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Today’s AI
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Today, AI = Supervised (Deep) Learning 



“Real” AI
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But Supervised Learning is Insufficient for “Real” AI

Most of animals and humans learning is 
unsupervised, through interaction with the world

We learn how the world works by observing it

We learn many simple things: depth and 3-
dimensionality, gravity, object permanence,…. 

We build models of the world through predictive 
unsupervised learning

World models give us “common sense”



Predictive Learning
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How Much Information does the Machine Need to Predict?

Pure Reinforcement Learning (cherry)

The machine predicts a scalar reward given once in 
a while.

A few bits for some samples

Supervised Learning (icing)

The machine predicts a category or a few numbers 
for each input

10→10,000 bits per sample

Unsupervised/Predictive Learning (génoise)

The machine predicts any part of its input for any 
observed part.

Predicts future frames in videos

Millions of bits per sample

Unsupervised Learning is the Dark 
Matter (or Dark Energy) of AI



Video Prediction: Learning Physics
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Learning Physics (PhysNet) [Lerer, Gross, Fergus, ICML’16]

ConvNet predicts the trajectories of falling blocks

Uses the Unreal game engine hooked up to Torch.



Video Prediction:Weather Nowcasting
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March 4th, Jiangxi Province, China



Predictive Learning

Predictive Learning 7

• Video frame prediction
• Self-supervised / unsupervised feature learning
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Technical Challenges
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CNN

ShortTerm
movement

Spatial
deformation

RNN

LongTerm
movement

LSTMOptical Flow

How?



CNN-based methods
- 3D CNNs [Vondrick 2016]

RNN-based methods
- ConvLSTM network [Shi 2015]

- Video Pixel Networks [Kalchbrenner 2017]
- PredRNN / PredRNN++ [Wang 2017,Wang 2018]

9Predictive Learning
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Figure 1: Video Generator Network: We illustrate our network architecture for the generator. The
input is 100 dimensional (Gaussian noise). There are two independent streams: a moving foreground
pathway of fractionally-strided spatio-temporal convolutions, and a static background pathway of
fractionally-strided spatial convolutions, both of which up-sample. These two pathways are combined
to create the generated video using a mask from the motion pathway. Below each volume is its size
and the number of channels in parenthesis.

2.2 Generator Network

The input to the generator network is a low-dimensional latent code z 2 Rd. In most cases, this code
can be sampled from a distribution (e.g., Gaussian). Given a code z, we wish to produce a video.

We design the architecture of the generator network with a few principles in mind. Firstly, we want the
network to be invariant to translations in both space and time. Secondly, we want a low-dimensional
z to be able to produce a high-dimensional output (video). Thirdly, we want to assume a stationary
camera and take advantage of the the property that usually only objects move. We are interested
in modeling object motion, and not the motion of cameras. Moreover, since modeling that the
background is stationary is important in video recognition tasks [45], it may be helpful in video
generation as well. We explore two different network architectures:

One Stream Architecture: We combine spatio-temporal convolutions [14, 40] with fractionally
strided convolutions [52, 31] to generate video. Three dimensional convolutions provide spatial
and temporal invariance, while fractionally strided convolutions can upsample efficiently in a deep
network, allowing z to be low-dimensional. We use an architecture inspired by [31], except extended
in time. We use a five layer network of 4 ⇥ 4 ⇥ 4 convolutions with a stride of 2, except for the first
layer which uses 2 ⇥ 4 ⇥ 4 convolutions (time ⇥ width ⇥ height). We found that these kernel sizes
provided an appropriate balance between training speed and quality of generations.

Two Stream Architecture: The one stream architecture does not model that the world is stationary
and usually only objects move. We experimented with making this behavior explicit in the model. We
use an architecture that enforces a static background and moving foreground. We use a two-stream
architecture where the generator is governed by the combination:

G2(z) = m(z) � f(z) + (1 � m(z)) � b(z). (2)

Our intention is that 0 � m(z) � 1 can be viewed as a spatio-temporal mask that selects either
the foreground f(z) model or the background model b(z) for each pixel location and timestep. To
enforce a background model in the generations, b(z) produces a spatial image that is replicated over
time, while f(z) produces a spatio-temporal cuboid masked by m(z). By summing the foreground
model with the background model, we can obtain the final generation. Note that � is element-wise
multiplication, and we replicate singleton dimensions to match its corresponding tensor. During
learning, we also add to the objective a small sparsity prior on the mask �km(z)k1 for � = 0.1,
which we found helps encourage the network to use the background stream.

