Transfer Learning: Theories, Algorithms, and Open Library

Mingsheng Long

School of Software, Tsinghua University National Engineering Laboratory for Big Data Software

mingsheng@tsinghua.edu.cn http://ise.thss.tsinghua.edu.cn/~mlong Workshop on Federated and Transfer Learning, FTL-IJCAI'21

・ 同 ト ・ ヨ ト ・ ヨ ト

Supervised Learning

Learner: $f : \mathbf{x} \to y$ Distribution: $(\mathbf{x}, y) \sim P(\mathbf{x}, y)$

イロト イポト イヨト イヨト 二日

Transfer Learning

- Machine learning across domains of different distributions P ≠ Q
 OOD: Out-of-Distribution (from IID to OOD)
- How to bound generalization error on target domain for OOD setup?

Representative Approaches to Transfer Learning

Learning to match distributions across OOD domains s.t. $P \approx Q$

- Covariate shift: $P(X) \neq Q(X)$ (mainstream work of this setup)
- Prior shift: $P(\mathbf{Y}) \neq Q(\mathbf{Y})$ (challenging, current hotspot)
- Conditional shift: $P(Y|\mathbf{X}) \neq Q(Y|\mathbf{X})$ (challenging, future research)

イロト イポト イヨト イヨト

Principal Problem: Bridging Theory and Algorithm

Everything should be made as simple as possible, but no simpler. —Albert Einstein There is nothing more practical than a good theory. —Vladimir Vapnik

Outline

1 Transfer Learning

2 Theories and Algorithms

- Classic Theory
- Margin Theory
- Localization Theory

Dpen Library

Transfer-Learning-Library

Statistical Learning

- Formally analyzing the classification problem with **01-loss** $[\cdot \neq \cdot]$.
- Training error: $\epsilon_{\widehat{P}}(h) = \frac{1}{n} \sum_{i=1}^{n} [h(\mathbf{x}_i) \neq y_i] = \mathbb{E}_{(\mathbf{x}, y) \sim \widehat{P}}[h(\mathbf{x}) \neq y].$
- Test error: $\epsilon_{P}(h) = \mathbb{E}_{(\mathbf{x}, y) \sim P}[h(\mathbf{x}) \neq y].$
- Training error is an unbiased estimation of test error.
- Principal problem: Can we control $\epsilon_P(h)$ with observable $\epsilon_{\widehat{P}}(h)$?

Statistical Learning Theory

- Generalization error: The gap between training error and test error.
- Generalization error depends on sample size *n* and model complexity.
- For hypothesis space \mathcal{H} with VC-dimension d, we have bound:

$$\epsilon_{\mathcal{P}}(h) \leq \epsilon_{\widehat{\mathcal{P}}}(h) + O\left(\sqrt{rac{d\log n + \log rac{2}{\delta}}{n}}
ight)$$

Transfer Learning

- Only have labeled data sampled from a different source domain *P*.
- And unlabeled data sampled from a target domain Q. $\epsilon_{\widehat{Q}}(h)$ is not observable!
- Principal problem: Can we control target error $\epsilon_Q(h)$?
- Disparity on $D: \epsilon_D(h_1, h_2) = \mathbb{E}_{(\mathbf{x}, y) \sim D}[h_1(\mathbf{x}) \neq h_2(\mathbf{x})].$
- Why use it? Computation of disparity does not require (target) label!

Relating Target Risk to Source Risk

Theorem (Bound with Disparity)

For classification tasks of transfer learning, define the ideal joint hypothesis as $h^* = \arg \min_{h \in \mathcal{H}} [\epsilon_P(h) + \epsilon_Q(h)]$, the target risk $\epsilon_Q(h)$ can be bounded by the source risk $\epsilon_P(h)$, the ideal joint error, and the disparity difference:

 $\epsilon_{Q}(h) \leq \epsilon_{P}(h) + \left[\epsilon_{P}(h^{*}) + \epsilon_{Q}(h^{*})\right] + \left|\epsilon_{P}(h, h^{*}) - \epsilon_{Q}(h, h^{*})\right|$ (1)

Proof.

