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Abstract
We present PredRNN++, a recurrent network for
spatiotemporal predictive learning. In pursuit of
a great modeling capability for short-term video
dynamics, we make our network deeper in time
by leveraging a new recurrent structure named
Causal LSTM with cascaded dual memories. To
alleviate the gradient propagation difficulties in
deep predictive models, we propose a Gradient
Highway Unit, which provides alternative quick
routes for the gradient flows from outputs back to
long-range previous inputs. The gradient highway
units work seamlessly with the causal LSTMs,
enabling our model to capture the short-term and
the long-term video dependencies adaptively. Our
model achieves state-of-the-art prediction results
on both synthetic and real video datasets, showing
its power in modeling entangled motions.

1. Introduction
Spatiotemporal predictive learning is to learn the features
from label-free video data in a self-supervised manner
(sometimes called unsupervised) and use them to perform a
specific task. This learning paradigm has benefited or could
potentially benefit practical applications, e.g. precipitation
forecasting (Shi et al., 2015; Wang et al., 2017), traffic flows
prediction (Zhang et al., 2017; Xu et al., 2018) and physical
interactions simulation (Lerer et al., 2016; Finn et al., 2016).

An accurate predictive learning method requires effectively
modeling video dynamics in different time scales. Consider
two typical situations: (i) When sudden changes happen, fu-
ture images should be generated upon nearby frames rather
than distant frames, which requires that the predictive model
learns short-term video dynamics; (ii) When the moving ob-
jects in the scene are frequently entangled, it would be hard
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to separate them in the generated frames. This requires that
the predictive model recalls previous contexts before the
occlusion happens. Thus, video relations in the short term
and the long term should be adaptively taken into account.

1.1. Deep-in-Time Structures and Vanishing Gradients
Dilemma in Spatiotemporal Modeling

In order to capture the long-term frame dependencies, re-
current neural networks (RNNs) (Rumelhart et al., 1988;
Werbos, 1990; Williams & Zipser, 1995) have been recently
applied to video predictive learning (Ranzato et al., 2014).
However, most methods (Srivastava et al., 2015a; Shi et al.,
2015; Patraucean et al., 2016) followed the traditional RNNs
chain structure and did not fully utilize the network depth.
The transitions between adjacent RNN states from one time
step to the next are modeled by simple functions, though
theoretical evidence shows that deeper networks can be
exponentially more efficient in both spatial feature extrac-
tion (Bianchini & Scarselli, 2014) and sequence modeling
(Pascanu et al., 2013). We believe that making the network
deeper-in-time, i.e. increasing the number of recurrent states
from the input to the output, would significantly increase its
strength in learning short-term video dynamics.

Motivated by this, a former state-of-the-art model named
PredRNN (Wang et al., 2017) applied complex nonlinear
transition functions from one frame to the next, constructing
a dual memory structure upon Long Short-Term Memory
(LSTM) (Hochreiter & Schmidhuber, 1997). Unfortunately,
this complex structure easily suffers from the vanishing gra-
dient problem (Bengio et al., 1994; Pascanu et al., 2013),
that the magnitude of the gradients decays exponentially
during the back-propagation through time (BPTT). There
is a dilemma in spatiotemporal predictive learning: the in-
creasingly deep-in-time networks have been designed for
complex video dynamics, while also introducing more diffi-
culties in gradients propagation. Therefore, how to maintain
a steady flow of gradients in a deep-in-time predictive model,
is a path worth exploring. Our key insight is to build adap-
tive connections among RNN states or layers, providing our
model with both longer routes and shorter routes at the same
time, from input frames to the expected future predictions.
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(a) Stacked ConvLSTMs
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(b) Deep Transition ConvLSTMs
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(c) PredRNN with ST-LSTMs

Figure 1. Comparison of data flows in (a) the stacked ConvLSTM network, (b) the deep transition ConvLSTM network, and (c) PredRNN
with the spatiotemporal LSTM (ST-LSTM). The two memories of PredRNN work in parallel: the red lines in subplot (c) denote the deep
transition paths of the spatial memory, while horizontal black arrows indicate the update directions of the temporal memories.

