
Transfer Learning
Generalizing Deep Learning across Domains and Tasks

Mingsheng Long

School of Software
National Engineering Lab for Big Data Software

Tsinghua University

https://github.com/thuml

Chinese Conference on Pattern Recognition and Computer Vision
PRCV 2018

Mingsheng Long Transfer Learning May 18, 2019 1 / 31

https://github.com/thuml


Joint Work With:

Jianmin Wang
Professor

Tsinghua University
jimwang@tsinghua.edu.cn

Michael I. Jordan
Professor
UC Berkeley

jordan@cs.berkeley.edu

Yuchen Zhang Yue Cao Han Zhu Zhangjie Cao

Mingsheng Long
Associate Professor
Tsinghua University

mingsheng@tsinghua.edu.cn

Mingsheng Long Transfer Learning May 18, 2019 2 / 31



Transfer Learning

Outline

1 Transfer Learning

2 Problem I: P(X) 6= Q(X)
DAN: Deep Adaptation Network

3 Problem II: P(Y |X) 6= Q(Y |X)
CDAN: Conditional Domain Adversarial Network

4 Theoretical Analysis

5 Benchmarking

Mingsheng Long Transfer Learning May 18, 2019 3 / 31



Transfer Learning

Machine Learning
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Transfer Learning

Transfer Learning

Machine learning across domains of Non-IID distributions P 6= Q
How to design models that effectively bound the generalization error?

Model ModelRepresentation

P(x,y)≠Q(x,y)
2D Renderings Real Images

Source Domain Target Domain

f :x→ y f :x→ y
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Transfer Learning

Bias-Variance-Shift Tradeoff

Training Error high?

Train-Dev Error high?

Dev Error high?

Test Error high?

Training Set Train-Dev Set Dev Set Test Set

Done!

Bias

Variance

Dataset Shift

Overfit Dev Set

No

No

No

No

Yes

Yes

Yes

Yes

Deeper Model
Longer Training

Bigger Data
Regularization

Transfer Learning
Data Generation

Bigger Dev Data

Andrew Ng. The Nuts and Bolts of Building Applications using Deep 
Learning. NIPS 2016 Tutorial.

Optimal Bayes Rate
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Transfer Learning

Basic Approaches to Transfer Learning

Matching distributions across source and target domains s.t. P ≈ Q

Reduce marginal distribution mismatch: P(X) 6= Q(X)

Reduce conditional distribution mismatch: P(Y |X) 6= Q(Y |X)

Challenge: fail to align different domains of multimodal distributions

Song et al. Kernel Embeddings of Conditional Distributions. IEEE, 2013. 
Goodfellow et al. Generative Adversarial Networks. NIPS 2014.

Kernel Embedding Adversarial Learning

 IEEE SIGNAL PROCESSING MAGAZINE [102] JULY 2013

embeddings of a joint distribution ( , )P X Y  and the product of its 
marginals ( ) ( ),P X P Y  i.e., hsic ( , ) : .X Y C F FXY X Y

27n n= - 7  
Similarly, this statistic also has advantages over the kde-based 
statistic. We will further discuss these tests in the next section, 
following our introduction of finite sample estimates of the 
distribution embeddings and test statistics.

FINITE SAMPLE KERNEL ESTIMATOR
While we rarely have access to the true underlying distribution, 

( ),P X  we can readily estimate its embedding using a finite sample 
average. Given a sample { , , }D x xX m1 f=  of size m drawn inde-
pendent and identically distributed (i.i.d.) from ( ),P X  the empiri-
cal kernel embedding is

 ( ) .m x1
X i

i

m

1
n z=

=

t /  (4)

See Figure 3 for an illustration of the kernel embedding and its 
empirical estimator. This empirical estimate converges to its pop-
ulation counterpart in RKHS norm, ,FX Xn n-t  with a rate of 

( )O m ( / )
p

1 2-  [15], [16]. We note that this rate is independent of the 
dimension of ,X  meaning that statistics based on kernel embed-
dings circumvent the curse of dimensionality.

Kernel embeddings of joint distributions inherit the 
previous two properties of general embeddings: injectivity 

and easy empirical estimation. Given 
m pairs of training examples DXY = 
{( , ), , ( , )}x y x ym m1 1 f  drawn i.i.d. from 

( , ),P X Y  the covariance operator CXY  
can then be estimated as

 ( ) ( ) .C m x y1
XY i i

i

m

1
7z z=

=

t /  (5)

See Figure 4 for an illustration of the 
kernel joint embedding and its empirical 
estimator.

