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Transfer Learning

Machine Learning

Learner: f:x —y  Distribution: (x,y)~ P(x,y)
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Transfer Learning

Transfer Learning

@ Machine learning across domains of IDD distributions P # Q
@ How to design models that effectively bound the generalization error?

Source Domain r_ (?)\f@ . % E& Target Domain
i

2D Renderings Real Images

P(x.y)#Q(x.y)

Representation
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Transfer Learning

Bias-Variance-Shift Trade
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Andrew Ng. The Nuts and Bolts of Building Applications using Deep
Learning. NIPS 2016 Tutorial.
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Transfer Learning

Basic Approaches to Transfer Learning

Matching distributions across source and target domains s.t. P~ Q
@ Reduce marginal distribution mismatch: P(X) # Q(X)
@ Reduce conditional distribution mismatch: P(Y|X) # Q(Y|X)
@ Challenge: how to align different domains of multimodal distributions

generated distribution true data distribution

p(x)

unit gaussian

generative
model
(neural net)

™. |loss| .~

image space image space

Kernel Embedding Adversarial Learning

Song et al. Kernel Embeddings of Conditional Distributions. IEEE, 2013.
Goodfellow et al. Generative Adversarial Networks. NIPS 2014.
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SCLENREVEP ORGP DAN: Deep Adaptation Network

DAN: Deep Adaptation Network!
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Deep adaptation: match distributions in multiple domain-specific layers
Optimal matching: maximize two-sample test power by multiple kernels

B2 (P, Q)2 ||Ep o (x*)] - Eq [6 (x)]|[3, (1)

b
mmmax—ZJ(@ ~),y,-a)+)\Zd,%<D§,Df> (2)

0O kel ny
l=h

lMingsheng Long, Yue Cao, Jianmin Wang, Michael I. Jordan. Learning Transferable
Features with Deep Adaptation Networks. ICML '15.
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Problem I: P(X) # Q(X)

DAN: MK-MMD

DAN: Deep Adaptation Network

Multiple Kernel Maximum Mean Discrepancy (MK-MMD)
RKHS distance between kernel embeddings of distributions Px and Qx

dZ (P, Q) 2 ||Ep 6 (x)] — Eq [¢ ()], - (3)
k (x%,x") = (¢ (x°), ¢ (x')) is a convex combination of m PSD kernels

K:é{k=i6uku:i6u:175u>ovvu}' (4)
u=1 u=1

Theorem (Kernel Two-Sample Test (Gretton et al. 2012))

e P = Q ifand only if d? (P, Q) = 0 (In practice, d? (P, Q) < ¢)
° max d2 (P, Q) o, 2 < min Type Il Error (d? (P, Q) < € when P # Q)
€

v
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Problem I: P(X) # Q(X)

DAN: Feature Learning

DAN: Deep Adaptation Network

Linear-Time Algorithm of MK-MMD (Streaming Algorithm)

O(n?): d2(p, q) = Exsxrsk(x%,X'%) 4 Eygeprek(x, x'") — 2Esye k(x, x*)
O(n): d2(p,q) = 2 L7 g

= (z;) — linear-time unbiased estimate
S

L (S s t t
o Quad-tuple z; = (x3;_1,X3;, X5;_1,%3;)

° gi(zi) = k(x3;_1,%5;) + k(x5;_1,%5;) — k(x3;_1,%5;) — k(x3;,%5;_1)

Stochastic Gradient Descent (SGD)

For each layer ¢ and for each quad-tuple z{ = (h$}_;, h{, h5_;, hif)

~0J(zi) | | Oek (7))
Vot = 907 + A 90! (5)4
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Problem I: P(X) # Q(X) DAN: Deep Adaptation Network

DAN: Kernel Learning

Learning optimal kernel k = >"7" | Buky

Maximizing test power £ minimizing Type Il error (Gretton et al. 2012)

2 L Y4 -2
Tealé( dk <D57Dt> Ok (6)

where 02 = E,g? (z) — [E.gk (2)]° is the estimation variance.