2. Related Work
Recurrent neural networks (RNNs) are widely used in video
prediction. Ranzato et al. (2014) constructed a RNN model
to predict the next frames. Srivastava et al. (2015a) adapted
the sequence to sequence LSTM framework for multiple
frames prediction. Shi et al. (2015) extended this model
and presented the convolutional LSTM (ConvLSTM) by
plugging the convolutional operations in recurrent connec-
tions. Finn et al. (2016) developed an action-conditioned
predictive model that explicitly predicts a distribution over
pixel motion from previous frames. Lotter et al. (2017) built
a predictive model upon ConvLSTMs, mainly focusing on
increasing the prediction quality of the next one frame. Vil-
legas et al. (2017a) proposed a network that separates the
information components (motion and content) into different
encoder pathways. Patraucean et al. (2016) predicted inter-
mediate pixel flow and applied the flow to predict image
pixels. Kalchbrenner et al. (2017) proposed a sophisticated
model combining gated CNN and ConvLSTM structures.
It estimates pixel values in a video one-by-one using the
well-established but complicated PixelCNNs (van den Oord
et al., 2016), thus severely suffers from low prediction effi-
ciency. Wang et al. (2017) proposed a deep-transition RNN
with two memory cells, where the spatiotemporal memory
flows through all RNN states across different RNN layers.

Convolutional neural networks (CNNs) are also involved in
video prediction, although they only create representations
for fixed size inputs. Oh et al. (2015) defined a CNN-based
autoencoder model for Atari games prediction. De Braban-
dere et al. (2016) adapted filter operations of the convolu-
tional network to the specific input samples. Villegas et al.
(2017b) proposed a three-stage framework with additional
annotated human joints data to make longer predictions.

To deal with the inherent diversity of future predictions,
Babaeizadeh et al. (2018) and Denton & Fergus (2018) ex-
plored stochastic variational methods in video predictive
models. But it is difficult to assess the performance of these

stochastic models. Generative adversarial networks (Good-
fellow et al., 2014; Denton et al., 2015) were employed to
video prediction (Mathieu et al., 2016; Vondrick et al., 2016;
Bhattacharjee & Das, 2017; Denton et al., 2017; Lu et al.,
2017; Tulyakov et al., 2018). These methods attempt to pre-
serve the sharpness of the generated images by treating it as
a major characteristic to distinguish real/fake video frames.
But the performance of these models significantly depends
on a careful training of the unstable adversarial networks.

In summary, prior video prediction models yield different
drawbacks. CNN-based approaches predict a limited num-
ber of frames in one pass. They focus on spatial appearances
rather than the temporal coherence in long-term motions.
The RNN-based approaches, in contrast, capture tempo-
ral dynamics with recurrent connections. However, their
predictions suffer from the well-known vanishing gradient
problem of RNNs, thus particularly rely on closest frames.
In our preliminary experiments, it was hard to preserve the
shapes of the moving objects in generated future frames,
especially after they overlapped. In this paper, we solve this
problem by proposing a new gradient highway recurrent
unit, which absorbs knowledge from previous video frames
and effectively leverages long-term information.

3. Revisiting Deep-in-Time Architectures
A general method to increase the depth of RNNs is stacking
multiple hidden layers. A typical stacked recurrent network
for video prediction (Shi et al., 2015) can be presented as
Figure 1(a). The recurrent unit, ConvLSTM, is designed to
properly keep and forget past information via gated struc-
tures, and then fuse it with current spatial representations.
Nevertheless, stacked ConvLSTMs do not add extra model-
ing capability to the step-to-step recurrent state transitions.

In our preliminary observations, increasing the step-to-step
transition depth in ConvLSTMs can significantly improve its
modeling capability to the short-term dynamics. As shown
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in Figure 1(b), the hidden state, H, and memory state, C,
are updated in a zigzag direction. The extended recurrence
depth between horizontally adjacent states enables the net-
work to learn complex non-linear transition functions of
nearby frames in a short interval. However, it introduces
vanishing gradient issues, making it difficult to capture long-
term correlations from the video. Though a simplified cell
structure, the recurrent highway (Zilly et al., 2017), might
somewhat ease this problem, it sacrifices the spatiotemporal
modeling power, exactly as the dilemma described earlier.