Simply using the triangle inequalities of the 01-loss, we have

$$\epsilon_{Q}(h) \leq \epsilon_{Q}(h^{*}) + \epsilon_{Q}(h, h^{*})$$

$$= \epsilon_{Q}(h^{*}) + \epsilon_{P}(h, h^{*}) + \epsilon_{Q}(h, h^{*}) - \epsilon_{P}(h, h^{*})$$

$$\leq \epsilon_{Q}(h^{*}) + \epsilon_{P}(h, h^{*}) + |\epsilon_{Q}(h, h^{*}) - \epsilon_{P}(h, h^{*})|$$

$$\leq \epsilon_{P}(h) + [\epsilon_{P}(h^{*}) + \epsilon_{Q}(h^{*})] + |\epsilon_{P}(h, h^{*}) - \epsilon_{Q}(h, h^{*})|$$
(2)

- ∢ ≣ →

(日)

$\mathcal{H} \Delta \mathcal{H}$ -Divergence¹

- Assumption: Small ideal joint error $\epsilon_{ideal} = \epsilon_P(h^*) + \epsilon_Q(h^*)$.
- We can illustrate the disparity difference $|\epsilon_P(h, h^*) \epsilon_Q(h, h^*)|$:

• However, *h** is unknown and *h* is undefined. Consider worse-case!

- $\mathcal{H} \Delta \mathcal{H}$ -Divergence: $d_{\mathcal{H} \Delta \mathcal{H}}(P, Q) \triangleq \sup_{\substack{h, h' \in \mathcal{H}}} |\epsilon_P(h, h') \epsilon_Q(h, h')|$
- Can be estimated from finite unlabeled samples of source and target.

¹Ben-David et al. A Theory of Learning from Different Domains. Machine Learning, 2010.

Bound $\mathcal{H} \Delta \mathcal{H}$ -Divergence with Domain Discriminator

Theorem (Generalization Bound with $\mathcal{H}\Delta\mathcal{H}$ -**Divergence)**

Denote by d the VC-dimension of hypothesis space $\mathcal H.$ We have

$$\epsilon_{Q}(h) \leq \epsilon_{\hat{P}}(h) + \frac{d_{\mathcal{H} \Delta \mathcal{H}}(\hat{P}, \hat{Q})}{m} + \epsilon_{ideal} + O\left(\sqrt{\frac{d\log n}{n}} + \sqrt{\frac{d\log m}{m}}\right) (3)$$

- However, $\mathcal{H} \Delta \mathcal{H}$ -Divergence is hard to compute and optimize.
- For binary hypothesis h, $\mathcal{H}\Delta\mathcal{H}$ -Divergence can be further bounded by

$$d_{\mathcal{H}\Delta\mathcal{H}}(P,Q) \triangleq \sup_{\substack{h,h'\in\mathcal{H}\\\delta\in\mathcal{H}\Delta\mathcal{H}}} |\epsilon_{P}(h,h') - \epsilon_{Q}(h,h')|$$

$$= \sup_{\delta\in\mathcal{H}\Delta\mathcal{H}} |\mathbb{E}_{P}[\delta(\mathbf{x})\neq 0] - \mathbb{E}_{Q}[\delta(\mathbf{x})\neq 0]|$$

$$\leqslant \sup_{D\in\mathcal{H}_{D}} |\mathbb{E}_{P}[D(\mathbf{x})=1] + \mathbb{E}_{Q}[D(\mathbf{x})=0]|$$

(4)

• This bound can be estimated by training a domain discriminator $D(\mathbf{x})$.

• It can also be approximated by the Integral Probability Metric (IPM).

Mingsheng Long

Domain Adversarial Neural Network (DANN)²

Adversarial domain adaptation: learn ϕ to minimize $d_{\mathcal{H}\Delta\mathcal{H}}(\phi(P), \phi(Q))$.

$$\min_{\phi,h} \left\{ \mathbb{E}_{(x,y)\sim P} L(h(\phi(x)), y) + \max_{D} \left(\mathbb{E}_{P} L(D(\phi(x)), 1) + \mathbb{E}_{Q} L(D(\phi(x)), 0) \right) \right\}$$
(5)

Supervised Learning on source + Upper-Bound of $d_{H\Delta H}$ on source/target

²Ganin et al. Domain Adversarial Training of Neural Networks. JMLR 2016.