Quadratic Program (QP), scaling linearly to sample size: O(m?n + m3)

min BT (Q+el) B, (7)

d78=1,820

where d = (dy, da,...,dm)", and each d, is MMD using base kernel k,,.
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Problem II: P(Y|X) # Q(Y|X)
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CDAN: Conditional Domain Adversarial Network
CDAN: Conditional Domain Adversarial Network?

Main Idea of This Work: Distribution Embeddings with Statistics
o Capture cross-covariance statistics across multiple random vectors
o Concatenation: Exy[X @ Y] = Ex[X] & Ey[Y]
o Multilinear: Exy [X & Y] = Ex [X|Y = 1] ®...0Ex [le = C]

Distributions Probabilistic Operations
P(X, Y, Z)
PX) PX,Y) = Sum Rule: Q(X) = 2 PX|V)x(Y)
Y
Discrete Product Rule: Q(X, Y) = P(X/V)x(Y)
Bayes’ Rule: Q(Y|x) = Px[Y)a(Y)
dyx 1 dy % d, Q)
dy X d,xd,
z
Y P(X,Y) palll Y 2) —
P(X) .‘ Fow o v Cyix S
=) o>
Kernel % \ X
Embedding Cxyz:=
X = Cyy = Exyz[d(X) @ ¢(Y) @ b(2)]
Ex[d(X)]  Exyld(X) @4(Y)] e Sum Rule: 1§ = Cyxidl
Product Rule: Cky = Cyx Ciy
Bayes’ Rule: 1§, = CYxb(X)
oo x 1 H oo x o H \“.‘ooxooxoo

2Mingsheng Long, Zhangjie Cao, Jianmin Wang, Michael I. Jordan. Conditional Adversarial
Domain Adaptation. NIPS '18.
Mingsheng Long Transfer Learning May 18, 2019 14 / 33




CDAN: Conditional Domain Adversarial Network
CDAN: Multilinear Conditioning

1

®

DNN:
AlexNet
ResNet

|booo-~oooo

Conditional adaptation of distributions over representation & prediction
mGin E(G) — XE(D, G)

: (8)
min E(D, G),
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HCHEORIRVEO 2D SRZNOIRZP AN CDAN: Conditional Domain Adversarial Network

CDAN: Randomized Multilinear Conditioning

@] @

DNN:
AlexNet
ResNet

[0000+:0000

Conditional adaptation of distributions over representation & prediction

Ty (f.g)=fog (10)
T, (f.g) = % (Ref) © (Rgg) (11)

(12)

T (h) = Te (F.g) if dr x dg < 4096
- To (f,g) otherwise
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CDAN: Conditional Domain Adversarial Network
CDAN: Entropy Conditioning

1.5
—==-=Correct Prediction?
Entropy e (@
=
E=
()
=
>
Q
e
< 0.
w .
H .
it
] (N
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Example ID

Control the uncertainty of classifier prediction to guarantee transferability

w(H(g)) =1+ e "®
max Ex~p,w (H (g7))log [D (T (h})] + Exi~p,w (H (g])) log [1 = D (T (h}))]
(13)
P T——



HCHEORIRVEO 2D SRZNOIRZP AN CDAN: Conditional Domain Adversarial Network

CDAN: Minimax Game

Conditional Domain Adversarial Networks (CDAN)

@ Multilinear Conditioning: capture the cross-covariance between
feature representation & classifier prediction to boost discriminability

@ Entropy Conditioning: control the uncertainty of classifier prediction
to guarantee transferability (entropy minimization principle)

mGin Ege yo)~p, L (G (x7) ,¥7)

+ A (Bxtpw (H (7)) 10g [D (T (0))] + Exsop,w (H (gf)) log [1 = D (T (h))])

max Exep,w (H (g7)) log [D (T (h}))] + Exop,w (H (g])) log [1 = D (T (h}))]
(14)

Mingsheng Long Transfer Learning May 18, 2019 18 / 33



Outline

@ Bridging Algorithms and Theories

@ MDD: Margin Disparity Discrepancy

o & = E DA
Mingsheng Long Transfer Learning



Bridging Algorithms and Theories

Notations and Assumptions

Source risk: €p (G) = E(xy)~p [G (x) # Y]

Target risk: €q (G) = E(xy)~q [G (X) # Y]