Based on the deep transition architecture, a well-performed
predictive learning approach, PredRNN (Wang et al., 2017),
added extra connections between adjacent time steps in a
stacked spatiotemporal LSTM (ST-LSTM), in pursuit of
both long-term coherence and short-term recurrence depth.
Figure 1(c) illustrates its information flows. PredRNN lever-
ages a dual memory mechanism and combines, by a simple
concatenation with gates, the horizontally updated temporal
memory C with the vertically transformed spatial memory
M. Despite the favorable information flows provided by the
spatiotemporal memory, this parallel memory structure fol-
lowed by a concatenation operator, and a 1× 1 convolution
layer for a constant number of channels, is not an efficient
mechanism for increasing the recurrence depth. Besides, as
a straight-forward combination of the stacked recurrent net-
work and the deep transition network, PredRNN still faces
the same vanishing gradient problem as previous models.

4. PredRNN++
In this section, we would give detailed descriptions of the
improved predictive recurrent neural network (PredRNN++).
Compared with the above deep-in-time recurrent architec-
tures, our approach has two key insights: First, it presents
a new spatiotemporal memory mechanism, causal LSTM,
in order to increase the recurrence depth from one time
step to the next, and by this means, derives a more power-
ful modeling capability to stronger spatial correlations and
short-term dynamics. Second, it attempts to solve gradient
back-propagation issues for the sake of long-term video
modeling. It constructs an alternative gradient highway, a
shorter route from future outputs back to distant inputs.

4.1. Causal LSTM

The causal LSTM is enlightened by the idea of adding more
non-linear layers to recurrent transitions, increasing the net-
work depth from one state to the next. A schematic of this
new recurrent unit is shown in Figure 2. A causal LSTM
unit contains dual memories, the temporal memory Ckt , and
the spatial memoryMk

t , where the subscript t denotes the
time step, while the superscript denotes the kth hidden layer
in a stacked causal LSTM network. The current temporal
memory directly depends on its previous state Ckt−1, and is
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Figure 2. Causal LSTM, in which the temporal and spatial mem-
ories are connected in a cascaded way through gated structures.
Colored parts are newly designed operations, concentric circles
denote concatenation, and σ is the element-wise Sigmoid function.

controlled through a forget gate ft, an input gate it, and an
input modulation gate gt. The current spatial memoryMk

t

depends onMk−1
t in the deep transition path. Specifically

for the bottom layer (k = 1), we assign the topmost spatial
memory at (t− 1) toMk−1

t . Evidently different from the
original spatiotemporal LSTM (Wang et al., 2017), causal
LSTM adopts a cascaded mechanism, where the spatial
memory is particularly a function of the temporal memory
via another set of gate structures. Update equations of the
causal LSTM at the kth layer can be presented as follows:

gtit
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t

])
Hk

t = ot � tanh
(
W5 ∗

[
Ckt ,Mk

t

])

(1)

where ∗ is convolution,� is the element-wise multiplication,
σ is the element-wise Sigmoid function, the square brackets
indicate a concatenation of the tensors and the round brack-
ets indicate a system of equations. W1∼5 are convolutional
filters, where W3 and W5 are 1 × 1 convolutional filters
for changing the number of filters. The final output Hk

t is
co-determined by the dual memory statesMk

t and Ckt .

Due to a significant increase in the recurrence depth along
the spatiotemporal transition pathway, this newly designed
cascaded memory is superior to the simple concatenation
structure of the spatiotemporal LSTM (Wang et al., 2017).
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Each pixel in the final generated frame would have a larger
receptive field of the input volume at every time step, which
endows the predictive model with greater modeling power
for short-term video dynamics and sudden changes.

We also consider another spatial-to-temporal causal LSTM
variant. We swap the positions of the two memories, updat-
ingMk

t in the first place, and then calculating Ckt based on
Mk

t . An experimental comparison of these two alternative
structures would be presented in Section 5, in which we
would demonstrate that both of them lead to better video
prediction results than the original spatiotemporal LSTM.

4.2. Gradient Highway

Beyond short-term video dynamics, causal LSTMs tend to
suffer from gradient back-propagation difficulties for the
long term. In particular, the temporal memory Ckt may forget
the outdated frame appearance due to longer transitions.
Such a recurrent architecture remains unsettled, especially
for videos with periodic motions or frequent occlusions. We
need an information highway to learn skip-frame relations.

