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Transfer Learning
Machine learning across domains of different distributions P 6= Q

OOD: Out-of-Distribution (from IID to OOD)

How to bound generalization error on target domain for OOD setup?

pinch grasps, and the motion command has, thus, 5 dimen-
sions: 3 for position, and 2 for a sine-cosine encoding of the
rotation. The second component of the method is a simple,
manually designed servoing function that uses the grasp
probabilities predicted by C to choose the motor command
vi that will continuously control the robot. We can train
the grasp prediction network C using standard supervised
learning objectives, and so it can be optimized independently
from the servoing mechanism. In this work, we focus on
extending the first component to include simulated data in
the training set for the grasp prediction network C, leaving
the other parts of the system unchanged.

The datasets for training the grasp prediction CNN C are
collections of visual episodes of robotic arms attempting to
grasp various objects. Each grasp attempt episode consists of
T time steps which result in T distinct training samples. Each
sample i includes xi,vi, and the success label yi of the entire
grasp sequence. The visual inputs are 640⇥512 images that
are randomly cropped to a 472⇥472 region during training
to encourage translation invariance.

The central aim of our work is to compare different
training regimes that combine both simulated and real-world
data for training C. Although we do consider training entirely
with simulated data, as we discuss in Section IV-A, most of
the training regimes we consider combine medium amounts
of real-world data with large amounts of simulated data.
To that end, we use the self-supervised real-world grasping
dataset collected by Levine et al. [6] using 6 physical Kuka
IIWA arms. The goal of the robots was to grasp any object
within a specified goal region. Grasping was performed using
a compliant two-finger gripper picking objects out of a metal
bin, with a monocular RGB camera mounted behind the arm.
The full dataset includes about 1 million grasp attempts on
approximately 1,100 different objects, resulting in about 9.4
million real-world images. About half of the dataset was
collected using random grasps, and the rest using iteratively
retrained versions of C. Aside from the variety of objects,
each robot differed slightly in terms of wear-and-tear, as well
as the camera pose. The outcome of the grasp attempt was
determined automatically. The particular objects in front of
each robot were regularly rotated to increase the diversity
of the dataset. Some examples of grasping images from the
camera’s viewpoint are shown in Figure 2d.

When trained on the entire real dataset, the best CNN used
in the approach outlined above achieved successful grasps
67.65% of the time. Levine et al. [6] reported an additional
increase to 77.18% from also including 2.7 million images
from a different robot. We excluded this additional dataset
for the sake of a more controlled comparison, so as to avoid
additional confounding factors due to domain shift within
the real-world data. Starting from the Kuka dataset, our
experiments study the effect of adding simulated data and
of reducing the number of real world data points by taking
subsets of varying size (down to only 93,841 real world
images, which is 1% of the original set).

(a) Simulated World (b) Real World

(c) Simulated Samples (d) Real Samples

Fig. 2: Top Row: The setup we used for collecting the (a)
simulated and (b) real-world datasets. Bottom Row: Images
used during training of (c) simulated grasping experience
with procedurally generated objects; and of (d) real-world
experience with a varied collection of everyday physical
objects. In both cases, we see the pairs of image inputs for
our grasp success prediction model C: the images at t = 0
and the images at the current timestamp.

B. Domain Adaptation

As part of our proposed approach we use two domain
adaptation techniques: domain-adversarial training
and pixel-level domain adaptation. Ganin et al. [22]
introduced domain–adversarial neural networks (DANNs),
an architecture trained to extract domain-invariant yet
expressive features. DANNs were primarily tested in the
unsupervised domain adaptation scenario, in the absence
of any labeled target domain samples, although they also
showed promising results in the semi-supervised regime [24].
Their model’s first few layers are shared by two modules:
the first predicts task-specific labels when provided with
source data while the second is a separate domain classifier
trained to predict the domain d̂ of its inputs. The DANN
loss is the cross-entropy loss for the domain prediction task:
LDANN = ÂNs+Nt

i=0

�
di log d̂i + (1�di) log(1� d̂i)

 
, where

di 2 {0,1} is the ground truth domain label for sample i,
and Ns,Nt are the number of source and target samples.

The shared layers are trained to maximize LDANN, while
the domain classifier is trained adversarially to minimize it.
This minimax optimization is implemented by a gradient
reversal layer (GRL). The GRL has the same output as the
identity function, but negates the gradient during backprop.
This lets us compute the gradient for both the domain clas-
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Representative Approaches to Transfer Learning

Learning to match distributions across OOD domains s.t. P ≈ Q

Covariate shift: P(X) 6= Q(X) (mainstream work of this setup)

Prior shift: P(Y) 6= Q(Y) (challenging, current hotspot)

Conditional shift: P(Y |X) 6= Q(Y |X) (challenging, future research)

Song et al. Kernel Embeddings of Conditional Distributions. IEEE, 2013. 
Goodfellow et al. Generative Adversarial Networks. NIPS 2014.

Kernel Embedding Adversarial Learning

 IEEE SIGNAL PROCESSING MAGAZINE [102] JULY 2013

embeddings of a joint distribution ( , )P X Y  and the product of its 
marginals ( ) ( ),P X P Y  i.e., hsic ( , ) : .X Y C F FXY X Y

27n n= - 7  
Similarly, this statistic also has advantages over the kde-based 
statistic. We will further discuss these tests in the next section, 
following our introduction of finite sample estimates of the 
distribution embeddings and test statistics.