By virtue of the kernel trick, most of 
the computation required for statistical 
inference using kernel embeddings can 
be reduced to the Gram matrix manipu-
lation. The entries in the Gram matrix K  
correspond to the kernel value between 
data points xi and ,x j  i.e., ( , ),K k x xij i j=  
and therefore its size is determined by 
the number of data points in the sample 
(similarly Gram matrix G has entries 

( , )) .G k y yij i j=  The size of the Gram 
matrices is in general much smaller than 
the dimension of the feature spaces 
(which can be infinite). This enables effi-
cient nonparametric methods using the 
kernel embedding representation. For 
instance, the empirical mmd can be com-
puted using kernel evaluations,

 
mmd ( , ) ( ) ( )
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For comparison, the L2 distance between kernel density esti-
mates is

kde kde( ( ) ( ))x x dx2-
X

l\ \#
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( , ) ( , )) ,

(k k k k

k k
m
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x x y x dx

1
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/#

w h e r e  kde ( ) / ( , )x m k x x1 ii
m

1=
=
u\ /  a n d  kde ( ) /mx 1=l\  

( , )k y xii
m

1=
u/ , respectively. Furthermore, it can be shown that a 

two-sample test based on the L2 distance between kernel density 
estimates has less power against local departures from the null 
hypothesis than the mmd\  [19, Sec. 3.3], [19, Sec. 5], due to the 
shrinking kernel bandwidth with increasing sample size. There 
are also many domains such as strings and graphs [13] where 
kernel methods can be used, but where probability densities may 
not be defined. Finally, hyperparameters of the kernel func-
tions, such as the bandwidth v in the Gaussian kernel 

v( ),exp x x 2-- l  can be chosen to maximize the test power, 
and minimize the probability of Type II error in two-sample tests 

[FIG3] Kernel embedding of a distribution and finite sample estimate.

Feature Space

P(X )

xi
X

E[z(X)]

z(xi)

z(xi)

nx
nxˆ

nx = E[z(X)] cnxˆ = /1
m

m

i = 1

[FIG4] Kernel embedding of a joint distribution and finite sample estimate.

Feature Space

ˆ z(yi) , z(xi)= /1
m

m

i = 1

CYX = E[z(Y )] , z(X )] cCYX 

X

Y
P (Y, X )

CYX
ĈYX

z(yi) , z(xi)

E[z(Y )] , z(X )]

(xi, yi)
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Transfer Learning

Basic Guidelines to Algorithm Design

Everything should be made as simple as possible, but no simpler.
—Albert Einstein

Mingsheng Long Transfer Learning May 18, 2019 8 / 31
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Problem I: P(X) 6= Q(X) DAN: Deep Adaptation Network

DAN: Deep Adaptation Network1

MK-

MMD

MK-

MMD

MK-

MMD

input conv1 conv2 conv3 conv4 conv5 fc6 fc7 fc8

source

output

target

output

frozen frozenfrozen
fine-

tune

fine-

tune

learn learnlearn learn

Deep adaptation: match distributions in multiple domain-specific layers
Optimal matching: maximize two-sample test power by multiple kernels

d2
k (P,Q) ,

∥∥EP [φ (xs)]− EQ

[
φ
(
xt
)]∥∥2

Hk
(1)

min
θ∈Θ

max
k∈K

1

na

na∑
i=1

J (θ (xai ) , yai ) + λ

l2∑
`=l1

d2
k

(
D`s ,D`t

)
(2)

1Long et al. Learning Transferable Features with Deep Adaptation Networks. ICML ’15.
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Problem I: P(X) 6= Q(X) DAN: Deep Adaptation Network

DAN: MK-MMD

Multiple Kernel Maximum Mean Discrepancy (MK-MMD)

RKHS distance between kernel embeddings of distributions PX and QX

d2
k (P,Q) ,

∥∥EP [φ (xs)]− EQ

[
φ
(
xt
)]∥∥2

Hk
, (3)

k (xs , xt) = 〈φ (xs) , φ (xt)〉 is a convex combination of m PSD kernels

K ,

{
k =

m∑
u=1

βuku :
m∑

u=1

βu = 1, βu > 0,∀u
}
. (4)