Deep Adaptation Network (DAN)³

Optimal domain matching: yield upper-bound by multiple kernel learning

$$d_{k}^{2}(P,Q) \triangleq \left\| \mathbf{E}_{P} \left[\phi \left(\mathbf{x}^{s} \right) \right] - \mathbf{E}_{Q} \left[\phi \left(\mathbf{x}^{t} \right) \right] \right\|_{\mathcal{H}_{k}}^{2}$$
(6)

$$\min_{\theta \in \Theta} \max_{k \in \mathcal{K}} \frac{1}{n_a} \sum_{i=1}^{n_a} L\left(\theta\left(\mathbf{x}_i^a\right), y_i^a\right) + \lambda \sum_{\ell=l_1}^{l_2} d_k^2\left(\widehat{P}_{\ell}, \widehat{Q}_{\ell}\right)$$
(7)

Works better than *f*-Divergences when domains are less overlapping

Mingsheng Long

³Long et al. Learning Transferable Features with Deep Adaptation Networks. ICML 2015.000

Outline

1 Transfer Learning

2 Theories and Algorithms

- Classic Theory
- Margin Theory
- Localization Theory

Open Library

Transfer-Learning-Library

э

Theory and Practice: Gap Exists for Decade

• Theory vs. Practice:

- Binary Classification vs. Multiclass Classification.
- Discrete Classifier vs. Classifier with Scoring Function.
- $d_{\mathcal{H}\Delta\mathcal{H}}$ does not need label vs. $d_{\mathcal{H}\Delta\mathcal{H}}$ is hard to compute and optimize.
- Principal problem: How to bridge theory and algorithm?

Step I: Disparity Discrepancy (DD)⁴

Definition (Disparity Discrepancy (DD))

Given a hypothesis space \mathcal{H} and a *specific hypothesis* $h \in \mathcal{H}$, the Disparity Discrepancy (DD) is

$$d_{h,\mathcal{H}}(P,Q) = \sup_{\substack{h' \in \mathcal{H}}} \left(\mathbb{E}_{Q}[h' \neq h] - \mathbb{E}_{P}[h' \neq h] \right)$$
(8)

Theorem (Bound with Disparity Discrepancy)

For any $\delta > 0$ and binary classifier $h \in \mathcal{H}$, with probability $1 - 3\delta$, we have

$$\epsilon_{Q}(h) \leq \epsilon_{\widehat{P}}(h) + d_{h,\mathcal{H}}(\widehat{P},\widehat{Q}) + \epsilon_{ideal} + 2\mathfrak{R}_{n,P}(\mathcal{H}\Delta\mathcal{H}) + 2\mathfrak{R}_{n,P}(\mathcal{H}) + 2\sqrt{\frac{\log\frac{2}{\delta}}{2n}} + 2\mathfrak{R}_{m,Q}(\mathcal{H}\Delta\mathcal{H}) + \sqrt{\frac{\log\frac{2}{\delta}}{2m}}.$$
(9)

⁴Zhang & Long. Bridging Theory and Algorithm for Domain Adaptation. ICML 2019.

M	ings	heng	long
		incing.	Louis

イロト 不得 とうせい かほとう ほ

Step I: Disparity Discrepancy (DD)

• Disparity Discrepancy (DD) is tighter than $\mathcal{H}\Delta\mathcal{H}$ -Divergence.

 $\mathcal{H}\Delta\mathcal{H} ext{-}Divergence$

Supremum over single space

Disparity Discrepancy

• DD can be estimated by conditional domain discriminator $D(\mathbf{x}, h(\mathbf{x}))$.

$$d_{h,\mathcal{H}}(P,Q) \triangleq \sup_{\substack{h' \in \mathcal{H} \\ h' \in \mathcal{H}}} \left(\varepsilon_{P}(h,h') - \varepsilon_{Q}(h,h') \right)$$

$$= \sup_{\substack{h' \in \mathcal{H} \\ h' \in \mathcal{H}}} \left(\mathbb{E}_{P}\left[|h(\mathbf{x}) - h'(\mathbf{x})| \neq 0 \right] - \mathbb{E}_{Q}\left[|h(\mathbf{x}) - h'(\mathbf{x})| \neq 0 \right] \right) \qquad (10)$$

$$\leqslant \sup_{\substack{D \in \mathcal{H}_{D}}} \left(\mathbb{E}_{P}\left[D(\mathbf{x},h(\mathbf{x})) = 1 \right] + \mathbb{E}_{Q}\left[D\left(\mathbf{x},h(\mathbf{x})\right) = 0 \right] \right)$$

• It can also be approximated by the Integral Probability Metric (IPM).

