Partial Transfer Learning with Selective Adversarial Networks

Zhangjie Cao1, Mingsheng Long1, Jianmin Wang1, and Michael I. Jordan2

1KLiss, MOE; School of Software, Tsinghua University, China
1National Engineering Laboratory for Big Data Software
2University of California, Berkeley, Berkeley, CA, USA

IEEE Conference on Computer Vision and Pattern Recognition
CVPR 2018 (Spotlight)
Deep Transfer Learning

- Deep learning across domains of different distributions $P \neq Q$

Source Domain

- 2D Renderings
- Real Images

Target Domain

- 2D Renderings
- Real Images

Model

$P(x,y) \neq Q(x,y)$

Representation

Model
Deep Transfer Learning: Why?

<table>
<thead>
<tr>
<th>Training Set</th>
<th>Train-Dev Set</th>
<th>Dev Set</th>
<th>Test Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Error high?</td>
<td>Yes</td>
<td>Bias</td>
<td>Deeper Model</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Variance</td>
<td>Longer Training</td>
</tr>
<tr>
<td>Train-Dev Error high?</td>
<td>Yes</td>
<td>Dataset Shift</td>
<td>Bigger Data</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Overfit Dev Set</td>
<td>Regularization</td>
</tr>
<tr>
<td>Dev Error high?</td>
<td>Yes</td>
<td></td>
<td>Transfer Learning</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td></td>
<td>Data Generation</td>
</tr>
<tr>
<td>Test Error high?</td>
<td>Yes</td>
<td></td>
<td>Bigger Dev Data</td>
</tr>
</tbody>
</table>

Andrew Ng. The Nuts and Bolts of Building Applications using Deep Learning. NIPS 2016 Tutorial.
Partial Transfer Learning

- Deep learning across domains with different label spaces $C_s \supset C_t$
- Positive transfer across domains in shared label space $P_{C_t} \neq Q_{C_t}$
- Negative transfer across domains in outlier label space $P_{C_s \setminus C_t} \neq Q_{C_t}$
Partial Transfer Learning: How?

Matching distributions across the source and target domains s.t. $P \approx Q$
- Reduce marginal distribution mismatch: $P(X) \neq Q(X)$
- Reduce conditional distribution mismatch: $P(Y|X) \neq Q(Y|X)$

Kernel Embedding

Adversarial Learning

Selective Adversarial Networks

- $f = G_f(x)$: feature extractor
- \hat{y}: predicted data label
- \hat{d}: predicted domain label
- G_y, L_y: label predictor and loss
- G_d^k, L_d^k: domain discriminator
- GRL: gradient reversal layer

Diagram:

- x is fed into a CNN to produce f.
- f is then passed through G_y to predict \hat{y}.
- f is also passed through G_d^k to predict \hat{d}^k.
- \hat{y} and \hat{d}^k are used in the loss functions L_y and L_d^k.
- Back-propagation is used to update the parameters of f, G_y, and G_d^k.

Z. Cao et al. (Tsinghua University)
Selective Adversarial Networks

Instance Weighting (IW): probability-weighted loss for $G_d^k, k = 1, \ldots, |C_s|$

$$L'_d = \frac{1}{n_s + n_t} \sum_{k=1}^{|C_s|} \sum_{x_i \in D_s \cup D_t} \hat{y}_i^k L_d^k \left(G_d^k \left(G_f \left(x_i \right) \right), d_i \right)$$ (1)
Selective Adversarial Networks

Class Weighting (CW): down-weigh G^k_d, $k = 1, \ldots, |C_s|$ for outlier classes

$$L_d = \frac{1}{n_s + n_t} \sum_{k=1}^{\left|C_s\right|} \left\{ \left(\frac{1}{n_t} \sum_{x_i \in D_t} \hat{y}_k^i \right) \times \left(\sum_{x_i \in (D_s \cup D_t)} \hat{y}_k^i L_d^k \left(G^k_d \left(G_f (x_i) \right), d_i \right) \right) \right\}$$ \hspace{1cm} (2)
Selective Adversarial Networks

Entropy (uncertainty) minimization: $H(G_y(G_f(x_i))) = -\sum_{k=1}^{\left|C_s\right|} \hat{y}_i^k \log \hat{y}_i^k$

$E = \frac{1}{n_t} \sum_{x_i \in D_t} H(G_y(G_f(x_i)))$ (3)
Selective Adversarial Networks

\[C \left(\theta_f, \theta_y, \theta_d^k \mid |C_s| \right) = \frac{1}{n_s} \sum_{x_i \in D_s} L_y (G_y (G_f (x_i)), y_i) + \frac{1}{n_t} \sum_{x_i \in D_t} H (G_y (G_f (x_i))) \]

\[- \frac{1}{n_s + n_t} \sum_{k=1}^{\mid C_s \mid} \left\{ \left(\frac{1}{n_t} \sum_{x_i \in D_t} \hat{y}_i^k \right) \times \left(\sum_{x_i \in (D_s \cup D_t)} \hat{y}_i^k L_d^k \left(G_d^k (G_f (x_i)), d_i \right) \right) \right\} \]

(4)

(\hat{\theta}_f, \hat{\theta}_y) = \arg \min_{\theta_f, \theta_y} C \left(\theta_f, \theta_y, \theta_d^k \mid |C_s| \right)

(5)

(\hat{\theta}_d^1, ... , \hat{\theta}_d^{|C_s|}) = \arg \max_{\theta_d^1, ... , \theta_d^{|C_s|}} C \left(\theta_f, \theta_y, \theta_d^k \mid |C_s| \right)
Transfer Tasks: Office-31 (31 → 10), Caltech-Office (256 → 10) and ImageNet-Caltech (1000 → C84 and C256 → I84)
Results

