given a hypothesis space \mathcal{H} and a *specific hypothesis* $h \in \mathcal{H}$, the Disparity Discrepancy (DD) induced by $h' \in \mathcal{H}$ is defined by

$$d_{h,\mathcal{H}}(P,Q) = \sup_{h' \in \mathcal{H}} \left(\mathbb{E}_Q[h' \neq h] - \mathbb{E}_P[h' \neq h] \right)$$
(6)

 The supremum in Disparity Discrepancy (DD) is taken over only one hypothesis space H without | · |, which can be optimized more easily.

Theorem (Bound with Disparity Discrepancy)

For every hypothesis $h \in \mathcal{H}$,

$$\epsilon_Q(h) \leq \epsilon_P(h) + d_{h,\mathcal{H}}(P,Q) + \epsilon_{ideal},$$

where $\epsilon_{ideal} = \epsilon(\mathcal{H}, P, Q)$ is the ideal joint error.

³Zhang & Long. Bridging Theory and Algorithm for Domain Adaptation. ICML 2019.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

(7)

Step I: Disparity Discrepancy (DD)

• Disparity Discrepancy (DD) is tighter than $\mathcal{H}\Delta\mathcal{H}$ -Divergence.

• DD can be estimated by a joint domain discriminator $D(\mathbf{x}, h(\mathbf{x}))$.

$$d_{h,\mathcal{H}}(P,Q) \triangleq \sup_{\substack{h' \in \mathcal{H} \\ h' \in \mathcal{H}}} \left(\varepsilon_{P}(h,h') - \epsilon_{Q}(h,h') \right)$$

$$= \sup_{\substack{h' \in \mathcal{H} \\ D \in \mathcal{H}_{D}}} \left(\mathbb{E}_{P}\left[|h(\mathbf{x}) - h'(\mathbf{x})| \neq 0 \right] - \mathbb{E}_{Q}\left[|h(\mathbf{x}) - h'(\mathbf{x})| \neq 0 \right] \right)$$
(8)
$$\leq \sup_{\substack{D \in \mathcal{H}_{D}}} \left(\mathbb{E}_{P}\left[D(\mathbf{x},h(\mathbf{x})) = 1 \right] + \mathbb{E}_{Q}\left[D\left(\mathbf{x},h(\mathbf{x})\right) = 0 \right] \right)$$

Conditional Domain Adversarial Network (CDAN)⁴

Conditional adversarial domain adaptation: minimize $d_{h,\mathcal{H}}(\phi(P),\phi(Q))$.

$$\min_{G} \mathcal{E}(G) - \lambda \mathcal{E}(D, G)$$

$$\min_{D} \mathcal{E}(D, G),$$
(9)

 $\mathcal{E}(D,G) = -\mathbb{E}_{\mathbf{x}_{i}^{s} \sim \mathcal{D}_{s}} \log \left[D\left(\mathbf{f}_{i}^{s} \otimes \mathbf{g}_{i}^{s}\right) \right] - \mathbb{E}_{\mathbf{x}_{i}^{t} \sim \mathcal{D}_{t}} \log \left[1 - D\left(\mathbf{f}_{j}^{t} \otimes \mathbf{g}_{j}^{t}\right) \right]$ (10)

⁴Long et al. Conditional Adversarial Domain Adaptation. NIPS 2018.

Multiclass Classification Formulation

- Scoring function: $f \in \mathcal{F} : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$
- Labeling function induced by $f: h_f : \mathbf{x} \mapsto \arg \max_{y \in \mathcal{Y}} f(\mathbf{x}, y)$
- Labeling function class: $\mathcal{H} = \{h_f | f \in \mathcal{F}\}$
- Margin of a hypothesis f:

$$\rho_f(\mathbf{x}, y) = \frac{1}{2} (f(\mathbf{x}, y) - \max_{y' \neq y} f(\mathbf{x}, y'))$$

• Margin Loss:

$$\Phi_{\rho}(\mathbf{x}) = \begin{cases} 0 & \rho \leqslant \mathbf{x} \\ 1 - \mathbf{x}/\rho & 0 \leqslant \mathbf{x} \leqslant \rho \\ 1 & \mathbf{x} \leqslant 0 \end{cases}$$

Complexity Measurement

Definition (Rademacher Complexity)

The empirical Rademacher complexity of function class \mathcal{G} w.r.t. sample D is defined as

$$\widehat{\mathfrak{R}}_{\widehat{D}}(\mathcal{G}) = \mathbb{E}_{\sigma} \sup_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^{n} \sigma_i g(z_i), \tag{11}$$

where σ_i 's are independent uniform random variables taking values in $\{-1, +1\}$. The Rademacher complexity is defined as

$$\mathfrak{R}_{n,D}(\mathcal{G}) = \mathbb{E}_{\widehat{D} \sim D^n} \widehat{\mathfrak{R}}_{\widehat{D}}(\mathcal{G}).$$
(12)

Definition (Covering Number)

(Informal) A covering number $\mathcal{N}_2(\tau, \mathcal{G})$ is the minimal number of \mathcal{L}_2 balls of radius $\tau > 0$ needed to cover a class \mathcal{G} of bounded functions $g : \mathcal{X} \to \mathbb{R}$.