Conditional Domain Adversarial Network (CDAN)⁵

Conditional adversarial domain adaptation: minimize $d_{h,\mathcal{H}}(\phi(P),\phi(Q))$.

$$\min_{G} \mathcal{E}(G) - \lambda \mathcal{E}(D, G)$$

$$\min_{D} \mathcal{E}(D, G),$$
(11)

 $\mathcal{E}(D,G) = -\mathbb{E}_{\mathbf{x}_{i}^{s} \sim \mathcal{D}_{s}} \log \left[D\left(\mathbf{f}_{i}^{s} \otimes \mathbf{g}_{i}^{s}\right) \right] - \mathbb{E}_{\mathbf{x}_{i}^{t} \sim \mathcal{D}_{t}} \log \left[1 - D\left(\mathbf{f}_{j}^{t} \otimes \mathbf{g}_{j}^{t}\right) \right]$ (12)

⁵Long et al. Conditional Adversarial Domain Adaptation. NIPS 2018.

Joint Adaptation Network (JAN)⁶

Joint distribution matching: cross-covariance of multiple random vectors

$$d_{k}^{2}(P,Q) \triangleq \left\| \mathsf{E}_{P}\left[\bigotimes_{\ell=1}^{m} \phi_{\ell}\left(\mathsf{x}_{\ell}^{s}\right) \right] - \mathsf{E}_{Q}\left[\bigotimes_{\ell=1}^{m} \phi_{\ell}\left(\mathsf{x}_{\ell}^{t}\right) \right] \right\|_{\mathcal{H}_{k}}^{2}$$
(13)

$$\min_{\theta \in \Theta} \max_{k \in \mathcal{K}} \frac{1}{n_a} \sum_{i=1}^{n_a} L\left(\theta\left(\mathbf{x}_i^a\right), y_i^a\right) + \lambda d_k^2\left(\widehat{P}_{\ell=1:L}, \widehat{Q}_{\ell=1:L}\right)$$
(14)

Works better than *f*-Divergences when domains are less overlapping

⁶Long et al. Deep Transfer Learning with Joint Adaptation Networks, ICML 2017. 📑 🧠 🤉

Mingsheng Long

Multiclass Classification Formulation

- Scoring function: $f \in \mathcal{F} : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$
- Labeling function induced by $f: h_f : \mathbf{x} \mapsto \arg \max_{y \in \mathcal{Y}} f(\mathbf{x}, y)$
- Labeling function class: $\mathcal{H} = \{h_f | f \in \mathcal{F}\}$
- Margin of a hypothesis f:

$$\rho_f(\mathbf{x}, y) = \frac{1}{2} (f(\mathbf{x}, y) - \max_{y' \neq y} f(\mathbf{x}, y'))$$

• Margin Loss:

$$\Phi_{\rho}(\mathbf{x}) = \begin{cases} 0 & \rho \leqslant \mathbf{x} \\ 1 - \mathbf{x}/\rho & 0 \leqslant \mathbf{x} \leqslant \rho \\ 1 & \mathbf{x} \leqslant 0 \end{cases}$$

Margin Theory

- Margin error: $\epsilon_D^{(\rho)}(f) = \mathbb{E}_{(\mathbf{x},y)\sim D} \left[\Phi_{\rho}(\rho_f(\mathbf{x},y)) \right]$
- This error takes the margin of the hypothesis *f* into consideration:

• Given a class of scoring functions \mathcal{F} , $\Pi_1 \mathcal{F}$ is defined as

$$\Pi_1 \mathcal{F} = \{ \mathbf{x} \mapsto f(\mathbf{x}, y) | y \in \mathcal{Y}, f \in \mathcal{F} \}.$$
(15)