Theorem (Kernel Two-Sample Test (Gretton et al. 2012))

P = Q if and only if d2
k (P,Q) = 0 (In practice, d2

k (P,Q) < ε)

max
k∈K

d2
k (P,Q)σ−2

k ⇔ min Type II Error (d2
k (P,Q) < ε when P 6= Q)
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Problem I: P(X) 6= Q(X) DAN: Deep Adaptation Network

DAN: Feature Learning

Linear-Time Algorithm of MK-MMD (Streaming Algorithm)

O(n2): d2
k (p, q) = Exsx′sk(xs , x′s) + Extx′tk(xt , x′t)− 2Exsxtk(xs , xt)

O(n): d2
k (p, q) = 2

ns

∑ns/2
i=1 gk (zi )→ linear-time unbiased estimate

Quad-tuple zi , (xs2i−1, x
s
2i , x

t
2i−1, x

t
2i )

gk (zi ) , k(xs2i−1, x
s
2i ) + k(xt2i−1, x

t
2i )− k(xs2i−1, x

t
2i )− k(xs2i , x

t
2i−1)

Stochastic Gradient Descent (SGD)

For each layer ` and for each quad-tuple z`i =
(
hs`2i−1,h

s`
2i ,h

t`
2i−1,h

t`
2i

)
∇Θ` =

∂J (zi )

∂Θ`
+ λ

∂gk
(
z`i
)

∂Θ`
(5)
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Problem I: P(X) 6= Q(X) DAN: Deep Adaptation Network

DAN: Kernel Learning

Learning optimal kernel k =
∑m

u=1 βuku

Maximizing test power , minimizing Type II error (Gretton et al. 2012)

max
k∈K

d2
k

(
D`s ,D`t

)
σ−2
k , (6)

where σ2
k = Ezg

2
k (z)− [Ezgk (z)]2 is the estimation variance.

Quadratic Program (QP), scaling linearly to sample size: O(m2n + m3)

min
dTβ=1,β>0

βT (Q + εI)β, (7)

where d = (d1, d2, . . . , dm)T, and each du is MMD using base kernel ku.

Mingsheng Long Transfer Learning May 18, 2019 13 / 31



Problem I: P(X) 6= Q(X) DAN: Deep Adaptation Network

DANN: Domain Adversarial Neural Network2

Unsupervised Domain Adaptation by Backpropagation

Figure 1. The proposed architecture includes a deep feature extractor (green) and a deep label predictor (blue), which together form
a standard feed-forward architecture. Unsupervised domain adaptation is achieved by adding a domain classifier (red) connected to the
feature extractor via a gradient reversal layer that multiplies the gradient by a certain negative constant during the backpropagation-
based training. Otherwise, the training proceeds in a standard way and minimizes the label prediction loss (for source examples) and
the domain classification loss (for all samples). Gradient reversal ensures that the feature distributions over the two domains are made
similar (as indistinguishable as possible for the domain classifier), thus resulting in the domain-invariant features.

and (Long & Wang, 2015) is thus different from our idea
of matching distribution by making them indistinguishable
for a discriminative classifier. Below, we compare our ap-
proach to (Tzeng et al., 2014; Long & Wang, 2015) on the
Office benchmark. Another approach to deep domain adap-
tation, which is arguably more different from ours, has been
developed in parallel in (Chen et al., 2015).

3. Deep Domain Adaptation
3.1. The model
We now detail the proposed model for the domain adap-
tation. We assume that the model works with input sam-
ples x 2 X , where X is some input space and cer-
tain labels (output) y from the label space Y . Below,
we assume classification problems where Y is a finite set
(Y = {1, 2, . . . L}), however our approach is generic and
can handle any output label space that other deep feed-
forward models can handle. We further assume that there
exist two distributions S(x, y) and T (x, y) on X ⌦ Y ,
which will be referred to as the source distribution and
the target distribution (or the source domain and the tar-
get domain). Both distributions are assumed complex and
unknown, and furthermore similar but different (in other
words, S is “shifted” from T by some domain shift).
Our ultimate goal is to be able to predict labels y given
the input x for the target distribution. At training time,
we have an access to a large set of training samples
{x1,x2, . . . ,xN} from both the source and the target do-
mains distributed according to the marginal distributions
S(x) and T (x). We denote with di the binary variable (do-
main label) for the i-th example, which indicates whether
xi come from the source distribution (xi⇠S(x) if di=0) or
from the target distribution (xi⇠T (x) if di=1). For the ex-
amples from the source distribution (di=0) the correspond-