These complexity measures can be viewed as extensions of VC-dimensions.

イロト イポト イヨト イヨト

Margin Theory

- Margin error: $\epsilon_D^{(\rho)}(f) = \mathbb{E}_{(\mathbf{x},y)\sim D} \left[\Phi_{\rho}(\rho_f(\mathbf{x},y)) \right]$
- This error takes the margin of the hypothesis *f* into consideration:

• Given a class of scoring functions \mathcal{F} , $\Pi_1 \mathcal{F}$ is defined as

$$\Pi_1 \mathcal{F} = \{ \mathbf{x} \mapsto f(\mathbf{x}, y) | y \in \mathcal{Y}, f \in \mathcal{F} \}.$$
(13)

• Margin Bound for IID setup (generalization error controlled by ρ):

$$\operatorname{err}_{P}^{(\rho)}(f) \leq \operatorname{err}_{\widehat{P}}^{(\rho)}(f) + \frac{2k^{2}}{\rho} \mathfrak{R}_{n,P}\left(\Pi_{1}\mathcal{F}\right) + \sqrt{\frac{\log \frac{2}{\delta}}{2n}}$$
 (14)

Step II: Margin Disparity Discrepancy (MDD)⁵

- Margin Disparity: $\epsilon_D^{(\rho)}(f', f) \triangleq \mathbb{E}_{\mathbf{x} \sim D_X}[\Phi_{\rho}(\rho_{f'}(\mathbf{x}, h_f(\mathbf{x})))].$
- We further define the margin version of Disparity Discrepancy (DD):

Definition (Margin Disparity Discrepancy (MDD))

Given a hypothesis space \mathcal{F} and a *specific hypothesis* $f \in \mathcal{F}$, the Margin Disparity Discrepancy (MDD) induced by $f' \in \mathcal{F}$ and its empirical version are defined by

$$d_{f,\mathcal{F}}^{(\rho)}(P,Q) \triangleq \sup_{f'\in\mathcal{F}} \left(\epsilon_Q^{(\rho)}(f',f) - \epsilon_P^{(\rho)}(f',f) \right), \\ d_{f,\mathcal{F}}^{(\rho)}(\widehat{P},\widehat{Q}) \triangleq \sup_{f'\in\mathcal{F}} \left(\epsilon_{\widehat{Q}}^{(\rho)}(f',f) - \epsilon_{\widehat{P}}^{(\rho)}(f',f) \right).$$
(15)

MDD satisfies $d_{f,\mathcal{F}}^{(\rho)}(P,P) = 0$ as well as nonnegativity and subadditivity.

⁵Zhang & Long. Bridging Theory and Algorithm for Domain Adaptation. ICML 2019.

nosi	ieno	10
1 2 3	ICH S	 02
•		

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Bound with Margin Disparity Discrepancy

Theorem (Bound with MDD)

Let $\mathcal{F} \subseteq \mathbb{R}^{\mathcal{X} \times \mathcal{Y}}$ be a hypothesis set with label set $\mathcal{Y} = \{1, \dots, k\}$ and $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ be the corresponding \mathcal{Y} -valued labeling function class. For every scoring function $f \in \mathcal{F}$,

$$\epsilon_{Q}(f) \leq \epsilon_{P}^{(\rho)}(f) + d_{f,\mathcal{F}}^{(\rho)}(P,Q) + \epsilon_{ideal}^{(\rho)}, \tag{16}$$

and $\epsilon_{ideal}^{(\rho)}$ is the ideal joint margin error: $\epsilon_{ideal}^{(\rho)} = \min_{f^* \in \mathcal{F}} \{ \epsilon_P^{(\rho)}(f^*) + \epsilon_Q^{(\rho)}(f^*) \}.$

- This upper-bound has a similar form with the classic bound:
 - $\epsilon_P^{(\rho)}(f)$ measures the performance of f on the source domain.
 - MDD bounds the performance gap caused by the domain shift.
 - $\epsilon_{ideal}^{(\rho)}$ is the margin version of the ideal joint error.
- A new tool for analyzing transfer learning with margin theory.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

Definitions for Generalization Bounds

Two function classes for deriving the generalization bounds with MDD:

