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Transfer Learning

Machine Learning

Learner: f:x —y  Distribution: (x,y)~ P(x,y)
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Transfer Learning

Transfer Learning

@ Machine learning across domains of Non-IID distributions P # Q
@ How to design models that effectively bound the generalization error?

Source Domain r_ (?)\f@ . % E& Target Domain
i

2D Renderings Real Images

P(x.y)#Q(x.y)

Representation
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Transfer Learning

Bias-Variance-Shift Trade

off
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Optimal Bayes Rate
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Yes Longer Training
. Bigger Data
ey b R
Train-Dev Error high? Yoo , Regularization
. Transfer Learning
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es
1 No
Andrew Ng. The Nuts and Bolts of Building Applications using Deep
Learning. NIPS 2016 Tutorial.
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Transfer Learning

Basic Approaches to Transfer Learning

Matching distributions across source and target domains s.t. P~ Q
@ Reduce marginal distribution mismatch: P(X) # Q(X)
@ Reduce conditional distribution mismatch: P(Y|X) # Q(Y|X)
@ Challenge: fail to align different domains of multimodal distributions

generated distribution true data distribution

p(x)

unit gaussian

generative
model
(neural net)

™. |loss| .~

image space image space

Kernel Embedding Adversarial Learning

Song et al. Kernel Embeddings of Conditional Distributions. IEEE, 2013.
Goodfellow et al. Generative Adversarial Networks. NIPS 2014.
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Basic Guidelines to Algorithm Design

Everything should be made as simple as possible, but no simpler.
—Albert Einstein
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SCLENREVEP ORGP DAN: Deep Adaptation Network

DAN: Deep Adaptation Network!
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Deep adaptation: match distributions in multiple domain-specific layers
Optimal matching: maximize two-sample test power by multiple kernels

2 2
&2 (P,Q) £ |[Ep [6 ()] - Eq [¢ 12, 1
=3 J(0(x )\Zd (. pt) 2
gnelgrpea,gnaz (0(F),v7) + 7 (D5 D (2)
l=h
1Long et al. Learning Transferable Features with Deep AdaptationNetworks. IEML '15.
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Problem I: P(X) # Q(X)

DAN: MK-MMD

DAN: Deep Adaptation Network

Multiple Kernel Maximum Mean Discrepancy (MK-MMD)
RKHS distance between kernel embeddings of distributions Px and Qx

dZ (P, Q) 2 ||Ep 6 (x)] — Eq [¢ ()], - (3)
k (x%,x") = (¢ (x°), ¢ (x')) is a convex combination of m PSD kernels

K:é{k=i6uku:i6u:175u>ovvu}' (4)
u=1 u=1

Theorem (Kernel Two-Sample Test (Gretton et al. 2012))
e P = Q ifand only if d? (P, Q) = 0 (In practice, d? (P, Q) < ¢)
° max d2 (P, Q) o, 2 < min Type Il Error (d? (P, Q) < € when P # Q)
€

v

Mingsheng Long Transfer Learning May 18, 2019 11 /31



Problem I: P(X) # Q(X)

DAN: Feature Learning

DAN: Deep Adaptation Network

Linear-Time Algorithm of MK-MMD (Streaming Algorithm)

O(n?): d2(p, q) = Exsxrsk(x%,X'%) 4 Eygeprek(x, x'") — 2Esye k(x, x*)
O(n): d2(p,q) = 2 L7 g

= (z;) — linear-time unbiased estimate
S

L (S s t t
o Quad-tuple z; = (x3;_1,X3;, X5;_1,%3;)

° gi(zi) = k(x3;_1,%5;) + k(x5;_1,%5;) — k(x3;_1,%5;) — k(x3;,%5;_1)

Stochastic Gradient Descent (SGD)

For each layer ¢ and for each quad-tuple z{ = (h$}_;, h{, h5_;, hif)

~0J(zi) | | Oek (7))
Vot = 907 + A 90! (5)4
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Problem I: P(X) # Q(X) DAN: Deep Adaptation Network

DAN: Kernel Learning

Learning optimal kernel k = >"7" | Buky

Maximizing test power £ minimizing Type Il error (Gretton et al. 2012)

2 L Y4 -2
Tealé( dk <D57Dt> Ok (6)

where 02 = E,g? (z) — [E.gk (2)]° is the estimation variance.

Quadratic Program (QP), scaling linearly to sample size: O(m?n + m3)

min BT (Q+el) B, (7)

d78=1,820

where d = (dy, da,...,dm)", and each d, is MMD using base kernel k,,.
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DAN: Deep Adaptation Network
DANN: Domain Adversarial Neural Network?