Office-31

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A 31 → W 10</td>
<td>D 31 → W 10</td>
<td>W 31 → D 10</td>
<td>A 31 → D 10</td>
<td>D 31 → A 10</td>
<td>W 31 → A 10</td>
<td>Avg</td>
<td></td>
</tr>
<tr>
<td>AlexNet [2]</td>
<td>58.51</td>
<td>95.05</td>
<td>98.08</td>
<td>71.23</td>
<td>70.6</td>
<td>67.74</td>
<td>76.87</td>
<td></td>
</tr>
<tr>
<td>DAN [3]</td>
<td>56.52</td>
<td>71.86</td>
<td>86.78</td>
<td>51.86</td>
<td>50.42</td>
<td>52.29</td>
<td>61.62</td>
<td></td>
</tr>
<tr>
<td>RevGrad [1]</td>
<td>49.49</td>
<td>93.55</td>
<td>90.44</td>
<td>49.68</td>
<td>46.72</td>
<td>48.81</td>
<td>63.11</td>
<td></td>
</tr>
<tr>
<td>RTN [4]</td>
<td>66.78</td>
<td>86.77</td>
<td>99.36</td>
<td>70.06</td>
<td>73.52</td>
<td>76.41</td>
<td>78.82</td>
<td></td>
</tr>
<tr>
<td>ADDA [5]</td>
<td>70.68</td>
<td>96.44</td>
<td>98.65</td>
<td>72.90</td>
<td>74.26</td>
<td>75.56</td>
<td>81.42</td>
<td></td>
</tr>
<tr>
<td>SAN-selective</td>
<td>71.51</td>
<td>98.31</td>
<td>100.00</td>
<td>78.34</td>
<td>77.87</td>
<td>76.32</td>
<td>83.73</td>
<td></td>
</tr>
<tr>
<td>SAN-entropy</td>
<td>74.61</td>
<td>98.31</td>
<td>100.00</td>
<td>80.29</td>
<td>78.39</td>
<td>82.25</td>
<td>85.64</td>
<td></td>
</tr>
<tr>
<td>SAN</td>
<td>80.02</td>
<td>98.64</td>
<td>100.00</td>
<td>81.28</td>
<td>80.58</td>
<td>83.09</td>
<td>87.27</td>
<td></td>
</tr>
</tbody>
</table>

Caltech-Office

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C 256 → W 10</td>
<td>C 256 → A 10</td>
<td>C 256 → D 10</td>
<td>Avg</td>
<td>C 256 → C 84</td>
<td>C 256 → I 84</td>
<td>Avg</td>
<td></td>
</tr>
<tr>
<td>AlexNet [2]</td>
<td>58.44</td>
<td>76.64</td>
<td>65.86</td>
<td>66.98</td>
<td>52.37</td>
<td>47.35</td>
<td>49.86</td>
<td></td>
</tr>
<tr>
<td>DAN [3]</td>
<td>42.37</td>
<td>70.75</td>
<td>47.04</td>
<td>53.39</td>
<td>54.21</td>
<td>52.03</td>
<td>53.12</td>
<td></td>
</tr>
<tr>
<td>RevGrad [1]</td>
<td>54.57</td>
<td>72.86</td>
<td>57.96</td>
<td>61.80</td>
<td>51.34</td>
<td>47.02</td>
<td>49.18</td>
<td></td>
</tr>
<tr>
<td>RTN [4]</td>
<td>71.02</td>
<td>81.32</td>
<td>62.35</td>
<td>71.56</td>
<td>63.69</td>
<td>50.45</td>
<td>57.07</td>
<td></td>
</tr>
<tr>
<td>ADDA [5]</td>
<td>73.66</td>
<td>78.35</td>
<td>74.80</td>
<td>75.60</td>
<td>64.20</td>
<td>51.55</td>
<td>57.88</td>
<td></td>
</tr>
<tr>
<td>SAN-selective</td>
<td>76.44</td>
<td>81.63</td>
<td>80.25</td>
<td>79.44</td>
<td>66.78</td>
<td>51.25</td>
<td>59.02</td>
<td></td>
</tr>
<tr>
<td>SAN-entropy</td>
<td>72.54</td>
<td>78.95</td>
<td>76.43</td>
<td>75.97</td>
<td>55.27</td>
<td>52.31</td>
<td>53.79</td>
<td></td>
</tr>
<tr>
<td>SAN</td>
<td>88.33</td>
<td>83.82</td>
<td>85.35</td>
<td>85.83</td>
<td>68.45</td>
<td>55.61</td>
<td>62.03</td>
<td></td>
</tr>
</tbody>
</table>
(a) Accuracy w.r.t #Target Classes

(b) Test Error

- SAN outperforms RevGrad even more for larger class-space difference
- SAN converges more stably and fast to lower test error than RevGrad
Visualization

Figure: t-SNE with class information (top) and domain information (bottom).
References

Domain-adversarial training of neural networks.

Imagenet classification with deep convolutional neural networks.
In *NIPS*, 2012.

M. Long, Y. Cao, J. Wang, and M. I. Jordan.
Learning transferable features with deep adaptation networks.
In *ICML*, 2015.

Unsupervised domain adaptation with residual transfer networks.

Adversarial discriminative domain adaptation.
Summary

- A novel selective adversarial network for partial transfer learning
 - Circumvent negative transfer by selecting out outlier source classes
 - Promote positive transfer by matching shared-class-space distributions

- Code will be available soon at: https://github.com/thuml/

- A work at CVPR 2018 follows our arXiv version: how fast they are!