• Margin Bound for IID setup (generalization error controlled by ρ):

$$\operatorname{err}_{P}^{(\rho)}(f) \leq \operatorname{err}_{\widehat{P}}^{(\rho)}(f) + \frac{2k^{2}}{\rho} \mathfrak{R}_{n,P}\left(\Pi_{1}\mathcal{F}\right) + \sqrt{\frac{\log \frac{2}{\delta}}{2n}}$$
 (16)

Step II: Margin Disparity Discrepancy (MDD)⁷

- Margin Disparity: $\epsilon_D^{(\rho)}(f', f) \triangleq \mathbb{E}_{\mathbf{x} \sim D_X}[\Phi_{\rho}(\rho_{f'}(\mathbf{x}, h_f(\mathbf{x})))].$
- We further define the margin version of Disparity Discrepancy (DD):

Definition (Margin Disparity Discrepancy (MDD))

Given a hypothesis space \mathcal{F} and a *specific hypothesis* $f \in \mathcal{F}$, the Margin Disparity Discrepancy (MDD) induced by $f' \in \mathcal{F}$ and its empirical version are defined by

$$d_{f,\mathcal{F}}^{(\rho)}(P,Q) \triangleq \sup_{f'\in\mathcal{F}} \left(\epsilon_Q^{(\rho)}(f',f) - \epsilon_P^{(\rho)}(f',f) \right), \\ d_{f,\mathcal{F}}^{(\rho)}(\widehat{P},\widehat{Q}) \triangleq \sup_{f'\in\mathcal{F}} \left(\epsilon_{\widehat{Q}}^{(\rho)}(f',f) - \epsilon_{\widehat{P}}^{(\rho)}(f',f) \right).$$
(17)

MDD satisfies $d_{f,\mathcal{F}}^{(\rho)}(P,P) = 0$ as well as nonnegativity and subadditivity.

⁷Zhang & Long. Bridging Theory and Algorithm for Domain Adaptation. ICML 2019.

nosi	ieno	l on	
1 2 3	TCH S		-
•			-

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Margin Theory for Transfer Learning

Theorem (Generalization Bound with Rademacher Complexity)

Let $\mathcal{F} \subseteq \mathbb{R}^{\mathcal{X} \times \mathcal{Y}}$ be a hypothesis set with label set $\mathcal{Y} = \{1, \cdots, k\}$ and $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ be the corresponding \mathcal{Y} -valued labeling function class. Fix $\rho > 0$. For all $\delta > 0$, with probability $1 - 3\delta$ the following inequality holds for all hypothesis $f \in \mathcal{F}$:

$$\epsilon_{Q}(f) \leq \epsilon_{\widehat{\rho}}^{(\rho)}(f) + d_{f,\mathcal{F}}^{(\rho)}(\widehat{P},\widehat{Q}) + \epsilon_{ideal} + \frac{2k^{2}}{\rho} \mathfrak{R}_{n,P}(\Pi_{1}\mathcal{F}) + \frac{k}{\rho} \mathfrak{R}_{n,P}(\Pi_{\mathcal{H}}\mathcal{F}) + 2\sqrt{\frac{\log\frac{2}{\delta}}{2n}}$$
(18)
$$+ \frac{k}{\rho} \mathfrak{R}_{m,Q}(\Pi_{\mathcal{H}}\mathcal{F}) + \sqrt{\frac{\log\frac{2}{\delta}}{2m}}.$$

An expected observation is that the generalization risk is controlled by ρ .

M	ings	heng	Long	
	<u> </u>	<u> </u>		

Margin Theory for Transfer Learning

Theorem (Generalization Bound with Covering Numbers)

Let $\mathcal{F} \subseteq \mathbb{R}^{\mathcal{X} \times \mathcal{Y}}$ be a hypothesis set with label set $\mathcal{Y} = \{1, \cdots, k\}$ and $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ be the corresponding \mathcal{Y} -valued labeling function class. Suppose $\Pi_1 \mathcal{F}$ is bounded in \mathcal{L}_2 by L. Fix $\rho > 0$. For all $\delta > 0$, with probability $1 - 3\delta$ the following inequality holds for all hypothesis $f \in \mathcal{F}$:

$$\begin{aligned} \epsilon_{Q}(f) \leq \epsilon_{\widehat{P}}^{(\rho)}(f) + d_{f,\mathcal{F}}^{(\rho)}(\widehat{P},\widehat{Q}) + \epsilon_{ideal} + 2\sqrt{\frac{\log\frac{2}{\delta}}{2n}} \\ + \sqrt{\frac{\log\frac{2}{\delta}}{2m}} + \frac{16k^{2}\sqrt{k}}{\rho} \inf_{\epsilon \geq 0} \left\{ \epsilon + 3\left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}}\right) \\ \left(\int_{\epsilon}^{\sqrt{k}} \log \mathcal{N}_{2}(\tau, \Pi_{1}\mathcal{F}) \mathrm{d}\tau + L \int_{\epsilon/L}^{\sqrt{k}} \log \mathcal{N}_{2}(\tau, \Pi_{1}\mathcal{H}) \mathrm{d}\tau \right) \right\}. \end{aligned}$$
(19)

The margin bound for OOD has same order with the margin bound for IID.

Mingsheng Long

Margin Theory Implied Algorithm (MDD)⁸

Minimax domain adaptation implied directly through the margin theory

$$\min_{\substack{f,\psi}} \epsilon_{\psi(\widehat{P})}^{(\rho)}(f) + \left(\epsilon_{\psi(\widehat{Q})}^{(\rho)}(f^*,f) - \epsilon_{\psi(\widehat{P})}^{(\rho)}(f^*,f)\right)$$

$$f^* = \max_{\substack{f'}} \left(\epsilon_{\psi(\widehat{Q})}^{(\rho)}(f',f) - \epsilon_{\psi(\widehat{P})}^{(\rho)}(f',f)\right)$$
(20)

⁸Zhang & Long. Bridging Theory and Algorithm for Domain Adaptation. ICML 2019.

Mingsheng Long

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

1 Transfer Learning

2 Theories and Algorithms

- Classic Theory
- Margin Theory
- Localization Theory

Open Library

Transfer-Learning-Library

< 行.

э

Theory and Practice: Final Gap to Close

 Previous discrepancies are supremum over whole hypothesis space will include bad hypotheses that make the bound excessively large.

 $[\]mathcal{H}\Delta\mathcal{H}$ -Divergence

Disparity Discrepancy

• A common observation is that difficulty of transfer is asymmetric — Previous bounds will remain unchanged after switching P and Q.

Localization for Discrepancies

Localized Disparity Discrepancy

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Step III: Localized Discrepancies

Definition (Localized Hypothesis Space)

For any distributions P and Q on $\mathcal{X} \times \mathcal{Y}$, any hypothesis space \mathcal{H} and any $r \geq 0$, the **localized hypothesis space** \mathcal{H}_r is defined as

$$\mathcal{H}_{r} = \{ h \in \mathcal{H} | \mathbb{E}_{P} L(h(\mathbf{x}), y) \leq r \}.$$
(21)

Definition (Localized $\mathcal{H} \Delta \mathcal{H}$ -**Discrepancy (LHH))**

The **localized** $\mathcal{H}\Delta\mathcal{H}$ -discrepancy from P to Q is defined as

$$d_{\mathcal{H}_r \Delta \mathcal{H}_r}(P,Q) = \sup_{h,h' \in \mathcal{H}_r} \left(\mathbb{E}_Q L(h',h) - \mathbb{E}_P L(h',h) \right).$$
(22)

Definition (Localized Disparity Discrepancy (LDD))

For $h \in \mathcal{H}$, the **localized disparity discrepancy** from P to Q is defined as

$$d_{h,\mathcal{H}_r}(P,Q) = \sup_{h'\in\mathcal{H}_r} \left(\mathbb{E}_Q L(h',h) - \mathbb{E}_P L(h',h) \right).$$
(23)

Localization Theory for Transfer Learning⁹

Recall the generalization bound induced by previous discrepancies:

$$\epsilon_{Q}(h) \leq \epsilon_{\widehat{P}}(h) + d_{\mathcal{H}\Delta\mathcal{H}}(\widehat{P},\widehat{Q}) + \epsilon_{ideal} + O(\sqrt{\frac{d\log n}{n}} + \sqrt{\frac{d\log m}{m}})$$

Theorem (Generalization Bound with Localized $\mathcal{H}\Delta\mathcal{H}$ -Discrepancy)