5 aL,
oL,
00'; ] 0% ﬂ Closs L,

'_;i ¢> |:> class label y
= 12 1B BEYE
g—= =
>\de = label predictor G,(-;0,)
J;{o ()gf g domain classifier G4(-; 64)
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feature extractor Gy (-;0y) %, %, K
oY $ a domain label d
oL,
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forwardprop  backprop (and produced derivatives) 004

Adversarial adaptation: learning features indistinguishable across domains

E(0r.0y,00) = > L, (G (Gr(x)),y:) =X > La(Ga(Gr(x)),di) (8)

x; €D x; €DsUD;

(0¢,8,) = arg m|n E (6¢,6,,04) (04)=arg meaxE(Gf,Gy, 04) (9)
d

Fvy

2Ganin et al. Domain Adversarial Training of Neural Networks. JMLR '16.
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Problem II: P(Y|X) # Q(Y|X)
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CDAN: Conditional Domain Adversarial Network
CDAN: Conditional Domain Adversarial Network?

Main Idea of This Work: Distribution Embeddings with Statistics
@ Capture cross-covariance statistics across multiple random vectors
o Concatenation: Exy[X & Y] = Ex[X] & Ey[Y]
o Multilinear: Exy [X® Y] =Ex [X|Y =1]&... ¢ Ex [X]Y = (]

Distributions Probabilistic Operations
P(X,Y,Z)

P(X) PX,Y)

Sum Rule: Q(X) = ; PX|Y)x(Y)

Discrete Product Rule: Q(X, Y) = P(X/V)x(Y)

Bayes’ Rule: Q(Y|x) = PixY)x(Y)
Q(X)

Y d, X d,x d,

N PX Y, 2)

e C-v;N‘
\. >
X

Cxvz:=
Exvz[d(X) @ (V) @ (2)]

Kernel
Embedding

X = Cxy =
Ex[@(X)]  Exyld(X) @8(Y)] Sum Rule: /25 = Cyx sty

Product Rule: Cky = Cy|x Cfy

Bayes’ Rule: /1§, = Cxb(x)

too X 1 H oo x oo o[ o x o0 x e

3Long et al. Conditional Adversarial Domain Adaptation. NIRS '18:
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CDAN: Conditional Domain Adversarial Network
CDAN: Multilinear Conditioning

@

DNN:
AlexNet
ResNet

Conditional adaptation of distributions over representation & prediction
mcz_n EG — )\ED,G

(10)
in E
len D,G

1 nNs 1 ne
Epc=—1-D log(D(Ff =)~ -3 log(1-D(ff=g)) (11)
i=1 j=1
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HCHEORIRVEO 2D SRZNOIRZP AN CDAN: Conditional Domain Adversarial Network

CDAN: Randomized Multilinear Conditioning

@] @

DNN:
AlexNet
ResNet

[0000+:0000

Conditional adaptation of distributions over representation & prediction

Ty (f.g)=fog (12)
T, (f.g) = % (Ref) © (Rgg) (13)

(14)

T (h) = Te (F.g) if dr x dg < 4096
- To (f,g) otherwise
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SEEON VA0 EP SENEI0 2P §B8  CDAN: Conditional Domain Adversarial Network

CDAN: Entropy Conditioning

—===Correct Prediction?
Entropy e M@

Entropy Weight

12 24 3 48 60 72
Example ID

Control the uncertainty of classifier prediction to guarantee transferability

max—Ze HED log [D (T (hf) )]+— Ze (&) 1og [1— D (T (h}))]
(15)
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CDAN: Conditional Domain Adversarial Network
CDAN: Minimax Optimization Problem

Principled approaches: Conditional Domain Adversarial Networks (CDAN)

@ Multilinear Conditioning: capture the cross-covariance between
feature representation & classifier prediction to boost discriminability

@ Entropy Conditioning: control the uncertainty of classifier prediction
to guarantee transferability (entropy minimization principle)

Ns i=1
+ni e ") og [D (T (h3))] + Ze (&) 1og [1— D (T (h?))]
=1
(16)
e 5 e gD (T DI+ 1 e g1 (7 ()]
® =1
(17)
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Theoretical Analysis

Notations and Assumptions

Source risk: €p (G) = E¢ry)~p [G () # Y]

Target risk: €q (G) = Efy)~q [G (F) # Y]

Disagreement on source: ep (G1, G2) = Esy)p [G1 (F) # G2 ()]
Disagreement on target: €q (G1, G2) = E(ty)q [G1 (f) # G2 (F)]

Idea hypothesis: G* = argmingep (G) + €g (G)

Assumption: idea hypothesis has small risk €jgeas = €p (G*) + €@ (G¥)

® x

Distribution Ideal hypothesis
discrepancy with small error
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Theoretical Analysis

Generalization Bound

Theorem

The probabilistic bound of the target risk eq(G) of hypothesis G is given
by the source risk ep(G) plus the distribution discrepancy:

€Q(G) <ep(G) +[ep(G7) +eq(G)] +[ep (G, G7) —cq (G, G7)| (18)

v

Proof.