Source disparity: ep (G, G') = E(xy)op [G (x) # G’ ()]

Target disparity: €q (G, G') = E(xy)q [G (x) # G’ (x)]

Ideal hypothesis: G* = argming ep (G) + € (G)

Assumption: ideal hypothesis has small risk €jqea; = €p (G*) + €0 (G*)

® x

Distribution Ideal hypothesis
discrepancy with small error
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Relating Target Risk to Source Risk

Theorem

The probabilistic bound of the target risk eg(G) of (source) hypothesis G
is given by the source risk ep(G) plus the distribution discrepancy:

€Q(6) <ep(G) +[ep(G7) +eq(G)] +[ep (G, G7) —cq (G, G7)| (15)

v

Proof.
By using the triangle inequalities, we have
€Q(G) <€ (G") +¢q(G,67)
<eQ(G")+ep(G,G*)+€q(G,G") —ep (G, GY) (16)
<€Q(G)+ep(G,G) +]eQ (G, G¥) —ep(G,G7)|
<ep(G)+[ep(G7) + €@ (G +ep (G, GT) — €@ (G, G7)|
DJ
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Bounding the Distribution Discrepancy

Then how to bound the distribution discrepancy |ep (G, G*) — € (G, G*)|
high

low low
G G G
G* % S s G* ‘ G*

e HAH-Divergence (Classic): sup |ep(G,G') —eq (G, G')
G,G'eH

e Disparity Discrepancy (Ours): sup |ep (G, G') —€eq (G, G')|
G'eH
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Bounding the Distribution Discrepancy
Let 5(x) = |g — G'(x)|. The distribution discrepancy (DD) is bounded by

lep (G, G*) —€q (G, G*)| = [E(rg)np, [8 # G (F)] — Erg)nq. [8 # G (F)]]
< i Bt g)~pe [18 = G (F)] # 0] — Erg)o [l& — G’ (F)] # 0]
< ?uz }E(fug)NPG [6 (f7 g) i 0] - E(ﬁg)NQG [6 (f7 g) # 0”
S
< sup |E(f,g)~PG [D (f? g) 7& 0] - IE(f,g)NQ(; [D (f)g) # O]|
DeHp

This upper-bound can be evaluated by training a domain discriminator D.

Distribution Hypothesis-based
discrepancy distribution discrepancy
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MDD: Towards an Informative Margin Theory?

@ Multi-class Classification with Scoring Function and Margin Loss
@ Scoring Function:
GeF:AXxY—R
@ Margin of a Hypothesis:
1
pc(x,y) = 5(G(x,y) — max G(x,y"))
2 y'#y
@ Margin Loss:
A
0 p <X
P,(x)=41—x/p 0<x<p
1 x<0 1 >

3Yuchen Zhang, Tianle Liu, Mingsheng Long*, Michael I. Jordan. Bridging Theory
and Algorithm for Domain Adaptation. Preprint, 2019.
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MDD: Margin Disparity Discrepancy

@ Source margin risk: e(p) (G) = Exy)~p [Pp(pc(x, ¥))]

@ Target margin risk: e(p) (G) = Exy)nq [®olpc(x,¥))]

@ Source margin dlspanty.
B (61, G2) = Egey)nr | ®n(pca(x, 677" ()|
@ Target margin disparity:
5 (61,62) = Euyng | @ulpa(x. G ()
Ideal hypothesis: G* = arg ming esgp) (G)+ e(p) (G)
Margin Disparity Discrepancy (MDD):

% (P, Q):éﬁ[ [6(0”)(6' ') - (G, G)]
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Bridging Algorithms and Theories MDD: Margin Disparity Discrepancy

MDD: Generalization Bound with Rademacher Complexity

Theorem

Let F C R**Y be a hypothesis set with Y = {1,--- , k} and H C Y be
the corresponding Y-valued classifier class. Fix p > 0. For all 6 > 0, with
probability 1 — 36 the following inequality holds for all hypothesis G € F:

eq(G) <€D (f) + d(P, Q) +

2k2 |0g2
+— nP(nl}—)‘i‘ 9{n P(I_IH}—)+2 2_175 (17)

k lo
+;9‘im,Q(I'IH]-")+ &
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MDD: Generalization Bound with Covering Numbers