FINITE SAMPLE KERNEL ESTIMATOR
While we rarely have access to the true underlying distribution, 

( ),P X  we can readily estimate its embedding using a finite sample 
average. Given a sample { , , }D x xX m1 f=  of size m drawn inde-
pendent and identically distributed (i.i.d.) from ( ),P X  the empiri-
cal kernel embedding is

 ( ) .m x1
X i

i

m

1
n z=

=

t /  (4)

See Figure 3 for an illustration of the kernel embedding and its 
empirical estimator. This empirical estimate converges to its pop-
ulation counterpart in RKHS norm, ,FX Xn n-t  with a rate of 

( )O m ( / )
p

1 2-  [15], [16]. We note that this rate is independent of the 
dimension of ,X  meaning that statistics based on kernel embed-
dings circumvent the curse of dimensionality.

Kernel embeddings of joint distributions inherit the 
previous two properties of general embeddings: injectivity 

and easy empirical estimation. Given 
m pairs of training examples DXY = 
{( , ), , ( , )}x y x ym m1 1 f  drawn i.i.d. from 

( , ),P X Y  the covariance operator CXY  
can then be estimated as

 ( ) ( ) .C m x y1
XY i i

i

m

1
7z z=

=

t /  (5)

See Figure 4 for an illustration of the 
kernel joint embedding and its empirical 
estimator.

By virtue of the kernel trick, most of 
the computation required for statistical 
inference using kernel embeddings can 
be reduced to the Gram matrix manipu-
lation. The entries in the Gram matrix K  
correspond to the kernel value between 
data points xi and ,x j  i.e., ( , ),K k x xij i j=  
and therefore its size is determined by 
the number of data points in the sample 
(similarly Gram matrix G has entries 

( , )) .G k y yij i j=  The size of the Gram 
matrices is in general much smaller than 
the dimension of the feature spaces 
(which can be infinite). This enables effi-
cient nonparametric methods using the 
kernel embedding representation. For 
instance, the empirical mmd can be com-
puted using kernel evaluations,
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For comparison, the L2 distance between kernel density esti-
mates is
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u/ , respectively. Furthermore, it can be shown that a 

two-sample test based on the L2 distance between kernel density 
estimates has less power against local departures from the null 
hypothesis than the mmd\  [19, Sec. 3.3], [19, Sec. 5], due to the 
shrinking kernel bandwidth with increasing sample size. There 
are also many domains such as strings and graphs [13] where 
kernel methods can be used, but where probability densities may 
not be defined. Finally, hyperparameters of the kernel func-
tions, such as the bandwidth v in the Gaussian kernel 

v( ),exp x x 2-- l  can be chosen to maximize the test power, 
and minimize the probability of Type II error in two-sample tests 

[FIG3] Kernel embedding of a distribution and finite sample estimate.
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[FIG4] Kernel embedding of a joint distribution and finite sample estimate.
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Generally, no theoretical guarantees!
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Principal Problem: Bridging Theory and Algorithm

Everything should be made as simple as possible, but no simpler.
—Albert Einstein

There is nothing more practical than a good theory.
—Vladimir Vapnik
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Outline

1 Transfer Learning

2 Theories and Algorithms
Classic Theory
Margin Theory
Localization Theory

3 Open Library
Transfer-Learning-Library
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Statistical Learning

Learner
Training

Data
(xi , yi ){ }i=1

n
ℎ

𝑥

𝑦

I.I.D.

Representor

~𝑃

𝑃%

𝑦 = ℎ(𝑥)

Formally analyzing the classification problem with 01-loss [· 6= ·].
Training error: ε

P̂
(h) = 1

n

∑n
i=1 [h (xi ) 6= yi ] = E

(x,y)∼P̂ [h (x) 6= y ].

Test error: εP (h) = E(x,y)∼P [h (x) 6= y ].

Training error is an unbiased estimation of test error.

Principal problem: Can we control εP (h) with observable ε
P̂

(h)?
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Statistical Learning Theory

Model complexity

E
rr

or

Training Error

Test ErrorBest Fit

Overfitting àß Underfitting

Generalization error: The gap between training error and test error.

Generalization error depends on sample size n and model complexity.

For hypothesis space H with VC-dimension d , we have bound:

εP(h) ≤ ε
P̂

(h) + O



√

d log n + log 2
δ

n
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Transfer Learning

Learner
Training
Data
(xi , yi ){ }i=1

n

I.I.D.

Representor

~𝑃

𝑃# Testing
Data 𝑄#

I.I.D.~𝑄

( ′xi , ′yi ){ }i=1
′n

𝑦 = ℎ(𝑥)

Source
Domain

Target
Domain

𝑷 ≠ 𝑸

Training Error
𝜖/# ℎ

Test Error
𝜖0 ℎ

ℎ

𝑥

𝑦
m

Only have labeled data sampled from a different source domain P.

And unlabeled data sampled from a target domain Q. ε
Q̂

(h) is not
observable!

Principal problem: Can we control target error εQ (h)?

Disparity on D: εD (h1, h2) = E(x,y)∼D [h1 (x) 6= h2 (x)].

Why use it? Computation of disparity does not require (target) label!

Mingsheng Long Transfer Learning August 21, 2021 9 / 38



Relating Target Risk to Source Risk

Theorem (Bound with Disparity)

For classification tasks of transfer learning, define the ideal joint hypothesis
as h∗ = arg minh∈H [εP (h) + εQ (h)], the target risk εQ(h) can be bounded
by the source risk εP(h), the ideal joint error, and the disparity difference:

εQ (h) 6 εP (h) + [εP (h∗) + εQ (h∗)] + |εP (h, h∗)− εQ (h, h∗)| (1)

Proof.