Theoretical evidence indicates that highway layers (Srivas-
tava et al., 2015b) are able to deliver gradients efficiently
in very deep feed-forward networks. We exploit this idea
to recurrent networks for keeping long-term gradients from
quickly vanishing, and propose a new spatiotemporal recur-
rent structure named Gradient Highway Unit (GHU), with
a schematic shown in Figure 3. Equations of the GHU can
be presented as follows:

Pt = tanh (Wpx ∗ Xt +Wpz ∗ Zt−1)

St = σ (Wsx ∗ Xt +Wsz ∗ Zt−1)

Zt = St � Pt + (1− St)�Zt−1

(2)

where W•• stands for the convolutional filters. St is named
as Switch Gate, since it enables an adaptive learning between
the transformed inputs Pt and the hidden states Zt. Equa-
tion 2 can be briefly expressed as Zt = GHU(Xt,Zt−1).

In pursuit of great spatiotemporal modeling capability, we
build a deeper-in-time network with causal LSTMs, and
then attempt to deal with the vanishing gradient problem
with the GHU. The final architecture is shown in Figure 3.
Specifically, we stack L causal LSTMs and inject a GHU
between the 1st and the 2nd causal LSTMs. Key equations of
the entire model are presented as follows (for 3 ≤ k ≤ L):

H1
t , C1t ,M1

t = CausalLSTM1(Xt,H1
t−1, C1t−1,ML

t−1)

Zt = GHU(H1
t ,Zt−1)

H2
t , C2t ,M2

t = CausalLSTM2(Zt,H2
t−1, C2t−1,M1

t )

Hk
t , Ckt ,Mk

t = CausalLSTMk(Hk−1
t ,Hk

t−1, Ckt−1,Mk−1
t )

(3)
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Figure 3. Final architecture (top) with the gradient highway unit
(bottom), where concentric circles denote concatenation, and σ is
the element-wise Sigmoid function. Blue parts indicate the gradi-
ent highway connecting the current time step directly with previous
inputs, while the red parts show the deep transition pathway.

In this architecture, the gradient highway works seamlessly
with the causal LSTMs to separately capture long-term and
short-term video dependencies. With quickly updated hid-
den states Zt, the gradient highway shows an alternative
quick route from the very first to the last time step (the blue
line in Figure 3). But unlike temporal skip connections, it
controls the proportions of Zt−1 and the deep transition fea-
tures H1

t through the switch gate St, enabling an adaptive
learning of the long-term and the short-term frame relations.

We also explore other architecture variants by injecting
GHU into a different hidden layer slot, for example, be-
tween the (L− 1)th and Lth causal LSTMs. Experimental
comparisons would be given in Section 5. The network
discussed above outperforms the others, indicating the im-
portance of modeling characteristics of raw inputs rather
than the abstracted representations at higher layers.

As for network details, we observe that the numbers of the
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hidden state channels, especially those in lower layers, have
strong impacts on the final prediction performance. We thus
propose a 5-layer architecture, in pursuit of high prediction
quality with reasonable training time and memory usage,
consisting of 4 causal LSTMs with 128, 64, 64, 64 channels
respectively, as well as a 128-channel gradient highway unit
on the top of the bottom causal LSTM layer. We also set the
convolution filter size to 5 inside all recurrent units.

5. Experiments
To measure the performance of our approach, we use two
video prediction datasets in this paper: a synthetic dataset
with moving digits and a real video dataset with human ac-
tions. For codes and results on more datasets, please refer to
https://github.com/Yunbo426/predrnn-pp.

We train all compared models using TensorFlow (Abadi
et al., 2016) and optimize them to convergence using ADAM
(Kingma & Ba, 2015) with a starting learning rate of 10−3.
Besides, we apply the scheduled sampling strategy (Bengio
et al., 2015) to all of the models to stitch the discrepancy
between training and inference. As for the objective func-
tion, we use the L1 + L2 loss to simultaneously enhance the
sharpness and the smoothness of the generated frames.

5.1. Moving MNIST Dataset

Implementation We first follow the typical setups on the
Moving MNIST dataset by predicting 10 future frames given
10 previous frames. Then we extend the predicting time
horizon from 10 to 30 time steps to explore the capability
of the compared models in making long-range predictions.
Each frame contains 2 handwritten digits bouncing inside
a 64 × 64 grid of image. To assure the trained model has
never seen the digits during inference period, we sample
digits from different parts of the original MNIST dataset to
construct our training set and test set. The dataset volume
is fixed, with 10, 000 sequences for the training set, 3, 000
sequences for the validation set and 5, 000 sequences for the
test set. In order to measure the generalization and transfer
ability, we evaluate all models trained with 2 moving digits
on another 3 digits test set.