Theorem

Let F C RY*Y be a hypothesis set with ) = {1,--- ,k} and H C V¥ be
the corresponding Y-valued classifier class. Suppose M1 F is bounded in
Lo by L. Fix p> 0. For all § >0, with probability 1 — 39 the following
inequality holds for all hypothesis G € F:

eq(G) <e¥(F) + dLy (P, Q)+>\+2\/|o2gn%

Iog— 16k%\/k 1 18
om ; |nf{e+3(\/_ \/_) (18)

L
(A/|ogN2(T,n1f)dT+L \/|OgN2(T,r|1H)dT)}.
€ e/L
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MDD: Theory-Induced Algorithm

@G = i%y—'
PR
SR 2 2 e 19

Minimax Optimization: Adversarial learning induced by the MDD Theory

(o) (p) x () *
min 5 (G)+(ea (G, G )—eﬁ (G, G"))

(v (0 (19)
G* = argmax (¢£(G, G') — €£(G, G"))
o \Q P
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Benchmarking
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Benchmarking

Results

Table: Accuracy (%) on Office-31 for unsupervised domain adaptation

Method A—W D—-W W — D A—D D— A W — A Avg
AlexNet 61.6+0.5 95.440.3 99.0+0.2 63.8+0.5 51.1+0.6 49.8+0.4 70.1
DAN 68.5+0.5 96.04+0.3 99.0+0.3 67.0+0.4 54.0+£0.5 53.1+05 72.9
RTN 73.3+0.3 96.8+0.2 99.6+0.1 71.0+0.2 50.5+0.3 51.04+0.1 73.7
DANN 73.0+0.5 96.4+0.3 99.24+0.3 72.3+0.3 53.440.4 51.24+0.5 74.3
ADDA 73.5+0.6 96.2+0.4 98.8+0.4 71.6+0.4 54.6+0.5 53.5+0.6 74.7
JAN 74.940.3 96.6+0.2 99.5+0.2 71.8+0.2 58.3+0.3 55.0+0.4 76.0
CDAN 77.94+0.3 96.94+0.2 100.0+.0 74.6+0.2 55.1+0.3 57.5+04 77.0
CDAN—+E 77.6+£0.2 97.24+0.1 100.0+.0 73.0+0.1 57.3+0.2 56.1+0.3 76.9
ResNet-50  68.440.2 96.7+0.1 99.3+0.1 68.9+0.2 62.5+0.3 60.7+0.3 76.1
DAN 80.5+0.4 97.1+0.2 99.6+0.1 78.6+0.2 63.61+0.3 62.8+0.2 80.4
RTN 84.5+0.2 96.8+0.1 99.44+0.1 77.5+0.3 66.2+0.2 64.8+0.3 81.6
DANN 82.0+0.4 96.9+0.2 99.1+0.1 79.7+0.4 68.2+0.4 67.4+0.5 82.2
ADDA 86.2+0.5 96.2+0.3 98.4+0.3 77.8+0.3 69.5+0.4 68.9+0.5 82.9
JAN 85.4+0.3 97.4+0.2 99.8+0.2 84.7+0.3 68.6+0.3 70.0+£0.4 84.3
CDAN 93.0+0.2 98.4+0.2 100.0+.0 89.24+0.3 70.2+0.4 69.4+0.4 86.7
CDAN-+E 93.1+0.1 98.6+0.1 100.0+.0 93.4+0.2 71.0+0.3 70.3+0.3 87.7
MDD 94.5+0.3 98.44+0.1 100.0+.0 93.5+0.2 74.6+0.3 72.2+0.1 88.9
May 18,2010 31/ 33



Benchmarking

Results: Simulation2Real

VISDA-2017
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Summary & Thank You

Domain adaptation theories inherently imply minimax games

Connect to domain adaptation methods based on adversarial learning

Disconnections between theory and algorithm:
e Scoring functions and margin loss are standard choices for classifiers
e Minimax game in large hypothesis space is hard to reach equilibrium

@ More convincing advances can be made by bridging the gap between
theories and algorithms

o Xlearn library is available: https://github.com/thuml/Xlearn
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