3

VideoGAN

10Predictive Learning

Generating Videos with Scene Dynamics. Vondrick et al. NIPS 2016.

3D CNNs
• 3D Conv (D)
• 3DTranspose Conv (G)

Adversarial
Training

10

dynamic

static



Warm-Up: Seq-to-Seq LSTMs
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Flatten to vectors

[Srivastava et al. Unsupervised Learning of Video Representations using LSTMs. ICML 2015]

• Inputs, outputs and states at all
timestamps are 1D vectors

• Dimensions of a hidden state 
can be swapped without 
affecting the overall structure
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Warm-Up: Seq-to-Seq LSTMs
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Long Short-Term Memory (LSTM)

Predictive Learning 13

!

ℎ#$%

&#$%

'#

concat

(
)
*
+

&#

tanh

ℎ#

Input, forget, output gates:
,# = . !/0'# +!20ℎ#$% + 30
4# = . !/5'# +!25ℎ#$% + 35
6# = . !/7'# +!27ℎ#$% + 37

Cell state:
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&# = 4# ⊙ &#$% +,# ⊙ *#

Hidden layer :
ℎ# = 6# ⊙ tanh(&#)

LSTM

1.All variables are 1D vectors
2. Dimensions are Permutable
(Spatial Information Loss)



Convolutional LSTM (ConvLSTM)
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1.All variables are 3D tensors
2. Spatial Dimensions are Not 
Permutable (Spatial Preservation)

*

[Convolutional LSTM Network. Shi et al. NIPS 2015.]



ConvLSTM
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State-to-state Convolution: future states à larger receptive field

MatMul → Convolution

[Convolutional LSTM Network. Shi et al. NIPS 2015.]

Hidden state (Ht)
Cell state (Ct)

Inputs

! ! + 1

Output

input-to-state conv
state
-to-
state
conv



ConvLSTM Network
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Encoder

Decoder

A deep Seq2Seq model

ConvLSTM-1

ConvLSTM-2

ConvLSTM-3

ConvLSTM-4

No input to decoder!

[Convolutional LSTM Network. Shi et al. NIPS 2015.]



PixelRNN

• Explicit density model
• Use chain rule to decompose likelihood of an image 
! = !#, … , !& into product of 1-dim distributions:

• Then maximize likelihood of training data {!}

Predictive Learning 17

Probability of t-th pixel value
given all previous pixels 

Likelihood of image
! = !#, … , !&

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

PixelRNN

28

Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

 

[van der Oord et al. 2016]

Drawback: sequential generation is slow!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

PixelRNN

26

Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

 

[van der Oord et al. 2016]
Pixel Ordering

A Oord et al. Pixel Recurrent Neural Networks. ICML 2016.
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PixelRNN
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Markov process

Generate an image as pixel sequence → RNN

Pixel
Intensity

LSTMs

At test time, predict
pixels recursively!

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/30/18

High Level Feature Detection

Let’s identify key features in each image category

Wheels, 
License Plate, 

Headlights

Door, 
Windows, 

Steps

Nose, 
Eyes,

Mouth

Sequential Ordering
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High Level Feature Detection

Let’s identify key features in each image category

Wheels, 
License Plate, 

Headlights

Door, 
Windows, 

Steps

Nose, 
Eyes,

Mouth

SOS

EOS

A pixel

(note: the 
box is used 
to indicate 
a pixel)

Pixel
probability

A Oord et al. Pixel Recurrent Neural Networks. ICML 2016.



Video Pixel Networks (VPN)

Predictive Learning 19

R

G

B

FtF<t

x

F1F0 F2

F̂3F̂0 F̂3F̂1

F1F0 F2 F3

R

G

B

FtF<t

x

F1F0 F2

F̂3F̂0 F̂3F̂1

BaselineVideo Pixel Network

PixelCNN 
Decoders

CNN 
Decoders

Resolution Preserving
CNN Encoders

Figure 1: Dependency map (top) and neural network structure (bottom) for the VPN (left)
and the baseline model (right).