Results To evaluate the performance of our model, we
measure the per-frame structural similarity index measure
(SSIM) (Wang et al., 2004) and the mean square error
(MSE). SSIM ranges between -1 and 1, and a larger score
indicates a greater similarity between the generated image
and the ground truth image. Table 1 compares the state-of-
the-art models using these metrics. In particular, we include
the baseline version of the VPN model (Kalchbrenner et al.,
2017) that generates each frame in one pass. Our model
outperforms the others for predicting the next 10 frames. In
order to approach its temporal limit for high-quality predic-
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PredRNN
++

ConvLSTM

VPN 
baseline

PredRNN

TrajGRU

Inputs

Targets

PredRNN
++

ConvLSTM

VPN 
baseline

PredRNN

TrajGRU

Figure 4. Two prediction examples respectively with entangled
digits in the input or output frames on Moving MNIST-2 test set.

tions, we extend the predicting time horizon from 10 to 30
frames. Even though our model still performs the best in this
scenario, it begins to generate increasingly more blurry im-
ages due to the inherent uncertainty of the future. Hereafter,
we only discuss the 10-frame experimental settings.

Figure 5 illustrates the frame-wise MSE results, and lower
curves denote higher prediction accuracy. For all models,
the quality of the generated images degrades over time.
Our model yields a smaller degradation rate, indicating its
capability to overcome the long-term information loss and
learn skip-frame video relations with the gradient highway.

In Figure 4, we show examples of the predicted frames.
With causal memories, our model makes the most accurate
predictions of digit trajectories. We also observe that the
most challenging task in future predictions is to maintain
the shape of the digits after occlusion happens. This sce-
nario requires our model to learn from previously distant
contexts. For example, in the first case in Figure 4, two
digits entangle with each other at the beginning of the target
future sequence. Most prior models fail to preserve the cor-
rect shape of digit “8”, since their outcomes mostly depend
on high level representations at nearby time steps, rather

https://github.com/Yunbo426/predrnn-pp
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Table 1. Results of PredRNN++ comparing with other models. We report per-frame SSIM and MSE of generated sequences. Higher
SSIM or lower MSE denotes higher prediction quality. (*) indicates models that are not open source and are reproduced by us or others.

MODEL
MNIST-2 MNIST-3

10 TIME STEPS 30 TIME STEPS 10 TIME STEPS
SSIM MSE SSIM MSE SSIM MSE

FC-LSTM (SRIVASTAVA ET AL., 2015A) 0.690 118.3 0.583 180.1 0.651 162.4
CONVLSTM (SHI ET AL., 2015) 0.707 103.3 0.597 156.2 0.673 142.1
TRAJGRU (SHI ET AL., 2017) 0.713 106.9 0.588 163.0 0.682 134.0
CDNA (FINN ET AL., 2016) 0.721 97.4 0.609 142.3 0.669 138.2
DFN (DE BRABANDERE ET AL., 2016) 0.726 89.0 0.601 149.5 0.679 140.5
VPN* (KALCHBRENNER ET AL., 2017) 0.870 64.1 0.620 129.6 0.734 112.3
PREDRNN (WANG ET AL., 2017) 0.867 56.8 0.645 112.2 0.782 93.4

CAUSAL LSTM 0.882 52.5 0.685 100.7 0.795 89.2
CAUSAL LSTM (VARIANT: SPATIAL-TO-TEMPORAL) 0.875 54.0 0.672 103.6 0.784 91.8
PREDRNN + GHU 0.886 50.7 0.713 98.4 0.790 88.9
CAUSAL LSTM + GHU (FINAL) 0.898 46.5 0.733 91.1 0.814 81.7
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Figure 5. Frame-wise MSE over the test sets. Lower curves denote
higher prediction quality. All models are trained on MNIST-2.

than the distant previous inputs (please see our afterwards
gradient analysis). Similar situations happen in the second
example, all compared models present various but incorrect
shapes of digit “2” in predicted frames, while PredRNN++
maintains its appearance. It is the gradient highway archi-
tecture that enables our approach to learn more disentangled
representations and predict both correct shapes and trajecto-
ries of moving objects.

