Spatiotemporal Pyramid Network for Video Action Recognition

Yunbo Wang
Mingsheng Long
Jianmin Wang
Philip S. Yu

Tsinghua University
China

Paper with the same name to appear in CVPR 2017

https://github.com/thuml/stpyramid
Main idea
Architecture
Experiments
Image Classification to Action Recognition

Deep ConvNets
[Krizhevsky et al. 2012]

Input: 227x227x3

Q: What if the input is now a small chunk of video? E.g. [227x227x3x15]
A: Extend the convolutional filters in time or perform spatiotemporal convolutions!
Spatiotemporal ConvNets – Temporal Fusion

[Karpathy et al. 2014]

Applying 2D CONV on a video volume (multiple frames as multiple channels)

<table>
<thead>
<tr>
<th>Model</th>
<th>Clip Hit@1</th>
<th>Video Hit@1</th>
<th>Video Hit@5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature Histograms + Neural Net</td>
<td>-</td>
<td>55.3</td>
<td>-</td>
</tr>
<tr>
<td>Single-Frame</td>
<td>41.1</td>
<td>59.3</td>
<td>77.7</td>
</tr>
<tr>
<td>Single-Frame + Multitrees</td>
<td>42.4</td>
<td>60.0</td>
<td>78.5</td>
</tr>
<tr>
<td>Single-Frame Fovea Only</td>
<td>30.0</td>
<td>49.9</td>
<td>72.8</td>
</tr>
<tr>
<td>Single-Frame Context Only</td>
<td>38.1</td>
<td>56.0</td>
<td>77.2</td>
</tr>
<tr>
<td>Early Fusion</td>
<td>38.9</td>
<td>57.7</td>
<td>76.8</td>
</tr>
<tr>
<td>Late Fusion</td>
<td>40.7</td>
<td>59.3</td>
<td>78.7</td>
</tr>
<tr>
<td>Slow Fusion</td>
<td>41.9</td>
<td>60.9</td>
<td>80.2</td>
</tr>
<tr>
<td>CNN Average (Single+Early+Late+Slow)</td>
<td>41.4</td>
<td>63.9</td>
<td>82.4</td>
</tr>
</tbody>
</table>

The motion information did not be fully captured…
Spatiotemporal ConvNets – C3D

[Tran et al. 2015]

Applying 3D CONV on a video volume

Accuracy: 85.2%

Spatiotemporal ConvNets – Optical Flow

[Simonyan and Zisserman. 2014]

Two-stream VGGNet

Accuracy: 88.0% (UCF101)

<table>
<thead>
<tr>
<th></th>
<th>Spatial stream ConvNet</th>
<th>Temporal stream ConvNet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-stream model (fusion by averaging)</td>
<td>86.9%</td>
<td>58.0%</td>
</tr>
<tr>
<td>Two-stream model (fusion by SVM)</td>
<td>88.0%</td>
<td>59.4%</td>
</tr>
</tbody>
</table>

Two-stream version works much better than either alone.
Motivation 1: Long-Time Dependencies

All above ConvNets used local motion cues to get extra accuracy. E.g. half a second or less

Q: what if the temporal dependencies are much longer? E.g. several seconds even more

Local motion leads to misclassifications when different actions resemble in short time, though distinguish in the long term.

E.g. **Pull-ups vs. Rope-climbing**

Classification result produced by **Two-stream ConvNets**
[Simonyan and Zisserman, 2014]
Long-Time Solution – RNNs

[Donahue et al. 2015]
LRCN = ConvNets + LSTM
Long-term temporal extent: RNNs model all video frames in the past.
Accuracy: 82.9%

Learning difficulty in predicting high-dimensional features across states.

Long-Time Solution – Convolutional RNNs

[Ballas et al. 2016]
ConvNet neurons are recurrent
Only require 2D CONV routines. No need for 3D spatiotemporal CONV.
Accuracy: 80.7%

However, convolutional depth is limited by memory usage.
Long-Time Solution – Snippets Fusion

Beyond short snippets [Ng et al. 2015]

- Explore various pooling methods
- CONV pooling worked best: Perform max-pooling over the final CONV layer across frames.

Accurac: 88.2%

Two-stream fusion [Feichtenhofer et al. 2016]

- **Where to fuse networks?**
 It is better to fuse them at the last CONV layer
- **How to fuse networks?**
 3D CONV fusion and 3D Pooling over spatiotemporal neighborhoods. ...