Simply using the triangle inequalities of the 01-loss, we have

εQ (h) 6 εQ (h∗) + εQ (h, h∗)

= εQ (h∗) + εP (h, h∗) + εQ (h, h∗)− εP (h, h∗)

6 εQ (h∗) + εP (h, h∗) + |εQ (h, h∗)− εP (h, h∗)|
6 εP (h) + [εP (h∗) + εQ (h∗)] + |εP (h, h∗)− εQ (h, h∗)|

(2)
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H∆H-Divergence1

Assumption: Small ideal joint error εideal = εP (h∗) + εQ (h∗).

We can illustrate the disparity difference |εP (h, h∗)− εQ (h, h∗)|:

low high

ℎ ℎ

ℎ∗ℎ∗
ℋ ℋ

ℎ

ℎ∗
Δ

Supremum over all pairs

However, h∗ is unknown and h is undefined. Consider worse-case!

H∆H-Divergence: dH∆H(P,Q) , sup
h,h′∈H

|εP (h, h′)− εQ (h, h′)|

Can be estimated from finite unlabeled samples of source and target.

1Ben-David et al. A Theory of Learning from Different Domains. Machine Learning, 2010.
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Bound H∆H-Divergence with Domain Discriminator

Theorem (Generalization Bound with H∆H-Divergence)

Denote by d the VC-dimension of hypothesis space H. We have

εQ(h) ≤ εP̂(h) + dH∆H(P̂, Q̂) + εideal + O

(√
d log n

n
+

√
d logm

m

)
(3)

However, H∆H-Divergence is hard to compute and optimize.

For binary hypothesis h, H∆H-Divergence can be further bounded by

dH∆H(P,Q) , sup
h,h′∈H

|εP (h, h′)− εQ (h, h′)|

= sup
δ∈H∆H

|EP [δ(x) 6= 0]− EQ [δ (x) 6= 0]|

6 sup
D∈HD

|EP [D(x) = 1] + EQ [D (x) = 0]|

(4)

This bound can be estimated by training a domain discriminator D(x).

It can also be approximated by the Integral Probability Metric (IPM).
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Domain Adversarial Neural Network (DANN)2

Unsupervised Domain Adaptation by Backpropagation

Figure 1. The proposed architecture includes a deep feature extractor (green) and a deep label predictor (blue), which together form
a standard feed-forward architecture. Unsupervised domain adaptation is achieved by adding a domain classifier (red) connected to the
feature extractor via a gradient reversal layer that multiplies the gradient by a certain negative constant during the backpropagation-
based training. Otherwise, the training proceeds in a standard way and minimizes the label prediction loss (for source examples) and
the domain classification loss (for all samples). Gradient reversal ensures that the feature distributions over the two domains are made
similar (as indistinguishable as possible for the domain classifier), thus resulting in the domain-invariant features.

and (Long & Wang, 2015) is thus different from our idea
of matching distribution by making them indistinguishable
for a discriminative classifier. Below, we compare our ap-
proach to (Tzeng et al., 2014; Long & Wang, 2015) on the
Office benchmark. Another approach to deep domain adap-
tation, which is arguably more different from ours, has been
developed in parallel in (Chen et al., 2015).

3. Deep Domain Adaptation
3.1. The model
We now detail the proposed model for the domain adap-
tation. We assume that the model works with input sam-
ples x 2 X , where X is some input space and cer-
tain labels (output) y from the label space Y . Below,
we assume classification problems where Y is a finite set
(Y = {1, 2, . . . L}), however our approach is generic and
can handle any output label space that other deep feed-
forward models can handle. We further assume that there
exist two distributions S(x, y) and T (x, y) on X ⌦ Y ,
which will be referred to as the source distribution and
the target distribution (or the source domain and the tar-
get domain). Both distributions are assumed complex and
unknown, and furthermore similar but different (in other
words, S is “shifted” from T by some domain shift).
Our ultimate goal is to be able to predict labels y given
the input x for the target distribution. At training time,
we have an access to a large set of training samples
{x1,x2, . . . ,xN} from both the source and the target do-
mains distributed according to the marginal distributions
S(x) and T (x). We denote with di the binary variable (do-
main label) for the i-th example, which indicates whether
xi come from the source distribution (xi⇠S(x) if di=0) or
from the target distribution (xi⇠T (x) if di=1). For the ex-
amples from the source distribution (di=0) the correspond-

ing labels yi 2 Y are known at training time. For the ex-
amples from the target domains, we do not know the labels
at training time, and we want to predict such labels at test
time.
We now define a deep feed-forward architecture that for
each input x predicts its label y 2 Y and its domain label
d 2 {0, 1}. We decompose such mapping into three parts.
We assume that the input x is first mapped by a mapping
Gf (a feature extractor) to a D-dimensional feature vector
f 2 RD. The feature mapping may also include several
feed-forward layers and we denote the vector of parame-
ters of all layers in this mapping as ✓f , i.e. f = Gf (x; ✓f ).
Then, the feature vector f is mapped by a mapping Gy (la-
bel predictor) to the label y, and we denote the parameters
of this mapping with ✓y . Finally, the same feature vector f
is mapped to the domain label d by a mapping Gd (domain
classifier) with the parameters ✓d (Figure 1).
During the learning stage, we aim to minimize the label
prediction loss on the annotated part (i.e. the source part)
of the training set, and the parameters of both the feature
extractor and the label predictor are thus optimized in or-
der to minimize the empirical loss for the source domain
samples. This ensures the discriminativeness of the fea-
tures f and the overall good prediction performance of the
combination of the feature extractor and the label predictor
on the source domain.
At the same time, we want to make the features f
domain-invariant. That is, we want to make the dis-
tributions S(f) = {Gf (x; ✓f ) |x⇠S(x)} and T (f) =
{Gf (x; ✓f ) |x⇠T (x)} to be similar. Under the covariate
shift assumption, this would make the label prediction ac-
curacy on the target domain to be the same as on the source
domain (Shimodaira, 2000). Measuring the dissimilarity
of the distributions S(f) and T (f) is however non-trivial,
given that f is high-dimensional, and that the distributions