Definition (Function Class $\Pi_1 \mathcal{F}$, for supervised bound) Given a class of scoring functions \mathcal{F} , $\Pi_1 \mathcal{F}$ is defined as

$$\Pi_1 \mathcal{F} = \{ \mathbf{x} \mapsto f(\mathbf{x}, y) | y \in \mathcal{Y}, f \in \mathcal{F} \}.$$
(17)

Definition (Function Class $\Pi_{\mathcal{H}}\mathcal{F}$, for Margin Disparity Discrepancy)

Given a class of scoring functions ${\cal F}$ and another class of induced labeling functions ${\cal H},$ we define $\Pi_{\cal H}{\cal F}$ as

$$\Pi_{\mathcal{H}}\mathcal{F} \triangleq \{\mathbf{x} \mapsto f(\mathbf{x}, \mathbf{h}(\mathbf{x})) | \mathbf{h} \in \mathcal{H}, f \in \mathcal{F}\}.$$
(18)

Applying margin loss over $f \in \Pi_{\mathcal{H}} \mathcal{F}$ yields the **"scoring" version** of $\mathcal{H} \Delta \mathcal{H}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 うの()

Margin Theory for Transfer Learning

Theorem (Generalization Bound with Rademacher Complexity)

Let $\mathcal{F} \subseteq \mathbb{R}^{\mathcal{X} \times \mathcal{Y}}$ be a hypothesis set with label set $\mathcal{Y} = \{1, \cdots, k\}$ and $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ be the corresponding \mathcal{Y} -valued labeling function class. Fix $\rho > 0$. For all $\delta > 0$, with probability $1 - 3\delta$ the following inequality holds for all hypothesis $f \in \mathcal{F}$:

$$\epsilon_{Q}(f) \leq \epsilon_{\widehat{\rho}}^{(\rho)}(f) + d_{f,\mathcal{F}}^{(\rho)}(\widehat{P},\widehat{Q}) + \epsilon_{ideal} + \frac{2k^{2}}{\rho} \mathfrak{R}_{n,P}(\Pi_{1}\mathcal{F}) + \frac{k}{\rho} \mathfrak{R}_{n,P}(\Pi_{\mathcal{H}}\mathcal{F}) + 2\sqrt{\frac{\log\frac{2}{\delta}}{2n}}$$
(19)
$$+ \frac{k}{\rho} \mathfrak{R}_{m,Q}(\Pi_{\mathcal{H}}\mathcal{F}) + \sqrt{\frac{\log\frac{2}{\delta}}{2m}}.$$

An expected observation is that the generalization risk is controlled by ρ .

Mings	heng	Long
	- 0	

Margin Theory for Transfer Learning

Theorem (Generalization Bound with Covering Numbers)

Let $\mathcal{F} \subseteq \mathbb{R}^{\mathcal{X} \times \mathcal{Y}}$ be a hypothesis set with label set $\mathcal{Y} = \{1, \cdots, k\}$ and $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ be the corresponding \mathcal{Y} -valued labeling function class. Suppose $\Pi_1 \mathcal{F}$ is bounded in \mathcal{L}_2 by L. Fix $\rho > 0$. For all $\delta > 0$, with probability $1 - 3\delta$ the following inequality holds for all hypothesis $f \in \mathcal{F}$:

$$\epsilon_{Q}(f) \leq \epsilon_{\widehat{P}}^{(\rho)}(f) + d_{f,\mathcal{F}}^{(\rho)}(\widehat{P},\widehat{Q}) + \epsilon_{ideal} + 2\sqrt{\frac{\log\frac{2}{\delta}}{2n}} + \sqrt{\frac{\log\frac{2}{\delta}}{2m}} + \frac{16k^{2}\sqrt{k}}{\rho} \inf_{\epsilon \geq 0} \left\{ \epsilon + 3\left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}}\right) \right.$$

$$\left. \left(\int_{\epsilon}^{\mathcal{L}} \frac{\log\mathcal{N}_{2}(\tau,\Pi_{1}\mathcal{F})}{\log\mathcal{N}_{2}(\tau,\Pi_{1}\mathcal{F})} \mathrm{d}\tau + \mathcal{L} \int_{\epsilon/\mathcal{L}}^{\sqrt{\log\mathcal{N}_{2}(\tau,\Pi_{1}\mathcal{H})}} \mathrm{d}\tau \right) \right\}.$$

$$(20)$$

The margin bound for OOD has same order with the margin bound for IID.

< 口 > < 同 >

Margin Theory Implied Algorithm (MDD)⁶

Minimax domain adaptation implied directly through the margin theory

$$\min_{\substack{f,\psi}} \epsilon_{\psi(\widehat{P})}^{(\rho)}(f) + \left(\epsilon_{\psi(\widehat{Q})}^{(\rho)}(f^*,f) - \epsilon_{\psi(\widehat{P})}^{(\rho)}(f^*,f)\right)$$

$$f^* = \max_{\substack{f'}} \left(\epsilon_{\psi(\widehat{Q})}^{(\rho)}(f',f) - \epsilon_{\psi(\widehat{P})}^{(\rho)}(f',f)\right)$$
(21)

⁶Zhang & Long. Bridging Theory and Algorithm for Domain Adaptation. ICML 2019.