ing labels yi 2 Y are known at training time. For the ex-
amples from the target domains, we do not know the labels
at training time, and we want to predict such labels at test
time.
We now define a deep feed-forward architecture that for
each input x predicts its label y 2 Y and its domain label
d 2 {0, 1}. We decompose such mapping into three parts.
We assume that the input x is first mapped by a mapping
Gf (a feature extractor) to a D-dimensional feature vector
f 2 RD. The feature mapping may also include several
feed-forward layers and we denote the vector of parame-
ters of all layers in this mapping as ✓f , i.e. f = Gf (x; ✓f ).
Then, the feature vector f is mapped by a mapping Gy (la-
bel predictor) to the label y, and we denote the parameters
of this mapping with ✓y . Finally, the same feature vector f
is mapped to the domain label d by a mapping Gd (domain
classifier) with the parameters ✓d (Figure 1).
During the learning stage, we aim to minimize the label
prediction loss on the annotated part (i.e. the source part)
of the training set, and the parameters of both the feature
extractor and the label predictor are thus optimized in or-
der to minimize the empirical loss for the source domain
samples. This ensures the discriminativeness of the fea-
tures f and the overall good prediction performance of the
combination of the feature extractor and the label predictor
on the source domain.
At the same time, we want to make the features f
domain-invariant. That is, we want to make the dis-
tributions S(f) = {Gf (x; ✓f ) |x⇠S(x)} and T (f) =
{Gf (x; ✓f ) |x⇠T (x)} to be similar. Under the covariate
shift assumption, this would make the label prediction ac-
curacy on the target domain to be the same as on the source
domain (Shimodaira, 2000). Measuring the dissimilarity
of the distributions S(f) and T (f) is however non-trivial,
given that f is high-dimensional, and that the distributions

Adversarial adaptation: learning features indistinguishable across domains

E (θf , θy , θd) =
∑
xi∈Ds

Ly (Gy (Gf (xi )) , yi )− λ
∑

xi∈Ds∪Dt

Ld (Gd (Gf (xi )) , di ) (8)

(θ̂f , θ̂y ) = arg min
θf ,θy

E (θf , θy , θd) (θ̂d) = arg max
θd

E (θf , θy , θd) (9)

2Ganin et al. Domain Adversarial Training of Neural Networks. JMLR ’16.
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Problem II: P(Y |X) 6= Q(Y |X) CDAN: Conditional Domain Adversarial Network

CDAN: Conditional Domain Adversarial Network3

Main Idea of This Work: Distribution Embeddings with Statistics

Capture cross-covariance statistics across multiple random vectors
Concatenation: EXY[X⊕ Y] = EX[X]⊕ EY[Y]
Multilinear: EXY [X⊗ Y] = EX [X|Y = 1]⊕ . . .⊕ EX [X|Y = C ]

 IEEE SIGNAL PROCESSING MAGAZINE [100] JULY 2013

mapping distributions into infinite-dimensional feature 
spaces, we can ultimately capture all the statistical features of 
arbitrary distributions. By virtue of the so-called kernel trick, 
we are able to avoid working explicitly with the infinite-
dimensional features, instead expressing our algorithms 
entirely in terms of Gram matrices of training samples. The infi-
nite and implicit nature of the feature spaces provides us a rich 
yet efficient framework for handling arbitrary distributions and 
high-dimensional data.

The conditional embedding framework represents the 
building blocks from probabilistic graphical models, such as mar-
ginal distributions over single variables, joint distributions over 
variable pairs, triplets, and more, as infinite-dimensional vectors, 
matrices, tensors, and high-order tensors, respectively; further-
more, the operations fundamental to probabilistic reasoning and 
graphical models, i.e., conditioning, sum rule, product rule, and 
Bayes’ rule, become linear transformations and relations between 
the embeddings (see Figure 2 for the analogy between discrete 
probability tables and kernel embeddings of distributions). We 
may combine these building blocks so as to reason about interac-
tions between a large collection of variables, even in the absence 
of parametric models.