Set fixed $r > \lambda$. Let \hat{h} be the solution of the source error minimization. Then with probability no less than $1 - \delta$, we have

$$\operatorname{err}_{Q}(\hat{h}) \leq \operatorname{err}_{\widehat{P}}(\hat{h}) + d_{\mathcal{H}_{r}\Delta\mathcal{H}_{r}}(\widehat{P},\widehat{Q}) + \lambda + O(\frac{d\log n}{n} + \frac{d\log m}{m}) + O\left(\sqrt{\frac{2rd\log n}{n}} + \sqrt{\frac{(d_{\mathcal{H}_{r}\Delta\mathcal{H}_{r}}(\widehat{P},\widehat{Q}) + 2r)d\log m}{m}}\right).$$
(24)

To make domain adaptation feasible, we require $d_{\mathcal{H}_r \Delta \mathcal{H}_r}(\widehat{P}, \widehat{Q}) + r \ll 1$.

⁹Zhang & Long. On Localized Discrepancy for Domain Adaptation. Preprint 2020.

3 K K 3 K -

Image: A matrix and a matrix

Localization Theory for Transfer Learning¹⁰

Recall that Disparity Discrepancy is tighter than $\mathcal{H}\Delta\mathcal{H}$ -Discrepancy:

$$\min_{\bar{h}\in\mathcal{H}}\{\operatorname{err}_{\widehat{P}}(\bar{h})+d_{\bar{h},\mathcal{H}_{r}}(\widehat{P},\widehat{Q})\}\leq\min_{\hat{h}\in\mathcal{H}}\operatorname{err}_{\widehat{P}}(\hat{h})+d_{\mathcal{H}_{r}\Delta\mathcal{H}_{r}}(\widehat{P},\widehat{Q})$$
(25)

Theorem (Generalization bound with localized disparity discrepancy)

Set fixed $r > \lambda$. Let \bar{h} be the solution of above left objective function. Then with probability no less than $1 - \delta$, we have

$$\operatorname{err}_{Q}(\hat{h}) \leq \operatorname{err}_{\widehat{P}}(\overline{h}) + d_{\overline{h},\mathcal{H}_{r}}(\widehat{P},\widehat{Q}) + \lambda + O(\frac{d \log n}{n} + \frac{d \log m}{m}) + O\left(\sqrt{\frac{(\operatorname{err}_{\widehat{P}}(\overline{h}) + r)d \log n}{n}} + \sqrt{\frac{(\operatorname{err}_{\widehat{P}}(\overline{h}) + d_{\overline{h},\mathcal{H}_{r}}(\widehat{P},\widehat{Q}) + r)d \log m}{m}}\right).$$
(26)

¹⁰Zhang & Long. On Localized Discrepancy for Domain Adaptation. Preprint 2020.

Min	gsheng	Long

・ロッ ・雪 ・ ・ ヨ ・ ・ ・ ・

Outline

Transfer Learning

2 Theories and Algorithms

- Classic Theory
- Margin Theory
- Localization Theory

Open Library

Transfer-Learning-Library

э

Transfer Learning Library

←	O G github.com/thuml/Transfer-Learning-Libra	згу		x) 🥹 🕈 🗸 🕸 E
	Search or jump to	7 Pull requests Issues Marketplace Explore	Đ	Ļ +• ∰•
	🖵 thuml / Transfer-Learning	J-Library	⊙ Watch ▼ 35	tunstar 934 00 Fork 167
	<> Code Issues Pull	requests 🕞 Actions 🖽 Projects 🛄 Wiki	Security	Insights 🔯 Settings
	🐉 master 👻 🎖 2 branches 🛇	O tags Go to file Add file	e 🗸 Code 👻	About 🕸
	, Junguang Jiang Update READM	E.md 6633021 10 days ago	3271 commits	Transfer Learning Library for Domain Adaptation and Finetune.
	common	Merge pull request #62 from tsingcbx99/master	29 days ago	
	🖿 dalib	update docs for afn & self ensemble	4 months ago	transfer-learning
	docs	update benchmarks for moco finetune	2 months ago	semantic-segmentation
	examples	Update source_only.sh	2 months ago	adversarial-learning
	🖿 ftlib	add Learning without forgetting (LWF) in finetune	2 months ago	domain-adaptation finetune
	🗅 .gitignore	adjust training structure	5 months ago	unsupervised-domain-adaptation
	LICENSE	add setup.py; add tutorial	17 months ago	dann cyclegan-pytorch
	LICENSE.md	release version	16 months ago	open-set-domain-adaptation
	README.md	Update README.md	10 days ago	partial-domain-adaptation
	TransLearn.png	Update TransLearn.png	6 months ago	🛱 Readme
	requirements.txt	add matplotlib	3 months ago	d MIT License
	🗅 setup.py	Merge branch 'master' of https://github.com/thuml/Transfer	5 months ago	