Mingsheng Long

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Margin Theory Implied Algorithm (MDD)

$$\mathcal{D}_{\gamma}(\widehat{P}, \widehat{Q}) = \mathbb{E}_{\mathbf{x}^{t} \sim \widehat{Q}} \log[1 - \sigma_{h_{f}(\psi(\mathbf{x}^{t}))}(f'(\psi(\mathbf{x}^{t})))]$$
(22)
+ $\gamma \mathbb{E}_{\mathbf{x}^{s} \sim \widehat{P}} \log[\sigma_{h_{f}(\psi(\mathbf{x}^{s}))}(f'(\psi(\mathbf{x}^{s})))]$

Theorem (Margin Implementation)

(Informal) Assuming that there is no restriction on the choice of f' and $\gamma > 1$, the global minimum of $\mathcal{D}_{\gamma}(P, Q)$ is P = Q. The value of $\sigma_{h_f}(f'(\cdot))$ at equilibrium is $\gamma/(1+\gamma)$ and the corresponding margin of f' is $\rho = \log \gamma$.

Outline

Transfer Learning

2 Theory and Algorithm

- Classic Theory
- Margin Theory
- Localization Theory

Model Assessment

- Transferable Validation
- Transferable Calibration

Open-Source Library

Theory and Practice: Final Gap to Close

• Previous discrepancies are supremum over the whole hypothesis space — will include bad hypotheses that make the bound excessively large.

 $[\]mathcal{H}\Delta\mathcal{H}$ -Divergence

H

35 / 59

Δ

- A common observation is that the difficulty of transfer is asymmetric
 - Previous bounds will remain unchanged after switching P and Q.

Localization for Discrepancies

Localized Disparity Discrepancy

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Step III: Localized Discrepancies

Definition (Localized Hypothesis Space)

For any distributions P and Q on $\mathcal{X} \times \mathcal{Y}$, any hypothesis space \mathcal{H} and any $r \geq 0$, the **localized hypothesis space** \mathcal{H}_r is defined as

$$\mathcal{H}_{r} = \{ h \in \mathcal{H} | \mathbb{E}_{P} L(h(\mathbf{x}), y) \leq r \}.$$
(23)

Definition (Localized $\mathcal{H} \triangle \mathcal{H}$ -**Discrepancy (LHH))**

Based on \mathcal{H}_r , the **localized** $\mathcal{H}\Delta\mathcal{H}$ -discrepancy from P to Q is defined as

$$d_{\mathcal{H}_r \Delta \mathcal{H}_r}(P,Q) = \sup_{h,h' \in \mathcal{H}_r} \left(\mathbb{E}_Q L(h',h) - \mathbb{E}_P L(h',h) \right).$$
(24)

Definition (Localized Disparity Discrepancy (LDD))

Based on \mathcal{H}_r , for any $h \in \mathcal{H}$, the **localized disparity discrepancy** from P to Q is

$$d_{h,\mathcal{H}_r}(P,Q) = \sup_{h'\in\mathcal{H}_r} \left(\mathbb{E}_Q L(h',h) - \mathbb{E}_P L(h',h) \right).$$
(25)

Localization Theory for Transfer Learning⁷

Recall the generalization bound induced by previous discrepancies:

$$\epsilon_{Q}(h) \leq \epsilon_{\widehat{P}}(h) + d_{\mathcal{H}\Delta\mathcal{H}}(\widehat{P},\widehat{Q}) + \epsilon_{ideal} + O(\sqrt{\frac{d\log n}{n}} + \sqrt{\frac{d\log m}{m}})$$

Theorem (Generalization Bound with Localized $\mathcal{H}\Delta\mathcal{H}$ -Discrepancy)

Set fixed $r > \lambda$. Let \hat{h} be the solution of the source error minimization. Then with probability no less than $1 - \delta$, we have

$$\operatorname{err}_{Q}(\hat{h}) \leq \operatorname{err}_{\widehat{P}}(\hat{h}) + d_{\mathcal{H}_{r}\Delta\mathcal{H}_{r}}(\widehat{P},\widehat{Q}) + \lambda + O(\frac{d\log n}{n} + \frac{d\log m}{m}) + O\left(\sqrt{\frac{2rd\log n}{n}} + \sqrt{\frac{(d_{\mathcal{H}_{r}\Delta\mathcal{H}_{r}}(\widehat{P},\widehat{Q}) + 2r)d\log m}{m}}\right).$$
(26)

To make domain adaptation feasible, we require $d_{\mathcal{H}_r \Delta \mathcal{H}_r}(\widehat{P}, \widehat{Q}) + r \ll 1$.