The kernel conditional embedding framework has many 
advantages. First, it allows us to model data with diverse statisti-
cal features without the need to make restrictive assumptions 
about the type of distributions and relations. Second, it allows us 
to apply a large pool of linear and multilinear algebraic (tensor) 
tools to accomplish learning tasks in the presence of sophisti-
cated dependency structures, giving rise to methods for structure 
discovery, inference, parameter learning, and latent feature 

extraction. Third, this framework can be applied not only to con-
tinuous variables, but also can be generalized to variables that 
may take values on strings, graphs, groups, manifolds, and other 
domains on which kernels may be defined. Fourth, the computa-
tion can be implemented in practice by simple linear algebraic 
manipulation of kernel matrices.

We will mainly focus on two applications: the first being 
a belief propagation algorithm for inference in nonpara-
metric graphical models (i.e., estimating depth from still 
image features, reported in [7]), and the second being a 
dynamical systems model (i.e., predicting camera movements 
from video features, reported in [4]). In the first application, 
multimodal components in graphical models often make 
inference in these models intractable. Previous approaches 
using particle filtering and ad hoc approximation with mix-
tures of Gaussians are slow and inaccurate. Using kernel 
embeddings of conditional distributions, we are able to 
design a more accurate and efficient algorithm for the prob-
lem. In the second application, both the observations and 
hidden states of the hidden Markov model are complex high-
dimensional variables, and it is not easy to capture the struc-
ture of the data using parametric models. Kernel embeddings 
of conditional distributions and kernel Bayes’ rule can be 
used to model such problems with better accuracy. Finally, 
there exist many other recent applications of kernel embed-
dings of conditional distributions to signal processing and 
machine-learning problems, including Markov decision pro-
cesses (MDPs) [9], partially observable MDPs (POMDPs) [10], 
hidden Markov models [6], and general latent variable graphi-
cal models [8].

[FIG2] Analogy between discrete and kernel embedding representations of marginal distributions and joint distributions of variable 
pairs and triplets. Probabilistic operations, such as conditioning, sum rule, product rule, and Bayes’ rule become linear operations on 
the embedding representations. The discrete case is a specific instance of our embedding framework, given an appropriate choice 
of kernel.

Discrete

Kernel
Embedding

Distributions Probabilistic Operations

P(X )

P(X )

P(X , Y )

P(X , Y ) P(X , Y , Z )

P(X , Y , Z )

dx  # 1 dx  # dy
dx  # dy  # dz

X

Y

X

Y
Z

nx :=
EX [z(X )]

CXY :=
EXY [z(X ) , z(Y )]

CXYZ :=
EXYZ [z(X) , z(Y) , z(Z)]

3 # 1 3 # 3 3 # 3 # 3

Sum Rule: Q(X ) = / P(X |Y )r(Y )

Product Rule: Q(X, Y ) = P(X|Y)r(Y )

Bayes’ Rule: Q(Y |x) = P(x|Y )r(Y )
Q(X )

Sum Rule: nrX = CY |X n
r
Y

Product Rule: CrXY = CY |X C
r
YY

Bayes’ Rule: nrY |x = CrY |Xz(x)

CY |X

nX
nY

Y

3Long et al. Conditional Adversarial Domain Adaptation. NIPS ’18.
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Problem II: P(Y |X) 6= Q(Y |X) CDAN: Conditional Domain Adversarial Network

CDAN: Multilinear Conditioning

loss

xs

xt gt

gsfs

ft

ys

yt

DNN:
AlexNet
ResNet
……

D

×

×

Conditional adaptation of distributions over representation & prediction

min
G

EG − λED,G

min
D

ED,G

(10)

ED,G = − 1

ns

ns∑
i=1

log (D (fsi ⊗ gsi ))− 1

nt

nt∑
j=1

log
(
1− D

(
ftj ⊗ gtj

))
(11)
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Problem II: P(Y |X) 6= Q(Y |X) CDAN: Conditional Domain Adversarial Network

CDAN: Randomized Multilinear Conditioning

loss

xs

xt gt

gsfs

ft

ys

yt

DNN:
AlexNet
ResNet
……

D

fR

fR

gR

gR

Conditional adaptation of distributions over representation & prediction

T⊗ (f, g) = f ⊗ g (12)

T� (f, g) =
1√
d

(Rf f)� (Rgg) (13)

T (h) =

{
T⊗ (f, g) if df × dg 6 4096

T� (f, g) otherwise
(14)
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Problem II: P(Y |X) 6= Q(Y |X) CDAN: Conditional Domain Adversarial Network

CDAN: Entropy Conditioning

12 24 36 48 60 72

Example ID

0

0.5

1

1.5

E
n

tr
o

p
y
 W

e
ig

h
t

Correct Prediction?