ℎ

𝐷

𝜙

Adversarial domain adaptation: learn φ to minimize dH∆H(φ(P), φ(Q)).

min
φ,h

{
E(x,y)∼PL(h(φ(x)), y) + max

D
(EPL(D(φ(x)), 1) + EQL(D(φ(x)), 0))

}
(5)

Supervised Learning on source + Upper-Bound of dH∆H on source/target
2Ganin et al. Domain Adversarial Training of Neural Networks. JMLR 2016.
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Deep Adaptation Network (DAN)3

MK-

MMD

MK-

MMD

MK-

MMD

input conv1 conv2 conv3 conv4 conv5 fc6 fc7 fc8

source

output

target

output

frozen frozenfrozen
fine-

tune

fine-

tune

learn learnlearn learn

Optimal domain matching: yield upper-bound by multiple kernel learning

d2
k (P,Q) ,

∥∥EP [φ (xs)]− EQ

[
φ
(
xt
)]∥∥2

Hk
(6)

min
θ∈Θ

max
k∈K

1

na

na∑

i=1

L (θ (xai ) , yai ) + λ

l2∑

`=l1

d2
k

(
P̂`, Q̂`

)
(7)

Works better than f -Divergences when domains are less overlapping

3Long et al. Learning Transferable Features with Deep Adaptation Networks. ICML 2015.
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Outline

1 Transfer Learning

2 Theories and Algorithms
Classic Theory
Margin Theory
Localization Theory

3 Open Library
Transfer-Learning-Library
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Theory and Practice: Gap Exists for Decade

Theory vs. Practice:

Binary Classification vs. Multiclass Classification.

Discrete Classifier vs. Classifier with Scoring Function.

dH∆H does not need label vs. dH∆H is hard to compute and optimize.

Principal problem: How to bridge theory and algorithm?
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Step I: Disparity Discrepancy (DD)4

Definition (Disparity Discrepancy (DD))

Given a hypothesis space H and a specific hypothesis h∈H, the Disparity
Discrepancy (DD) is

dh,H(P,Q) = sup
h′∈H

(
EQ [h′ 6= h]− EP [h′ 6= h]

)
(8)

Theorem (Bound with Disparity Discrepancy)

For any δ > 0 and binary classifier h ∈ H, with probability 1− 3δ, we have

εQ(h) ≤ ε
P̂

(h) + dh,H(P̂, Q̂) + εideal + 2Rn,P(H∆H)

+ 2Rn,P(H) + 2

√
log 2

δ

2n
+ 2Rm,Q(H∆H) +

√
log 2

δ

2m
.

(9)

4Zhang & Long. Bridging Theory and Algorithm for Domain Adaptation. ICML 2019.
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Step I: Disparity Discrepancy (DD)

Disparity Discrepancy (DD) is tighter than H∆H-Divergence.

ℋ ℋ

Δ

Supremum over all pairs

ℋ ℋ

Δ

Supremum over single space

ℎ

ℋΔℋ-Divergence Disparity Discrepancy

DD can be estimated by conditional domain discriminator D(x, h(x)).

dh,H(P,Q) , sup
h′∈H

(εP (h, h′)− εQ (h, h′))

= sup
h′∈H

(EP [|h(x)− h′(x)| 6= 0]− EQ [|h(x)− h′(x)| 6= 0])

6 sup
D∈HD

(EP [D(x, h(x)) = 1] + EQ [D (x, h(x)) = 0])

(10)

It can also be approximated by the Integral Probability Metric (IPM).
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Conditional Domain Adversarial Network (CDAN)5

loss

xs

xt gt

gsfs

ft

ys

yt

DNN:
AlexNet
ResNet
……

D

×

×

Conditional adversarial domain adaptation: minimize dh,H(φ(P), φ(Q)).

min
G
E(G )− λE(D,G )

min
D
E(D,G ),

(11)

E(D,G ) = −Exsi∼Ds log [D (fsi ⊗ gs
i )]− Extj∼Dt

log
[
1− D

(
ftj ⊗ gt

j

)]
(12)

5Long et al. Conditional Adversarial Domain Adaptation. NIPS 2018.
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Joint Adaptation Network (JAN)6

Xs

Xt Zt|L|

Zs|L|Zs1

Zt1

Ys

Yt

JMMD

✖

✖

tied tied

φ1

φ1

φL

φL

AlexNet
VGGnet
GoogLeNet
ResNet
……

Joint distribution matching: cross-covariance of multiple random vectors

d2
k (P,Q) ,

∥∥EP [⊗m
`=1φ` (xs`)]− EQ

[
⊗m
`=1φ`

(
xt`
)]∥∥2

Hk
(13)

min
θ∈Θ

max
k∈K

1

na

na∑

i=1

L (θ (xai ) , yai ) + λd2
k

(
P̂`=1:L, Q̂`=1:L

)
(14)