⁷Zhang & Long. On Localized Discrepancy for Domain Adaptation. Preprint 2020.

ヨト・イヨト

Localization Theory for Transfer Learning⁸

Recall that Disparity Discrepancy is tighter than $\mathcal{H}\Delta\mathcal{H}$ -Discrepancy:

$$\min_{\bar{h}\in\mathcal{H}}\{\operatorname{err}_{\widehat{P}}(\bar{h})+d_{\bar{h},\mathcal{H}_r}(\widehat{P},\widehat{Q})\}\leq\min_{\hat{h}\in\mathcal{H}}\operatorname{err}_{\widehat{P}}(\hat{h})+d_{\mathcal{H}_r\Delta\mathcal{H}_r}(\widehat{P},\widehat{Q})$$
(27)

Theorem (Generalization bound with localized disparity discrepancy)

Set fixed $r > \lambda$. Let \bar{h} be the solution of above left objective function. Then with probability no less than $1 - \delta$, we have

$$\operatorname{err}_{Q}(\hat{h}) \leq \operatorname{err}_{\widehat{P}}(\overline{h}) + d_{\overline{h},\mathcal{H}_{r}}(\widehat{P},\widehat{Q}) + \lambda + O(\frac{d \log n}{n} + \frac{d \log m}{m}) + O\left(\sqrt{\frac{(\operatorname{err}_{\widehat{P}}(\overline{h}) + r)d \log n}{n}} + \sqrt{\frac{(\operatorname{err}_{\widehat{P}}(\overline{h}) + d_{\overline{h},\mathcal{H}_{r}}(\widehat{P},\widehat{Q}) + r)d \log m}{m}}\right).$$
(28)

⁸Zhang & Long. On Localized Discrepancy for Domain Adaptation. Preprint 2020.

Min	gshen	g Long
	•	

イロト イポト イラト イラト

Outline

Transfer Learning

2 Theory and Algorithm

- Classic Theory
- Margin Theory
- Localization Theory

3 Model Assessment

- Transferable Validation
- Transferable Calibration

Open-Source Library

Outline

Transfer Learning

2 Theory and Algorithm

- Classic Theory
- Margin Theory
- Localization Theory

3 Model Assessment

- Transferable Validation
- Transferable Calibration

Open-Source Library

Model Selection in Transfer Learning

Supervised Learning

Bias-Variance-Shift Dilemma of model selection in Transfer Learning

Nin	oshi	eng	l on	
	8	- B		e

Importance-Weighted Cross-Validation (IWCV)⁹

- Covariate shift assumption: $P(y|\mathbf{x}) = Q(y|\mathbf{x})$
- Model selection by estimating Target Risk $\epsilon_Q(h) = \mathbb{E}_Q[h(\mathbf{x}) \neq y]$
- Importance-Weighted Cross-Validation (IWCV)

$$\mathbb{E}_{PW}(\mathbf{x}) \cdot [h(\mathbf{x}) \neq y] = \mathbb{E}_{P} \frac{Q(\mathbf{x})}{P(\mathbf{x})} \cdot [h(\mathbf{x}) \neq y] = \mathbb{E}_{Q} [h(\mathbf{x}) \neq y] = \epsilon_{Q}(h)$$
(29)

- Q1: How to estimate density ratio w(x) given unknown P and Q
- Density ratio w(x) is estimated by discriminative learning (LogReg)

$$w(\mathbf{x}) = \frac{Q(\mathbf{x})}{P(\mathbf{x})} = \frac{J_f(\mathbf{x}|d=0)}{J_f(\mathbf{x}|d=1)}$$

$$= \frac{J_f(d=1)}{J_f(d=0)} \frac{J_f(\mathbf{x}) J_f(d=0|\mathbf{x})}{J_f(\mathbf{x}) J_f(d=1|\mathbf{x})}$$

$$= \frac{J_f(d=1)}{J_f(d=0)} \frac{J_f(d=0|\mathbf{x})}{J_f(d=1|\mathbf{x})} \approx \frac{n_s}{n_t} \frac{J_f(d=0|\mathbf{x})}{J_f(d=1|\mathbf{x})}$$
(30)

⁹Sugiyama et al. Covariate Shift Adaptation by Importance Weighted Cross Validation. JMLR 2007.