Mingsheng Long

Transfer Learning

August 21, 2021 34 / 38

Design Patterns

Github: https://github.com/thuml/Transfer-Learning-Library

Mingsheng Long	Transfer Learning	August 21, 2021	35 / 38
----------------	-------------------	-----------------	---------

Standardized Implementations

This taxonomy was initiated by **Prof Q. Yang**, most setups are still open!

Mingsheng Long	Transfer Learning	August 21, 2021	36 / 38
	•	그 돈 ▲ 國 돈 ▲ 필 돈 ▲ 필 돈	≧ ∽へぐ

Reproducible Benchmarks

Method	Origin	Ours	Δacc	$A \rightarrow W$	$D \to W$	$W \rightarrow D$	$A \rightarrow D$	$D \rightarrow A$	$W \to A$
ResNet-50	76.1	79.5	3.4	75.8	95.5	99.0	79.3	63.6	63.8
DANN	82.2	86.4	4.2	91.7	97.9	100.0	82.9	72.8	73.3
DAN	80.4	83.7	3.3	84.2	98.4	100.0	87.3	66.9	65.2
JAN	84.3	87.3	3.0	93.7	98.4	100.0	89.4	71.2	71.0
CDAN	87.7	88.7	1.0	93.1	98.6	100.0	93.4	75.6	71.5
MCD	-	85.9	-	91.8	98.6	100.0	89.0	69.0	66.9
MDD	88.9	89.2	0.3	93.6	98.6	100.0	93.6	76.7	72.9

Table: Accuracy (%) on Office-31 for Unsupervised Domain Adaptation

Table: Accuracy (%) on Office-Home for Unsupervised Domain Adaptation

Method	Origin	Ours	Δacc	Ar-Cl	Ar-Pr	Ar-Rw	Cl-Ar	CI-Pr	CI-Rw	Pr-Ar	Pr-Cl	Pr-Rw	Rw-Ar	Rw-Cl	Rw-Pr
ResNet-50	46.1	58.4	12.3	41.1	65.9	73.7	53.1	60.1	63.3	52.2	36.7	71.8	64.8	42.6	75.2
DANN	57.6	65.2	7.6	53.8	62.6	74.0	55.8	67.3	67.3	55.8	55.1	77.9	71.1	60.7	81.1
DAN	56.3	61.4	5.1	45.6	67.7	73.9	57.7	63.8	66.0	54.9	40.0	74.5	66.2	49.1	77.9
JAN	58.3	65.9	7.6	50.8	71.9	76.5	60.6	68.3	68.7	60.5	49.6	76.9	71.0	55.9	80.5
CDAN	65.8	68.8	3.0	55.2	72.4	77.6	62.0	69.7	70.9	62.4	54.3	80.5	75.5	61.0	83.8
MCD	-	67.8	-	51.7	72.2	78.2	63.7	69.5	70.8	61.5	52.8	78.0	74.5	58.4	81.8
MDD	68.1	69.6	1.5	56.4	75.3	78.4	63.2	73.1	73.3	63.9	54.8	79.7	73.2	60.7	83.7

ㅁㅏ 《畵ㅏ 《놀ㅏ 《놀ㅏ

Machine Learning Group @ National Engineering Lab

Jianmin Wang Professor Tsinghua University jimwang@tsinghua.edu.cn

Mingsheng Long Associate Professor Tsinghua University mingsheng@tsinghua.edu.cn

Michael I. Jordan Professor UC Berkeley jordan@cs.berkeley.edu

Yuchen Zhang

Ximei Wang

Zhangjie Cao

Kaichao You

Junguang Jiang

Many thanks for your attention! Any questions?