Ablation Study As shown in Table 1, it is beneficial to
use causal LSTMs in place of ST-LSTMs, improving the
SSIM score of PredRNN from 0.867 to 0.882. It proves the
superiority of the cascaded structure over the simple con-
catenation in connecting the spatial and temporal memories.
As a control experiment, we swap the positions of spatial
and temporal memories in causal LSTMs. This structure
(the spatial-to-temporal variant) outperforms the original
ST-LSTMs, with SSIM increased from 0.867 to 0.875, but
yields a lower accuracy than using standard causal LSTMs.

Table 1 also indicates that the gradient highway unit (GHU)
cooperates well with both ST-LSTMs and causal LSTMs.
It could boost the performance of deep transition recurrent

models consistently. In Table 2, we discuss multiple network
variants that inject the GHU into different slots between
causal LSTMs. It turns out that setting this unit right above
the bottom causal LSTM performs best. In this way, the
GHU could select the importance of the three information
streams: the long-term features in the highway, the short-
term features in the deep transition path, as well as the
spatial features extracted from the current input frame.

Table 2. Ablation study: injecting the GHU into a 4-layer causal
LSTM network. The slot of the GHU is positioned by the indexes
(k1, k2) of the causal LSTMs that are connected with it.

LOCATION k1, k2 SSIM MSE

BOTTOM (PREDRNN++) 1,2 0.898 46.5
MIDDLE 2,3 0.894 48.1
TOP 3,4 0.885 52.0

Gradient Analysis We observe that the moving digits are
frequently entangled, in a manner similar to real-world oc-
clusions. If digits get tangled up, it becomes difficult to
separate them apart in future predictions while maintain-
ing their original shapes. This is probably caused by the
vanishing gradient problem that prevents the deep-in-time
networks from capturing long-term frame relations. We eval-
uate the gradients of these models in Figure 7(a). ‖∇Xt

L20‖
is the gradient norm of the last time-step loss function w.r.t.
each input frame. Unlike other models that have gradient
curves that steeply decay back in time, indicating a severe
vanishing gradient problem, our model has a unique bowl-
shape curve, which shows that it manages to ease vanishing
gradients. We also observe that this bowl-shape curve is
in accordance with the occlusion frequencies over time as
shown in Figure 7(b), which demonstrates that the proposed
model manages to capture the long-term dependencies.
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(c) PredRNN++

Figure 6. The gradient norm of the loss function at the last time step, L20, with respect to intermediate activities in the encoder, including
hidden states, temporal memory states and the spatial memory states: ‖∇Hk

t
L20‖, ‖∇Ckt L20‖, ‖∇MtL20‖.
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Figure 7. Gradient analysis: (a) The gradient norm of the loss
function at the last time step with respect to each input frame,
averaged over the test set. (b) The frequency of digits entangling
in each input frame among 5, 000 sequences over the test set.

Figure 6 analyzes by what means our approach eases the
vanishing gradient problem, illustrating the absolute values
of the loss function derivatives at the last time step with
respect to intermediate hidden states and memory states:
‖∇Hk

t
L20‖, ‖∇Ckt L20‖, and ‖∇Mt

L20‖. The vanishing
gradient problem leads the gradients to decrease from the
top layer down to the bottom layer. For simplicity, we ana-
lyze recurrent models consisting of 2 layers. In Figure 6(a),
the gradient ofH1

t vanishes rapidly back in time, indicating
that previous true frames yield negligible influence on the
last frame prediction. With temporal memory connections
C1t , the PredRNN model in Figure 6(b) provides the gradi-
ent a shorter pathway from previous bottom states to the
top. As the curve ofH1

t arises back in time, it emphasizes
the representations of the more correlated hidden states. In
Figure 6(c), the gradient highway states Zt hold the largest
derivatives while ‖∇H2

t
L20‖ decays steeply back in time,

indicating that gradient highway stores long-term dependen-
cies and allows causal LSTMs to concentrate on short-term
frame relations. By this means, PredRNN++ disentangles
video representations in different time scales with different
network components, leading to more accurate predictions.

5.2. KTH Action Dataset

The KTH action dataset (Schuldt et al., 2004) contains 6
types of human actions (walking, jogging, running, boxing,
hand waving and hand clapping) in different scenarios: in-
doors and outdoors with scale variations or different clothes.
Each video clip has a length of four seconds in average and
was taken with a static camera in 25 fps frame rate.