Transferable Validation (TransVal)¹⁰

- Q2: How to reduce the variance when estimating Target Risk $\epsilon_Q(h)$?
- Variance of IWCV can be bounded by the Rényi divergence:

 $\operatorname{Var}_{\mathbf{x}\sim P}[w(\mathbf{x})\cdot[h(\mathbf{x})\neq y]] \leq d_{\alpha+1}(Q\|P)\epsilon_Q(h)^{1-\frac{1}{\alpha}} - \epsilon_Q(h)^2 \quad (31)$

Feature matching reduces the distribution discrepancy d_{α+1}(Q||P)
Control variate reduces the variance of estimating E_Pw(x) [h(x) ≠ y]
Given two unbiased estimators: E[z] = ζ, E[t] = τ
Construct a new estimator: z* = z + η(t - τ)
z* is still unbiased: E[z*] = E[z] + ηE[t - τ] = ζ + η(E[t] - E[τ]) = ζ
Var[z*] = Var[z + η(t - τ)] = η²Var[t] + 2ηCov(z, t) + Var[z]
min Var[z*] = (1 - ρ²_{z,t})Var[z], when η̂ = - Cov(z,t)/Var[t]
Since 0 ≤ ρ²_{z,t} ≤ 1, Var[z*] ≤ Var[z], the variance is reduced explicitly

 ¹⁰ You & Long. Towards Accurate Model Selection in Deep Unsupervised Domain Adaptation.

 ICML 2019.

Mingsheng Long

Outline

Transfer Learning

2 Theory and Algorithm

- Classic Theory
- Margin Theory
- Localization Theory

3 Model Assessment

- Transferable Validation
- Transferable Calibration

Open-Source Library

Confidence Calibration in Deep Learning¹¹

• A model should output a probability reflecting the true frequency:

$$\mathbb{P}(\widehat{Y} = Y | \widehat{P} = c) = c, \ \forall \ c \in [0, 1]$$
(32)

H N

where \widehat{Y} is the class prediction and \widehat{P} is its associated confidence.

• Deep networks learn high accuracy at the expense of over-confidence.

¹¹Guo et al. On Calibration of Modern Neural Networks. ICML 2017.

			- 2.40
Mingsheng Long	Transfer Learning	August 18, 2020	46 / 59

Temperature Scaling for IID Calibration

• Calibration Metric: Expected Calibration Error (ECE)

$$\mathcal{L}_{\text{ECE}} = \sum_{m=1}^{B} \frac{|B_m|}{n} |\mathbb{A}(B_m) - \mathbb{C}(B_m)|$$
$$\mathbb{A}(B_m) = |B_m|^{-1} \sum_{i \in B_m} \mathbf{1}(\widehat{\mathbf{y}}_i = \mathbf{y}_i) \quad \text{(Accuracy)}$$
$$\mathbb{C}(B_m) = |B_m|^{-1} \sum_{i \in B_m} p(\widehat{\mathbf{p}}_i | \mathbf{x}_i, \theta) \quad \text{(Confidence)}$$

• IID Calibration: Temperature Scaling

$$T^* = \underset{T}{\arg\min} \ \mathsf{E}_{(\mathbf{x}_{\nu}, \mathbf{y}_{\nu}) \in \mathcal{D}_{\nu}} \ \mathcal{L}_{\mathrm{NLL}} \left(\sigma(\mathbf{z}_{\nu}/T), \mathbf{y}_{\nu} \right)$$
(34)

 σ is the softmax function, $\mathcal{L}_{\rm NLL}$ is Negative Log-Likelihood.

• Transform logits \mathbf{z}_{te} into calibrated probabilities $p_{te} = \sigma(\mathbf{z}_{te}/T^*)$.

Dilemma of Accuracy vs Confidence in OOD Setup¹²

• Transfer models yield high accuracy at the expense of over-confidence.

• Calibration in transfer learning is challenging due to the coexistence:

- Domain shift ECE should be unbiased to the target domain
- Unlabeled target ECE on the target domain is incomputable

• Bias-Variance-Shift Dilemma of conf. calibration in Transfer Learning

¹²Wang & Long. Transferable Calibration with Lower Bias and Variance in Domain Adaptation. Preprint 2020.

Mingsheng Long

Transferable Calibration: Bias Reduction

- Importance-weighting for an unbiased estimate of target ECE
- The bias between the estimated ECE and the ground-truth ECE

$$\begin{aligned} \left| \mathsf{E}_{\mathbf{x}\sim q}^{*} \left[\mathcal{L}_{\mathrm{ECE}}^{\widehat{w}(\mathbf{x})} \right] - \mathsf{E}_{\mathbf{x}\sim q} \left[\mathcal{L}_{\mathrm{ECE}}^{w(\mathbf{x})} \right] \right| \\ = \left| \mathsf{E}_{\mathbf{x}\sim p} \left[\widehat{w}(\mathbf{x}) \mathcal{L}_{\mathrm{ECE}}(\phi(\mathbf{x}), \ \mathbf{y}) \right] - \mathsf{E}_{\mathbf{x}\sim p} \left[w(\mathbf{x}) \mathcal{L}_{\mathrm{ECE}}(\phi(\mathbf{x}), \ \mathbf{y}) \right] \right| \end{aligned} \tag{35}$$
$$= \left| \mathsf{E}_{\mathbf{x}\sim p} \left[(w(\mathbf{x}) - \widehat{w}(\mathbf{x})) \mathcal{L}_{\mathrm{ECE}}(\phi(\mathbf{x}), \ \mathbf{y}) \right] \right|$$