Works better than f -Divergences when domains are less overlapping
6Long et al. Deep Transfer Learning with Joint Adaptation Networks. ICML 2017.
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Multiclass Classification Formulation

Scoring function: f ∈ F : X × Y → R
Labeling function induced by f : hf : x 7→ arg maxy∈Y f (x, y)

Labeling function class: H = {hf |f ∈ F}
Margin of a hypothesis f :

ρf (x, y) =
1

2
(f (x, y)−max

y ′ 6=y
f (x, y ′))

Margin Loss:

Φρ(x) =





0 ρ 6 x

1− x/ρ 0 6 x 6 ρ

1 x 6 0

1

0 ρ 1
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Margin Theory

Margin error: ε
(ρ)
D (f ) = E(x,y)∼D [Φρ(ρf (x, y))]

This error takes the margin of the hypothesis f into consideration:

1

0 ρ 10

1

2

3

4

5

6

7

�� 1 �� 2 �� 3 �� 4 �� 5 �� 6 �� 7 �� 8 �� 9

�� 1

�� 1

𝜌!

The Margin of 𝑓

𝑓

Decrease
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论。值得一提的是，间隔理论目前也是多类别分类的主流理论，为了更好地联系

实际，这里直接介绍多类别分类的情形。

考虑基于打分函数的模型，假定假设空间为 ༳，其中的打分函数 ো ҧ ཅ · ཆ Ќϗ}ཆ} > ϗ. 在每一个数据点上为每一个类别输出一个实数作为分数。这个打分
函数将分数最大的类别作为输出，从而可以诱导得到一个输出离散类别的分类器ωো ҧ ཅ Ќ ཆ：

ωো ҧ ড় Р �a< L�uঢ়ѹཆ ো)ড়- ঢ়*/ VlA4W

所有这样的分类器构成输出离散类别的假设空间 ༵。
根据打分函数的结构，可以定义 ো 在数据 )ড়- ঢ়*上的间隔：

౪ো )ড়- ঢ়* Ӎ 23)ো)ড়- ঢ়* ҃ L�uঢ়༧ӑঢ় ো)ড়- ঢ়༠**/ VlAOW

间隔即为正确的类别打分与其他的类别最高分之间的差。当间隔为负时分类错误，

间隔为正时，间隔的值越大，也就代表该分类器给正确的类别一个相对更高的分

数，置信度越高。

可以看到，经典的 12损失函数可以认为是 cC<N)౪ো )ড়- ঢ়**，能够反映输出标签
的正确性，却不能区分置信度的大小。基于间隔的定义，可以引进新的损失函数

的定义，该损失函数首先应当能够保证可以是 12损失函数的一个上界，同时应该
可以将置信度纳入考量。间隔损失函数即为符合这些优点的损失函数：

定义 lY: V间隔损失函数 )lS*W： ো 在联合分布  及相应的经验分布 ห 上间隔参数
为 ౪ ? 1的间隔损失函数定义如下：

3aa)౪* )ো * Ӎ ઢড়ҭযౕ౪ ҉ ౪ো )ড়- ঢ়*-
3aa)౪*ห )ো * Ӎ ઢড়ҭ ห ౕ౪ ҉ ౪ো )ড়- ঢ়* > 2


্ุ>2 ౕ౪)౪ো )ড়্- ঢ়্**- VlASzW

其中，间隔变换 ౕ౪的定义如下：

ౕ౪)ড়* Ӎ
֪֭֭
֭֭֫
֬

1 ౪ ࢮ ড়
2 ҃ ড়0౪ 1 ࢮ ড় ࢮ ౪
2 ড় ࢮ 1

/ VlASSW

可以看到间隔损失函数和 12损失函数都是取值在 \1- 2^之间的函数，同时有
性质 3aa)౪*য )ো* ࢯ 3aaয)ωো *。由于 3aaয)ωো *实际上反映了分类器的准确率，所以间
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O

Given a class of scoring functions F , Π1F is defined as

Π1F = {x 7→ f (x, y)
∣∣y ∈ Y, f ∈ F}. (15)

Margin Bound for IID setup (generalization error controlled by ρ):

err
(ρ)
P (f ) 6 err

(ρ)

P̂
(f ) +

2k2

ρ
Rn,P (Π1F) +

√
log 2

δ

2n
(16)
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Step II: Margin Disparity Discrepancy (MDD)7

Margin Disparity: ε
(ρ)
D (f ′, f ) , Ex∼DX

[Φρ(ρf ′(x, hf (x)))].

We further define the margin version of Disparity Discrepancy (DD):

Definition (Margin Disparity Discrepancy (MDD))

Given a hypothesis space F and a specific hypothesis f ∈F , the Margin
Disparity Discrepancy (MDD) induced by f ′ ∈ F and its empirical version
are defined by

d
(ρ)
f ,F (P,Q) , sup

f ′∈F

(
ε

(ρ)
Q (f ′, f )− ε(ρ)

P (f ′, f )
)
,

d
(ρ)
f ,F (P̂, Q̂) , sup

f ′∈F

(
ε

(ρ)

Q̂
(f ′, f )− ε(ρ)

P̂
(f ′, f )

)
.

(17)

MDD satisfies d
(ρ)
f ,F (P,P) = 0 as well as nonnegativity and subadditivity.