Accuracy: 92.5%
Long-Time Solution – Snippets Fusion

Temporal Segment Networks [Wang et al. 2016]

- Segmental consensus: average spatial/temporal features over 3 snippets
- Two new modalities: *RGB difference* and *warped optical flow fields*

Accuracy: 94.0%
Motivation 2: Visual Interest

Above ImageNet fine-tuned ConvNets are easily fooled by similar visual scenarios.

E.g. **Front Crawl vs. Breast Stroke**

Classification result produced by Two-stream ConvNets [Simonyan and Zisserman. 2014]

Ground Truth: FrontCrawl
Visual Interest Solution – Attention

[Sharma et al. 2016]

Attention mechanism:

Pro: Attention mask on the first-layer, giving very intuitive interpretability

Con: The attended features are not discriminative enough for recognition

Accuracy: 85.0%
Main idea

Architecture

Experiments
Spatiotemporal **Pyramid** Networks

- **What is pyramid?**
 1\(^{st}\) fusion level: fuse *temporal* snippets for global motion features
 2\(^{nd}\) fusion level: **attention** module using global motion as guidance
 3\(^{rd}\) fusion level: merge **visual, attention, motion** features

- **Why pyramid?**
Inputs

- **Spatial**: 1 RGB frame at time t
- **Temporal**: T optical flow snippets at an interval of τ around t
- L consecutive frames are covered by each snippet
- L is fixed to 10, τ is randomly selected from 1 to 10, in order to model variable lengths of videos with a fixed number of neurons
Spatiotemporal Compact Bilinear Fusion

For the long-time dilemma

- Full bilinear features are high dimensional and make subsequent analysis infeasible
- STCB combines single modality (multi-snippet) and multi-modality (spatiotemporal) features
- STCB preserves the representational ability and efficiently reduces the output dimension

Algorithm 1: STCB: Spatiotemporal compact bilinear

| Input: Spatial and/or temporal features \(\{v_i \in \mathbb{R}^m\}_{i=1}^m \) |
| Output: Fused features \(\mathbf{\Phi}(\{v_i\}_{i=1}^m) \in \mathbb{R}^d \) |

1. for \(i \leftarrow 1 \) to \(m \) do
2. if \(h_i, s_i \) not initialized then
3. for \(j \leftarrow 1 \) to \(p_i \) do
4. sample \(h_i(j) \) from \{1, \ldots, d\}
5. sample \(s_i(j) \) from \{-1, 1\}
6. end
7. \(v_i = [0, \ldots, 0] \)
8. for \(j \leftarrow 1 \) to \(p_i \) do
9. \(v_i'(h_i(j)) = v_i'(h_i(j)) + s_i(j) \cdot v_i(j) \)
10. end
11. end
12. \(\mathbf{\Phi}(\{v_i\}_{i=1}^m) = \text{FFT}^{-1}(\bigotimes_{i=1}^m \text{FFT}(v_i')) \)
13. end
Spatiotemporal Compact Bilinear Fusion

To avoid computing outer-product directly
To project outer-product to lower dimensional space

1. Count Sketch: $\mathbb{R}^n \rightarrow \mathbb{R}^d$
2. Theorem: $\psi (x \otimes y) = \psi (x) \ast \psi (y)$
3. $\psi (x) \ast \psi (y) = \text{FFT}^{-1} (\text{FFT} (\psi (x)) \odot \text{FFT} (\psi (y)))$
Spatiotemporal Attention

To solve the visual interest problem

- Plays a role of a more accurate weighted pooling operation
- **Attention guidance:** for each grid location on the image feature maps, we use STCB to merge the spatial and temporal feature vectors
- **Generate attention weights:** CONV*2 \rightarrow Softmax along each location \rightarrow Weighted pooling on the spatial feature maps
Final Architecture – **Pyramid**

A framework **extendible** for almost all deep ConvNets

E.g. VGGNets, BN-Inception, ResNets, etc.

1st fusion level: fuse K **temporal** snippets for global motion features

2nd fusion level: **attention** module using global motion as guidance

3rd fusion level: merge **visual, attention, motion** features
Main idea
Architecture
Experiments
Technical Details

- **BN-Inception turns out to be the top-performing base architecture.** Due to the limited amount of training samples on UCF101, complex network structures are prone to over-fitting.