• The discrepancy between $\widehat{w}(\mathbf{x})$ and $w(\mathbf{x})$ can be bounded by

$$\mathbb{E}_{\mathbf{x}\sim\rho}\left[\left(\mathbf{w}(\mathbf{x})-\widehat{\mathbf{w}}(\mathbf{x})\right)^{2}\right] = \mathbb{E}_{\mathbf{x}\sim\rho}\left[\left(\frac{p(\mathbf{x})-\widehat{p}(\mathbf{x})}{p(\mathbf{x})\widehat{p}(\mathbf{x})}\right)^{2}\right] \le (M+1)^{4}\mathbb{E}_{\mathbf{x}\sim\rho}\left[\left(p(\mathbf{x})-\widehat{p}(\mathbf{x})\right)^{2}\right]$$
(36)

• Use λ ($0 \le \lambda \le 1$) to control the bound M of the importance weights

$$\begin{aligned} \boldsymbol{\mathcal{T}}^{*}, \boldsymbol{\lambda} &= \operatorname*{arg\,min}_{\boldsymbol{\mathcal{T}}, \boldsymbol{\lambda}} \mathbb{E}_{\mathbf{x} \sim p} \left[\widetilde{w}(\mathbf{x}) \mathcal{L}_{\mathrm{ECE}}(\boldsymbol{\phi}(\mathbf{x}), \ \mathbf{y}) \right] \\ \widetilde{w}(\mathbf{x}_{i}) &= \frac{\left(\widehat{w}(\mathbf{x}_{i}) \right)^{\boldsymbol{\lambda}}}{\sum_{i=1}^{n_{s}} \left(\widehat{w}(\mathbf{x}_{i}) \right)^{\boldsymbol{\lambda}}} \end{aligned}$$
(37)

Transferable Calibration: Variance Reduction

• Serial Control Variate: $Var[u^{**}] \le Var[u^*] \le Var[u]$

$$u^{*} = u + \eta_{1}(t_{1} - \tau_{1})$$

$$u^{**} = u^{*} + \eta_{2}(t_{2} - \tau_{2})$$
(38)

• First, use importance weight $\widetilde{w}(\mathbf{x}_s)$ as a control covariate

$$\mathbf{E}_{q}^{*} = \widetilde{\mathbf{E}}_{q} - \frac{1}{n_{s}} \frac{\operatorname{Cov}(\mathcal{L}_{\mathrm{ECE}}^{\widetilde{w}}, \widetilde{w}(\mathbf{x}))}{\operatorname{Var}[\widetilde{w}(\mathbf{x})]} \sum_{i=1}^{n_{s}} [\widetilde{w}(\mathbf{x}_{s}^{i}) - 1]$$
(39)

• Second, use the source prediction $r(\mathbf{x}_s)$ as another control variate

$$\mathbf{E}_{q}^{**} = \mathbf{E}_{q}^{*} - \frac{1}{n_{s}} \frac{\operatorname{Cov}(\mathcal{L}_{\mathrm{ECE}}^{\widetilde{w}*}, r(\mathbf{x}))}{\operatorname{Var}[r(\mathbf{x})]} \sum_{i=1}^{n_{s}} [r(\mathbf{x}_{s}^{i}) - c]$$
(40)

• Reduce bias, variance, and shift all-in-one for Transferable Calibration

Outline

Transfer Learning

2 Theory and Algorithm

- Classic Theory
- Margin Theory
- Localization Theory

Model Assessment

- Transferable Validation
- Transferable Calibration

Open-Source Library

Transfer Learning Library

$\leftarrow \ \rightarrow $	C 🔒 github.com	/thuml/Transfer-Learning-I	_ibrary			* *	٢	* 阔) :
\mathbf{O}	Search or jump to	/ Pulls	Issues	Marketplace	Explore		Ļ	+•	-
📮 th	uml / Transfer-L e	earning-Library			20 1	Star 393	ु ह	ork 4	18
<> c	Code 🥂 Issues	្រំ Pull requests 1	Action	ns 🛄 Proj	jects 🖽 🛛	Wiki 🕛 S	ecurity	• ••	
ا ځ	master 👻	Go to file	Ad	d file -	⊻ Code -	About			ŝ
1	JunguangJiang Upda	te tutorial.rst		5 days a	go 🕲 83	Transfer-L	earnin adtheo	g-Libra	e
	dalib	update docs		2	5 days ago	domain-ada	ptation	1	
	docs	Update tutorial.rst			5 days ago	transfer-lea	rning		
	examples	Update tutorials.py			5 days ago	見続い	j.,		
	tools	add typings			last month	汤 带	1	p_1	
Ľ	.gitignore	fix bugs for MDD		5 n	nonths ago		25	E.	
۵	LICENSE	add setup.py; add tutorial		5 n	nonths ago		¥.	₽į−	