7Zhang & Long. Bridging Theory and Algorithm for Domain Adaptation. ICML 2019.
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Margin Theory for Transfer Learning

Theorem (Generalization Bound with Rademacher Complexity)

Let F ⊆ RX×Y be a hypothesis set with label set Y = {1, · · · , k} and
H ⊆ YX be the corresponding Y-valued labeling function class. Fix ρ > 0.
For all δ > 0, with probability 1− 3δ the following inequality holds for all
hypothesis f ∈ F :

εQ(f ) ≤ε(ρ)

P̂
(f ) + d

(ρ)
f ,F (P̂, Q̂) + εideal

+
2k2

ρ
Rn,P(Π1F) +

k

ρ
Rn,P(ΠHF) + 2

√
log 2

δ

2n

+
k

ρ
Rm,Q(ΠHF) +

√
log 2

δ

2m
.

(18)

An expected observation is that the generalization risk is controlled by ρ.
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Margin Theory for Transfer Learning

Theorem (Generalization Bound with Covering Numbers)

Let F ⊆ RX×Y be a hypothesis set with label set Y = {1, · · · , k} and
H ⊆ YX be the corresponding Y-valued labeling function class. Suppose
Π1F is bounded in L2 by L. Fix ρ > 0. For all δ > 0, with probability
1− 3δ the following inequality holds for all hypothesis f ∈ F :

εQ(f ) ≤ε(ρ)

P̂
(f ) + d

(ρ)
f ,F (P̂, Q̂) + εideal + 2

√
log 2

δ

2n

+

√
log 2

δ

2m
+

16k2
√
k

ρ
inf
ε≥0

{
ε+ 3

( 1√
n

+
1√
m

)

(∫ L

ε

√
logN2(τ,Π1F)dτ+L

∫ 1

ε/L

√
logN2(τ,Π1H)dτ

)}
.

(19)

The margin bound for OOD has same order with the margin bound for IID.
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Margin Theory Implied Algorithm (MDD)8

Minimax domain adaptation implied directly through the margin theory

min
f ,ψ

ε
(ρ)

ψ(P̂)
(f ) +

(
ε

(ρ)

ψ(Q̂)
(f ∗, f )− ε(ρ)

ψ(P̂)
(f ∗, f )

)

f ∗ = max
f ′

(
ε

(ρ)

ψ(Q̂)
(f ′, f )− ε(ρ)

ψ(P̂)
(f ′, f )

) (20)

1. Multiclass learning with scoring functions
2. Tight bound with only one hypothesis space
3. Informative bound with computable margin

Theory Algorithm
Bridge the Gap

8Zhang & Long. Bridging Theory and Algorithm for Domain Adaptation. ICML 2019.
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Theory and Practice: Final Gap to Close
Previous discrepancies are supremum over whole hypothesis space —
will include bad hypotheses that make the bound excessively large.

ℋ ℋ

Δ

Supremum over all pairs

ℋ ℋ

Δ

Supremum over single space

ℎ

ℋΔℋ-Divergence Disparity Discrepancy

A common observation is that difficulty of transfer is asymmetric —
Previous bounds will remain unchanged after switching P and Q.

pinch grasps, and the motion command has, thus, 5 dimen-
sions: 3 for position, and 2 for a sine-cosine encoding of the
rotation. The second component of the method is a simple,
manually designed servoing function that uses the grasp
probabilities predicted by C to choose the motor command
vi that will continuously control the robot. We can train
the grasp prediction network C using standard supervised
learning objectives, and so it can be optimized independently
from the servoing mechanism. In this work, we focus on
extending the first component to include simulated data in
the training set for the grasp prediction network C, leaving
the other parts of the system unchanged.

The datasets for training the grasp prediction CNN C are
collections of visual episodes of robotic arms attempting to
grasp various objects. Each grasp attempt episode consists of
T time steps which result in T distinct training samples. Each
sample i includes xi,vi, and the success label yi of the entire
grasp sequence. The visual inputs are 640⇥512 images that
are randomly cropped to a 472⇥472 region during training
to encourage translation invariance.

The central aim of our work is to compare different
training regimes that combine both simulated and real-world
data for training C. Although we do consider training entirely
with simulated data, as we discuss in Section IV-A, most of
the training regimes we consider combine medium amounts
of real-world data with large amounts of simulated data.
To that end, we use the self-supervised real-world grasping
dataset collected by Levine et al. [6] using 6 physical Kuka
IIWA arms. The goal of the robots was to grasp any object
within a specified goal region. Grasping was performed using
a compliant two-finger gripper picking objects out of a metal
bin, with a monocular RGB camera mounted behind the arm.
The full dataset includes about 1 million grasp attempts on
approximately 1,100 different objects, resulting in about 9.4
million real-world images. About half of the dataset was
collected using random grasps, and the rest using iteratively
retrained versions of C. Aside from the variety of objects,
each robot differed slightly in terms of wear-and-tear, as well
as the camera pose. The outcome of the grasp attempt was
determined automatically. The particular objects in front of
each robot were regularly rotated to increase the diversity
of the dataset. Some examples of grasping images from the
camera’s viewpoint are shown in Figure 2d.

When trained on the entire real dataset, the best CNN used
in the approach outlined above achieved successful grasps
67.65% of the time. Levine et al. [6] reported an additional
increase to 77.18% from also including 2.7 million images
from a different robot. We excluded this additional dataset
for the sake of a more controlled comparison, so as to avoid
additional confounding factors due to domain shift within
the real-world data. Starting from the Kuka dataset, our
experiments study the effect of adding simulated data and
of reducing the number of real world data points by taking
subsets of varying size (down to only 93,841 real world
images, which is 1% of the original set).