<table>
<thead>
<tr>
<th>Model</th>
<th>Spatial</th>
<th>Temporal</th>
<th>Two-Stream [22]</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGG-16</td>
<td>80.5%</td>
<td>85.4%</td>
<td>88.9%</td>
</tr>
<tr>
<td>ResNet-50</td>
<td>83.7%</td>
<td>84.9%</td>
<td>90.3%</td>
</tr>
<tr>
<td>ResNet-152</td>
<td>84.3%</td>
<td>82.1%</td>
<td>89.8%</td>
</tr>
<tr>
<td>BN-Inception</td>
<td>84.5%</td>
<td>87.0%</td>
<td>91.7%</td>
</tr>
</tbody>
</table>

- **Training protocols consistent with** [Wang et al. ECCV 2016]

- **Cross modality pre-training:** Use ImageNet pre-trained models to initialize the temporal ConvNet
 - Average weights across the RGB channels in the first CONV layer
 - Replicate them by the optical flow channel number (e.g. 20)

- **Partial batch normalization:** Freeze the mean and variance of all CONV layers except the first one (as the distribution of optical flow is different from the RGB, its mean and variance need to be re-estimated)

- **Data augmentation:** horizontal flipping, corner cropping, scale-jittering.
Ablation Study

• Multi-snippets temporal fusion (optical flow only)

<table>
<thead>
<tr>
<th>Fusion method</th>
<th>1-path</th>
<th>3-path</th>
<th>5-path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concatenation</td>
<td>87.0%</td>
<td>88.4%</td>
<td>88.5%</td>
</tr>
<tr>
<td>Element-wise sum</td>
<td>-</td>
<td>87.9%</td>
<td>87.7%</td>
</tr>
<tr>
<td>Compact bilinear</td>
<td>-</td>
<td>89.3%</td>
<td>89.2%</td>
</tr>
</tbody>
</table>

• Attention (spatial features only)

<table>
<thead>
<tr>
<th>Fusion method</th>
<th>Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial ConvNet (AvgPool)</td>
<td>84.5%</td>
</tr>
<tr>
<td>Att. (1-snippet as guidance)</td>
<td>84.3%</td>
</tr>
<tr>
<td>Att. (3-snippets concat)</td>
<td>83.9%</td>
</tr>
<tr>
<td>Att. (3-snippets STCB)</td>
<td>86.6%</td>
</tr>
</tbody>
</table>
Ablation Study

• Now we stack these fusion methods one by one

<table>
<thead>
<tr>
<th>Model</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-stream STCB</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Multi-snippets fusion</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Attention</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Accuracy</td>
<td>91.7%</td>
<td>93.2%</td>
<td>93.6%</td>
<td>94.6%</td>
</tr>
</tbody>
</table>

• t-SNE of 10 classes randomly selected from UCF101
Final Results

<table>
<thead>
<tr>
<th>Method</th>
<th>UCF101</th>
<th>HMDB51</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow Fusion CNN [12]</td>
<td>65.4%</td>
<td>-</td>
</tr>
<tr>
<td>LRCN [5]</td>
<td>82.9%</td>
<td>-</td>
</tr>
<tr>
<td>C3D [28]</td>
<td>85.2%</td>
<td>-</td>
</tr>
<tr>
<td>Two-Stream (AlexNet) [22]</td>
<td>88.0%</td>
<td>59.4%</td>
</tr>
<tr>
<td>Two-Stream + LSTM [37]</td>
<td>88.6%</td>
<td>-</td>
</tr>
<tr>
<td>Two-Stream + Pooling [37]</td>
<td>88.2%</td>
<td>-</td>
</tr>
<tr>
<td>Transformation [33]</td>
<td>92.4%</td>
<td>62.0%</td>
</tr>
<tr>
<td>Two-Stream (VGG-16) [6]</td>
<td>90.6%</td>
<td>58.2%</td>
</tr>
<tr>
<td>Two-Stream + Fusion [6]</td>
<td>92.5%</td>
<td>65.4%</td>
</tr>
<tr>
<td>TSN (BN-Inception) [32]</td>
<td>94.0%</td>
<td>68.5%</td>
</tr>
<tr>
<td>Ours (VGG-16)</td>
<td>93.2%</td>
<td>66.1%</td>
</tr>
<tr>
<td>Ours (ResNet-50)</td>
<td>93.8%</td>
<td>66.5%</td>
</tr>
<tr>
<td>Ours (BN-Inception)</td>
<td>94.6%</td>
<td>68.9%</td>
</tr>
</tbody>
</table>

- Spatially ambiguous classes can be separated by the **attention** mechanism. *E.g. Front Crawl vs. Breast Stroke*
- Multi-snippets **temporal fusion** produces more global features and can easily differentiate actions that look similar in short-term. *E.g. Pull-ups vs. Rope-climbing*
Future Work

Similar action different backgrounds

Similar action different objects in hands
Thank you!

https://github.com/thuml/stpyramid