Min	σs	hen	σI	long	•
	8		ь.	-0	

< 17 ▶

э

Transfer Learning Library: Design Patterns

Github: https://github.com/thuml/Transfer-Learning-Library

Mingsheng Long	Transfer Learning	August 18, 2020	53 / 59
----------------	-------------------	-----------------	---------

Transfer Learning Library: Ongoing Implementations

Final note: Most transfer learning setups are still open for future research!

Mingsheng Long	Transfer Learning	August 18, 2020	54 / 59
	< 1	미 🛛 🖉 🕨 🤞 볼 🕨 🦉 🖿	E nac

Transfer Learning Library: Reproducible Benchmarks

Method	Origin	Ours	Δacc	$A \rightarrow W$	$D \to W$	$W \to D$	$A \rightarrow D$	$D \rightarrow A$	$W \to A$
ResNet-50	76.1	79.5	3.4	75.8	95.5	99.0	79.3	63.6	63.8
DANN	82.2	86.4	4.2	91.7	97.9	100.0	82.9	72.8	73.3
DAN	80.4	83.7	3.3	84.2	98.4	100.0	87.3	66.9	65.2
JAN	84.3	87.3	3.0	93.7	98.4	100.0	89.4	71.2	71.0
CDAN	87.7	88.7	1.0	93.1	98.6	100.0	93.4	75.6	71.5
MCD	-	85.9	-	91.8	98.6	100.0	89.0	69.0	66.9
MDD	88.9	89.2	0.3	93.6	98.6	100.0	93.6	76.7	72.9

Table: Accuracy (%) on Office-31 for Unsupervised Domain Adaptation

Table: Accuracy (%) on Office-Home for Unsupervised Domain Adaptation

Method	Origin	Ours	Δacc	Ar-Cl	Ar-Pr	Ar-Rw	Cl-Ar	CI-Pr	CI-Rw	Pr-Ar	Pr-Cl	Pr-Rw	Rw-Ar	Rw-Cl	Rw-Pr
ResNet-50	46.1	58.4	12.3	41.1	65.9	73.7	53.1	60.1	63.3	52.2	36.7	71.8	64.8	42.6	75.2
DANN	57.6	65.2	7.6	53.8	62.6	74.0	55.8	67.3	67.3	55.8	55.1	77.9	71.1	60.7	81.1
DAN	56.3	61.4	5.1	45.6	67.7	73.9	57.7	63.8	66.0	54.9	40.0	74.5	66.2	49.1	77.9
JAN	58.3	65.9	7.6	50.8	71.9	76.5	60.6	68.3	68.7	60.5	49.6	76.9	71.0	55.9	80.5
CDAN	65.8	68.8	3.0	55.2	72.4	77.6	62.0	69.7	70.9	62.4	54.3	80.5	75.5	61.0	83.8
MCD	-	67.8	-	51.7	72.2	78.2	63.7	69.5	70.8	61.5	52.8	78.0	74.5	58.4	81.8
MDD	68.1	69.6	1.5	56.4	75.3	78.4	63.2	73.1	73.3	63.9	54.8	79.7	73.2	60.7	83.7

ㅁㅏㅋ@ㅏㅋ돋ㅏㅋ돋ㅏ

~	•	

Transfer Learning Library: Validation and Calibration

Transfer Learning Software

Anylearn : Anyone and Anywhere Machine Learning

N /1:	~ ~ ~ ~ ~	~ .	~
IVIIII	gsnen	д соп	В

Transfer Learning

August 18, 2020 57 / 59

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Tsinghua Dataway Big Data Software

Github: https://github.com/thulab/, https://iotdb.apache.org/

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Machine Learning Team @ National Engineering Lab

Jianmin Wang Professor Tsinghua University jimwang@tsinghua.edu.cn

Mingsheng Long Associate Professor Tsinghua University mingsheng@tsinghua.edu.cn

Michael I. Jordan Professor UC Berkeley jordan@cs.berkeley.edu

Yuchen Zhang

Ximei Wang

Zhangjie Cao

Kaichao You

Junguang Jiang

Many thanks for your attention! Any questions?