(a) Simulated World (b) Real World

(c) Simulated Samples (d) Real Samples

Fig. 2: Top Row: The setup we used for collecting the (a)
simulated and (b) real-world datasets. Bottom Row: Images
used during training of (c) simulated grasping experience
with procedurally generated objects; and of (d) real-world
experience with a varied collection of everyday physical
objects. In both cases, we see the pairs of image inputs for
our grasp success prediction model C: the images at t = 0
and the images at the current timestamp.

B. Domain Adaptation

As part of our proposed approach we use two domain
adaptation techniques: domain-adversarial training
and pixel-level domain adaptation. Ganin et al. [22]
introduced domain–adversarial neural networks (DANNs),
an architecture trained to extract domain-invariant yet
expressive features. DANNs were primarily tested in the
unsupervised domain adaptation scenario, in the absence
of any labeled target domain samples, although they also
showed promising results in the semi-supervised regime [24].
Their model’s first few layers are shared by two modules:
the first predicts task-specific labels when provided with
source data while the second is a separate domain classifier
trained to predict the domain d̂ of its inputs. The DANN
loss is the cross-entropy loss for the domain prediction task:
LDANN = ÂNs+Nt

i=0

�
di log d̂i + (1�di) log(1� d̂i)

 
, where

di 2 {0,1} is the ground truth domain label for sample i,
and Ns,Nt are the number of source and target samples.

The shared layers are trained to maximize LDANN, while
the domain classifier is trained adversarially to minimize it.
This minimax optimization is implemented by a gradient
reversal layer (GRL). The GRL has the same output as the
identity function, but negates the gradient during backprop.
This lets us compute the gradient for both the domain clas-
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each robot differed slightly in terms of wear-and-tear, as well
as the camera pose. The outcome of the grasp attempt was
determined automatically. The particular objects in front of
each robot were regularly rotated to increase the diversity
of the dataset. Some examples of grasping images from the
camera’s viewpoint are shown in Figure 2d.

When trained on the entire real dataset, the best CNN used
in the approach outlined above achieved successful grasps
67.65% of the time. Levine et al. [6] reported an additional
increase to 77.18% from also including 2.7 million images
from a different robot. We excluded this additional dataset
for the sake of a more controlled comparison, so as to avoid
additional confounding factors due to domain shift within
the real-world data. Starting from the Kuka dataset, our
experiments study the effect of adding simulated data and
of reducing the number of real world data points by taking
subsets of varying size (down to only 93,841 real world
images, which is 1% of the original set).

(a) Simulated World (b) Real World

(c) Simulated Samples (d) Real Samples

Fig. 2: Top Row: The setup we used for collecting the (a)
simulated and (b) real-world datasets. Bottom Row: Images
used during training of (c) simulated grasping experience
with procedurally generated objects; and of (d) real-world
experience with a varied collection of everyday physical
objects. In both cases, we see the pairs of image inputs for
our grasp success prediction model C: the images at t = 0
and the images at the current timestamp.

B. Domain Adaptation

As part of our proposed approach we use two domain
adaptation techniques: domain-adversarial training
and pixel-level domain adaptation. Ganin et al. [22]
introduced domain–adversarial neural networks (DANNs),
an architecture trained to extract domain-invariant yet
expressive features. DANNs were primarily tested in the
unsupervised domain adaptation scenario, in the absence
of any labeled target domain samples, although they also
showed promising results in the semi-supervised regime [24].
Their model’s first few layers are shared by two modules:
the first predicts task-specific labels when provided with
source data while the second is a separate domain classifier
trained to predict the domain d̂ of its inputs. The DANN
loss is the cross-entropy loss for the domain prediction task:
LDANN = ÂNs+Nt

i=0

�
di log d̂i + (1�di) log(1� d̂i)

 
, where

di 2 {0,1} is the ground truth domain label for sample i,
and Ns,Nt are the number of source and target samples.

The shared layers are trained to maximize LDANN, while
the domain classifier is trained adversarially to minimize it.
This minimax optimization is implemented by a gradient
reversal layer (GRL). The GRL has the same output as the
identity function, but negates the gradient during backprop.
This lets us compute the gradient for both the domain clas-

Harder transfer

Easier transfer
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Localization for Discrepancies
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Step III: Localized Discrepancies

Definition (Localized Hypothesis Space)

For any distributions P and Q on X × Y, any hypothesis space H and any
r ≥ 0, the localized hypothesis space Hr is defined as

Hr = {h ∈ H|EPL(h(x), y) ≤ r}. (21)

Definition (Localized H∆H-Discrepancy (LHH))

The localized H∆H-discrepancy from P to Q is defined as

dHr∆Hr (P,Q) = sup
h,h′∈Hr

(
EQL(h′, h)− EPL(h′, h)

)
. (22)

Definition (Localized Disparity Discrepancy (LDD))

For h ∈ H, the localized disparity discrepancy from P to Q is defined as

dh,Hr (P,Q) = sup
h′∈Hr

(
EQL(h′, h)− EPL(h′, h)

)
. (23)
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Localization Theory for Transfer Learning9

Recall the generalization bound induced by previous discrepancies:

εQ(h) ≤ ε
P̂

(h) + dH∆H(P̂, Q̂) + εideal + O(

√
d log n

n
+

√
d logm

m
)

Theorem (Generalization Bound with Localized H∆H-Discrepancy)

Set fixed r > λ. Let ĥ be the solution of the source error minimization.
Then with probability no less than 1− δ, we have

errQ(ĥ) ≤ err
P̂

(ĥ) + dHr∆Hr (P̂, Q̂) + λ+ O(
d log n

n
+

d logm

m
)

+ O



√

2rd log n

n
+

√
(dHr∆Hr (P̂, Q̂) + 2r)d logm

m


 .