Entropy e
-H(g)

Control the uncertainty of classifier prediction to guarantee transferability

max
D

1

ns

ns∑
i=1

e−H(gsi ) log [D (T (hsi ))] +
1

nt

nt∑
j=1

e−H(gtj ) log
[
1− D

(
T
(
htj
))]

(15)
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Problem II: P(Y |X) 6= Q(Y |X) CDAN: Conditional Domain Adversarial Network

CDAN: Minimax Optimization Problem

Principled approaches: Conditional Domain Adversarial Networks (CDAN)

Multilinear Conditioning: capture the cross-covariance between
feature representation & classifier prediction to boost discriminability

Entropy Conditioning: control the uncertainty of classifier prediction
to guarantee transferability (entropy minimization principle)

min
G

1

ns

ns∑
i=1

L (G (xsi ) , ysi )

+
λ

ns

ns∑
i=1

e−H(gsi ) log [D (T (hsi ))] +
λ

nt

nt∑
j=1

e−H(gtj ) log
[
1− D

(
T
(
htj
))]

(16)

max
D

1

ns

ns∑
i=1

e−H(gsi ) log [D (T (hsi ))] +
1

nt

nt∑
j=1

e−H(gtj ) log
[
1− D

(
T
(
htj
))]

(17)
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Theoretical Analysis

Notations and Assumptions

Source risk: εP (G ) = E(f,y)∼P [G (f) 6= y]

Target risk: εQ (G ) = E(f,y)∼Q [G (f) 6= y]

Disagreement on source: εP (G1,G2) = E(f,y)∼P [G1 (f) 6= G2 (f)]

Disagreement on target: εQ (G1,G2) = E(f,y)∼Q [G1 (f) 6= G2 (f)]

Idea hypothesis: G ∗ = arg minG εP (G ) + εQ (G )

Assumption: idea hypothesis has small risk εideal = εP (G ∗) + εQ (G ∗)

Distribution
discrepancy

Ideal hypothesis
with small error
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Theoretical Analysis

Generalization Bound

Theorem

The probabilistic bound of the target risk εQ(G ) of hypothesis G is given
by the source risk εP(G ) plus the distribution discrepancy:

εQ (G ) 6 εP (G ) + [εP (G ∗) + εQ (G ∗)] + |εP (G ,G ∗)− εQ (G ,G ∗)| (18)

Proof.

By using the triangle inequalities, we have

εQ (G ) 6 εQ (G ∗) + εQ (G ,G ∗)

6 εQ (G ∗) + εP (G ,G ∗) + εQ (G ,G ∗)− εP (G ,G ∗)

6 εQ (G ∗) + εP (G ,G ∗) + |εQ (G ,G ∗)− εP (G ,G ∗)|
6 εP (G ) + [εP (G ∗) + εQ (G ∗)] + |εP (G ,G ∗)− εQ (G ,G ∗)|

(19)
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Theoretical Analysis

Joint Distribution Discrepancy

Define the proxies of the joint distributions P(x, y) and Q(x, y)

PG = (f,G (f))f∼P(f), QG = (f,G (f))f∼Q(f)

εP (G ,G ∗) = εPG
(G ∗), εQ (G ,G ∗) = εQG

(G ∗)

Proof.

εP (G ,G∗) = E(f,y)∼P [G (f) 6= G∗ (f)] = E(f,g)∼PG
[g 6= G∗ (f)] = εPG

(G∗)

How to bound the distribution discrepancy |εP (G ,G ∗)− εQ (G ,G ∗)|?
low low high

G G G

G* G* G*
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Theoretical Analysis

Upper-Bounding the Distribution Discrepancy

The distribution discrepancy |εP (G ,G ∗)− εQ (G ,G ∗)| is bounded by

|εP (G ,G∗)− εQ (G ,G∗)| =
∣∣E(f,g)∼PG

[g 6= G∗ (f)]− E(f,g)∼QG
[g 6= G∗ (f)]

∣∣
6 sup

G∗∈H

∣∣E(f,g)∼PG
[|g − G∗ (f)| 6= 0]− E(f,g)∼QG

[|g − G∗ (f)| 6= 0]
∣∣

6 sup
δ∈∆

∣∣E(f,g)∼PG
[δ (f, g) 6= 0]− E(f,g)∼QG

[δ (f, g) 6= 0]
∣∣

6 sup
D∈HD

∣∣E(f,g)∼PG
[D (f, g) 6= 0]− E(f,g)∼QG

[D (f, g) 6= 0]
∣∣

The upper-bound can be yielded by training the domain discriminator D.