Implementation The experimental setup is adopted from
(Villegas et al., 2017a): videos clips are divided into a train-
ing set of 108, 717 and a test set of 4, 086 sequences. Then
we resize each frame into a resolution of 128× 128 pixels.
We train all of the compared models by giving them 10
frames and making them generate the subsequent 10 frames.
The mini-batch size is set to 8 and the training process is
terminated after 200, 000 iterations. At test time, we extend
the prediction horizon to 20 future time steps.

Results Although few occlusions exist due to monotonous
actions and plain backgrounds, predicting a longer video
sequence accurately is still difficult for previous methods,
probably resulting from the vanishing gradient problem. The
key to this problem is to capture long-term frame relations.
In this dataset, it means learning human movements that are
performing repeatedly in the long term, such as the swinging
arms and legs when the actor is walking (Figure 9).

We use quantitative metrics PSNR (Peak Signal to Noise
Ratio) and SSIM to evaluate the predicted video frames.
PSNR emphasizes the foreground appearance, and a higher
score indicates a greater similarity between two images. Em-
pirically, we find that these two metrics are complementary
in some aspects: PSNR is more concerned about pixel-level
correctness, while SSIM is also sensitive to the difference in
image sharpness. In general, both of them need to be taken
into account to assess a predictive model. Table 3 evaluates
the overall prediction quality. For each sequence, the metric
values are averaged over the 20 generated frames. Figure
8 provides a more specific frame-wise comparison. Our
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approach performs consistently better than the state of the
art at every future time step on both PSNR and SSIM. These
results are in accordance with the quantitative examples in
Figure 9, which indicates that our model makes relatively
accurate predictions about the human moving trajectories
and generates less blurry video frames.

Table 3. A quantitative evaluation of different methods on the KTH
human action test set. These metrics are averaged over the 20 pre-
dicted frames. A higher score denotes a better prediction quality.

MODEL PSNR SSIM

CONVLSTM (SHI ET AL., 2015) 23.58 0.712
TRAJGRU (SHI ET AL., 2017) 26.97 0.790
DFN (DE BRABANDERE ET AL., 2016) 27.26 0.794
MCNET (VILLEGAS ET AL., 2017A) 25.95 0.804
PREDRNN (WANG ET AL., 2017) 27.55 0.839
PREDRNN++ 28.47 0.865

We also notice that, in Figure 8, all metric curves degrade
quickly for the first 10 time steps in the output sequence. But
the metric curves of our model declines most slowly from
the 10th to the 20th time step, indicating its great power for
capturing long-term video dependencies. It is an important
characteristic of our approach, since it significantly declines
the uncertainty of future predictions. For a model that is
deep-in-time but without gradient highway, it would fail to
remember the repeated human actions, leading to an incor-
rect inference about future moving trajectories. In general,
this “amnesia” effect would result in diverse future possibil-
ities, eventually making the generated images blurry. Our
model could make future predictions more deterministic.
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Figure 8. Frame-wise PSNR and SSIM comparisons of different
models on the KTH test set. Higher curves denote better results.

6. Conclusions
In this paper, we presented a predictive recurrent network
named PredRNN++, towards a resolution of the spatiotem-
poral predictive learning dilemma between deep-in-time
structures and vanishing gradients. To strengthen its power
for modeling short-term dynamics, we designed the causal

PredRNN

ConvLSTM

MCnet

t=3 t=6 t=9 t=12 t=15 t=18 t=21 t=24 t=27 t=30

Inputs Targets and predictions  

PredRNN++

PredRNN++

PredRNN

ConvLSTM

MCnet

DFN

TrajGRU

DFN

TrajGRU

Figure 9. KTH prediction examples. We predict 20 frames into
the future by observing 10 frames. Frames are shown at a three
frames interval. It is worth noting that these two sequences were
also presented in (Villegas et al., 2017a).

LSTM with the cascaded dual memory structure. To alle-
viate the vanishing gradient problem, we proposed a gradi-
ent highway unit, which provided the gradients with quick
routes from future predictions back to distant previous in-
puts. By evaluating PredRNN++ on a synthetic moving
digits dataset with frequent object occlusions, and a real
video dataset with periodic human actions, we demonstrated
that it is able to learning long-term and short-term dependen-
cies adaptively and obtain state-of-the-art prediction results.
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