(24)

To make domain adaptation feasible, we require dHr∆Hr (P̂, Q̂) + r � 1.
9Zhang & Long. On Localized Discrepancy for Domain Adaptation. Preprint 2020.
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Localization Theory for Transfer Learning10

Recall that Disparity Discrepancy is tighter than H∆H-Discrepancy:

min
h̄∈H
{err

P̂
(h̄) + dh̄,Hr

(P̂, Q̂)} ≤ min
ĥ∈H

err
P̂

(ĥ) + dHr∆Hr (P̂, Q̂) (25)

Theorem (Generalization bound with localized disparity discrepancy)

Set fixed r > λ. Let h̄ be the solution of above left objective function.
Then with probability no less than 1− δ, we have

errQ(ĥ) ≤ err
P̂

(h̄) + dh̄,Hr
(P̂, Q̂) + λ+ O(

d log n

n
+

d logm

m
)

+ O



√

(err
P̂

(h̄) + r)d log n

n
+

√
(err

P̂
(h̄) + dh̄,Hr

(P̂, Q̂) + r)d logm

m


 .

(26)

10Zhang & Long. On Localized Discrepancy for Domain Adaptation. Preprint 2020.
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Transfer Learning Library
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Design Patterns

Tutorials
p More data formats
p More model backbones
p ……

Benchmarks
p Various setups
p Reproducible
p ……

Examples
p Training codes
p Hyperparameters
p ……

Adaptation
p DAN
p DANN
p MDD
p CDAN
p ……

Module
p Discriminator
p GradRevLayer
p Kernel
p ……

Backbone
p ResNet
p VGG
p Inception
p ……

Dataset
p Office-31
p Office-Home
p VisDA-2017
p DomainNet
p ……

Utils

Docs

Core

Platform ……

Reproducible Stable TorchVision DocumentationEase of UseExtendible

Github: https://github.com/thuml/Transfer-Learning-Library
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Standardized Implementations

Transfer
Learning

Unsupervised TL

Semi-supervised TL

Inductive TL

No labels in 
both source and 
target domains

Labels avail. 
ONLY in source 
domain

Labels available 
in target 
domain

No labels in 
source domain

Labels available 
in source domain

Transductive TL

Cross-Task TL  

Same source 
and target task

Different source 
and target tasks

Pre-Training

Multi-Task TL 

Universal TL Versatile TL

Fine-Tuning

NIPS’17

NIPS’19

Today’s focus!

CVPR’19 ECCV’20ICML’20

This taxonomy was initiated by Prof Q. Yang, most setups are still open!
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Reproducible Benchmarks

Table: Accuracy (%) on Office-31 for Unsupervised Domain Adaptation

Method Origin Ours ∆acc A→W D →W W → D A→ D D → A W → A

ResNet-50 76.1 79.5 3.4 75.8 95.5 99.0 79.3 63.6 63.8
DANN 82.2 86.4 4.2 91.7 97.9 100.0 82.9 72.8 73.3
DAN 80.4 83.7 3.3 84.2 98.4 100.0 87.3 66.9 65.2
JAN 84.3 87.3 3.0 93.7 98.4 100.0 89.4 71.2 71.0
CDAN 87.7 88.7 1.0 93.1 98.6 100.0 93.4 75.6 71.5
MCD - 85.9 - 91.8 98.6 100.0 89.0 69.0 66.9
MDD 88.9 89.2 0.3 93.6 98.6 100.0 93.6 76.7 72.9

Table: Accuracy (%) on Office-Home for Unsupervised Domain Adaptation

Method Origin Ours ∆acc Ar-Cl Ar-Pr Ar-Rw Cl-Ar Cl-Pr Cl-Rw Pr-Ar Pr-Cl Pr-Rw Rw-Ar Rw-Cl Rw-Pr

ResNet-50 46.1 58.4 12.3 41.1 65.9 73.7 53.1 60.1 63.3 52.2 36.7 71.8 64.8 42.6 75.2
DANN 57.6 65.2 7.6 53.8 62.6 74.0 55.8 67.3 67.3 55.8 55.1 77.9 71.1 60.7 81.1
DAN 56.3 61.4 5.1 45.6 67.7 73.9 57.7 63.8 66.0 54.9 40.0 74.5 66.2 49.1 77.9
JAN 58.3 65.9 7.6 50.8 71.9 76.5 60.6 68.3 68.7 60.5 49.6 76.9 71.0 55.9 80.5
CDAN 65.8 68.8 3.0 55.2 72.4 77.6 62.0 69.7 70.9 62.4 54.3 80.5 75.5 61.0 83.8
MCD - 67.8 - 51.7 72.2 78.2 63.7 69.5 70.8 61.5 52.8 78.0 74.5 58.4 81.8
MDD 68.1 69.6 1.5 56.4 75.3 78.4 63.2 73.1 73.3 63.9 54.8 79.7 73.2 60.7 83.7
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Machine Learning Group @ National Engineering Lab

Jianmin Wang
Professor

Tsinghua University
jimwang@tsinghua.edu.cn

Michael I. Jordan
Professor
UC Berkeley

jordan@cs.berkeley.edu

Yuchen Zhang Zhangjie Cao

Mingsheng Long
Associate Professor
Tsinghua University

mingsheng@tsinghua.edu.cn

XimeiWang Kaichao You Junguang Jiang

Many thanks for your attention! Any questions?
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