By using the triangle inequalities, we have

o (G) G*) + e (G, G¥)
G*)+ep(G,G*) +¢0(G,G*) — ep (G, G¥)
G*)+ep(G,G) +eq (G, GT) —ep (G, G|

G)+[ep(G*) 4+ € (G)] + |ep (G, G*) — e (G, G¥)|

(19)

N NN N
'0080

O]
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Theoretical Analysis

Joint Distribution Discrepancy

Define the proxies of the joint distributions P(x,y) and Q(x,y)

° Pe=(f,G(f))opry Qe =(F,G(F)oge)
° cp(G,G") =e€p (G*), €@ (G, G") = €qq (G7)

Proof.
ep (G, G*) =Ey)~p [G(F) # G (f)] = Erg)~p. [8 # G (F)] = €pc (G¥) DJ

How to bound the distribution discrepancy |ep (G, G*) — eq (G, G*)|?

high

pe )8 A
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Upper-Bounding the Distribution Discrepancy
The distribution discrepancy |ep (G, G*) — eg (G, G*)| is bounded by

lep (G, G*) = €q (G, G)| = [E(rg)np, [8 # G ()] — Erg)nq. [8 # G (F)]]
< sup |E(r.g)~pc [|18 — G (F)] # 0] — E(s.g)~qc [lg — G* (F)| # 0]|
< sup |E¢.g)~pc [0 (F,8) # 0] — E.g)~qc [0 (F, 8) # 0]|
< sup |E(f,g)~Pc [D (f7 g) 7& 0] - E(fyg)NQc [D (f,g) 7& 0”
DeHp

The upper-bound can be yielded by training the domain discriminator D.

Distribution Hypothesis-based
discrepancy distribution discrepancy
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Benchmarking

Datasets
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Benchmarking

Results

Table: Accuracy (%) on Office-31 for unsupervised domain adaptation

Method A—->W D—-W W — D A—D D—A W — A Avg
AlexNet 61.6+£0.5 95.4+0.3 99.0+0.2 63.8+0.5 51.1+£0.6 49.8+0.4 70.1
DAN 68.5+0.5 96.0+0.3  99.0+0.3 67.0£0.4 54.04£0.5 53.1+05 72.9
RTN 73.3£0.3  96.8+0.2  99.6+0.1  71.0+0.2 50.5+0.3 51.0+£0.1 73.7
DANN 73.0£0.5 96.4+0.3 99.2+0.3  72.3+0.3 534404 51.2+0.5 743
ADDA 73.5+0.6 96.2+0.4  98.8+0.4 71.6£0.4 54.6+0.5 535106 74.7
JAN 749+0.3  96.6+0.2 99.5+0.2 71.8+0.2 58.3£0.3 55.0+0.4 76.0
CDAN-RM  77.940.3 96.9+0.2 100.0+.0 74.6+0.2 55.1+0.3 57.5+04 77.0
CDAN-M 77.6+0.2 97.2+0.1 100.0+.0 73.0£0.1 57.3£0.2 56.1+0.3 76.9
ResNet-50  68.4+0.2  96.7+£0.1  99.3+£0.1  68.9+£0.2 62.5+0.3 60.7£0.3 76.1
DAN 80.5+0.4 97.1+0.2 99.6+0.1 78.6£0.2 63.6+0.3 62.8+0.2 80.4
RTN 84.5+0.2  96.8+0.1  99.4+0.1 77.5+0.3 66.2+0.2 64.8+0.3 81.6
DANN 82.0+0.4  96.9+0.2 99.1+0.1 79.7£0.4 68.2£0.4 67.4+05 822
ADDA 86.2+0.5 96.2+0.3 98.4+0.3 77.8£0.3 69.5+0.4 68.9+05 82.9
JAN 85.4+0.3 97.4+0.2 99.8+0.2 84.7+0.3 68.6+0.3 70.0+0.4 84.3
JAN-A 92.6+0.2  98.2+0.1  99.8+0.2 86.3£0.1 71.4+0.2 724401 86.8
CDAN-RM  93.0+£0.2  98.4+0.2 100.0+.0 89.2+0.3 70.2+0.4 69.4+0.4 86.7
CDAN-M  93.1+0.1 98.6+0.1 100.0+.0 93.4+0.2 71.0+0.3 70.3+0.3 87.7
May 18,2019 28 /31



Results

VISDA-2017
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Benchmarking

Analysis

N VU
n%a»:vp,vf% ~ [N
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R 1) VAN
s Sy * % iiﬂ ’j g
(a) ResNet (b) DANN (c) CDAN-f (d) CDAN-fg

Figure: T-SNE on features by (a) ResNet, (b) DANN, (c) CDAN-f, (d) CDAN-fg.
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Figure: Analysis of CDAN: (a) Conditioning, (b) Discrepancy, (c) Convergence.
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Open Problems

e Conditional Shift: P(Y*|X*®) # Q(Y*|X")

Simulation-to-Real: P(Xlsow-level) 7é Q(xltow-level)

Open-Set/Zero-Shot (auxiliary info): Y° #£ Y!

Heterogeneous (almost impossible): X* # X!

Learning Transferable Architectures: BN, Skip-connection, etc.

Xlearn library is available: https://github.com/thuml/Xlearn
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