Distribution
discrepancy

Hypothesis-based
distribution discrepancy

G

G*

Mingsheng Long Transfer Learning May 18, 2019 25 / 31



Benchmarking

Outline

1 Transfer Learning

2 Problem I: P(X) 6= Q(X)
DAN: Deep Adaptation Network

3 Problem II: P(Y |X) 6= Q(Y |X)
CDAN: Conditional Domain Adversarial Network

4 Theoretical Analysis

5 Benchmarking
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Benchmarking

Datasets

Pre-train Fine-tune

VisDA Challenge 2017

Fine-tune

Fine-tune

Office-Caltech 

OfficeHome
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Benchmarking

Results

Table: Accuracy (%) on Office-31 for unsupervised domain adaptation

Method A → W D → W W → D A → D D → A W → A Avg

AlexNet 61.6±0.5 95.4±0.3 99.0±0.2 63.8±0.5 51.1±0.6 49.8±0.4 70.1
DAN 68.5±0.5 96.0±0.3 99.0±0.3 67.0±0.4 54.0±0.5 53.1±0.5 72.9
RTN 73.3±0.3 96.8±0.2 99.6±0.1 71.0±0.2 50.5±0.3 51.0±0.1 73.7

DANN 73.0±0.5 96.4±0.3 99.2±0.3 72.3±0.3 53.4±0.4 51.2±0.5 74.3
ADDA 73.5±0.6 96.2±0.4 98.8±0.4 71.6±0.4 54.6±0.5 53.5±0.6 74.7
JAN 74.9±0.3 96.6±0.2 99.5±0.2 71.8±0.2 58.3±0.3 55.0±0.4 76.0

CDAN-RM 77.9±0.3 96.9±0.2 100.0±.0 74.6±0.2 55.1±0.3 57.5±0.4 77.0
CDAN-M 77.6±0.2 97.2±0.1 100.0±.0 73.0±0.1 57.3±0.2 56.1±0.3 76.9

ResNet-50 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1
DAN 80.5±0.4 97.1±0.2 99.6±0.1 78.6±0.2 63.6±0.3 62.8±0.2 80.4
RTN 84.5±0.2 96.8±0.1 99.4±0.1 77.5±0.3 66.2±0.2 64.8±0.3 81.6

DANN 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
ADDA 86.2±0.5 96.2±0.3 98.4±0.3 77.8±0.3 69.5±0.4 68.9±0.5 82.9
JAN 85.4±0.3 97.4±0.2 99.8±0.2 84.7±0.3 68.6±0.3 70.0±0.4 84.3

JAN-A 92.6±0.2 98.2±0.1 99.8±0.2 86.3±0.1 71.4±0.2 72.4±0.1 86.8
CDAN-RM 93.0±0.2 98.4±0.2 100.0±.0 89.2±0.3 70.2±0.4 69.4±0.4 86.7
CDAN-M 93.1±0.1 98.6±0.1 100.0±.0 93.4±0.2 71.0±0.3 70.3±0.3 87.7

Mingsheng Long Transfer Learning May 18, 2019 28 / 31



Benchmarking

Results
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Benchmarking

Analysis

(a) ResNet (b) DANN (c) CDAN-f (d) CDAN-fg

Figure: T-SNE on features by (a) ResNet, (b) DANN, (c) CDAN-f, (d) CDAN-fg.
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Figure: Analysis of CDAN: (a) Conditioning, (b) Discrepancy, (c) Convergence.

Mingsheng Long Transfer Learning May 18, 2019 30 / 31



Summary

Open Problems

Conditional Shift: P(Y s |Xs) 6= Q(Y t |Xt)

Simulation-to-Real: P(Xs
low-level) 6= Q(Xt

low-level)

Open-Set/Zero-Shot (auxiliary info): Ys 6= Yt

Heterogeneous (almost impossible): Xs 6= Xt

Learning Transferable Architectures: BN, Skip-connection, etc.

Xlearn library is available: https://github.com/thuml/Xlearn
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