10 frames. In Sect. 5 we show that the VPN achieves 87.6 nats/frame, a score that is near
the lower bound on the loss (calculated to be 86.3 nats/frame); this constitutes a significant
improvement over the previous best result of 179.8 nats/frame (Patraucean et al., 2015).

The second benchmark is the Robotic Pushing dataset (Finn et al., 2016) where, given two
natural video frames showing a robotic arm pushing objects,

the task is to predict the following 18 frames. We show that

the VPN not only generalizes to new action sequences with objects seen during training,
but also to new action sequences involving novel objects not seen during training. Random
samples from the VPN preserve remarkable detail throughout the generated sequence. We
also define a baseline model that lacks the space and color dependencies. This lets us see
that the latter dependencies are crucial for avoiding systematic artifacts in generated videos.

2 Model

In this section we define the probabilistic model implemented by Video Pixel Networks. Let
a video x be a four-dimensional tensor of pixel values xt,i,j,c, where the first (temporal)
dimension t 2 {0, ..., T} corresponds to one of the frames in the video, the next two (spatial)
dimensions i, j 2 {0, ..., N} index the pixel at row i and column j in frame t, and the last
dimension c 2 {R, G, B} denotes one of the three RGB channels of the pixel. We let each
xt,i,j,c be a random variable that takes values from the RGB color intensities of the pixel.

By applying the chain rule to factorize the video likelihood p(x) as a product of conditional
probabilities, we can model it in a tractable manner and without introducing independence
assumptions:

p(x) =
TY

t=0

NY

i=0

NY

j=0

p(xt,i,j,B |x<,xt,i,j,R,xt,i,j,G) p(xt,i,j,G|x<,xt,i,j,R) p(xt,i,j,R|x<). (1)

Here x< = x(t,<i,<j,:) [x(<t,:,:,:) comprises the RGB values of all pixels to the left and above
the pixel at position (i, j) in the current frame t, as well as the RGB values of pixels from
all the previous frames.

2

Video Pixel Networks. Kalchbrenner et al. ICML 2017. 

PixelRNN
Decoders ConvLSTM



PredRNN
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•Deeper transitions for short-term (fast flow) dependencies
• Larger receptive field across adjacent states for sudden change
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PredRNN: Recurrent Neural Networks for Predictive Learning using Spatiotemporal LSTMs.Yunbo Wang et al. NIPS 2017.
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PredRNN
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• Zigzag flow makes network deeper in time → gradient vanishing
•Maintain temporal memory (Ct) → Preserve long-term gradients
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PredRNN: Recurrent Neural Networks for Predictive Learning using Spatiotemporal LSTMs.Yunbo Wang et al. NIPS 2017.
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PredRNN
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• Spatiotemporal Memory (in yellow): an external memory (Mtl)
• Temporal Memory (in black): the conventional memory cell (Ctl)

PredRNN: Recurrent Neural Networks for Predictive Learning using Spatiotemporal LSTMs.Yunbo Wang et al. NIPS 2017.
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PredRNN++
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Zigzag flow: more straightforward supervisions to the memory

But, for the short term -> deeper-in-time gradient 
vanishing long-term



PredRNN++: Longer path for short-term dynamics
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[PredRNN++. Yunbo Wang et al. ICML 2018.]



PredRNN++: Longer path for short-term dynamics

Predictive Learning 25

[PredRNN++. Yunbo Wang et al. ICML 2018.]



PredRNN++: Shorter path for long-term relations
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[PredRNN++. Yunbo Wang et al. ICML 2018.]
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Moving MNIST: Frequent Occlusions
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PredRNN++: Towards A Resolution of the Deep-in-Time Dilemma in Spatiotemporal Predictive Learning

Table 1. Results of PredRNN++ comparing with other models. We report per-frame SSIM and MSE of generated sequences. Higher
SSIM or lower MSE denotes higher prediction quality. (*) indicates models that are not open source and are reproduced by us or others.

MODEL
MNIST-2 MNIST-3

10 TIME STEPS 30 TIME STEPS 10 TIME STEPS
SSIM MSE SSIM MSE SSIM MSE

FC-LSTM (SRIVASTAVA ET AL., 2015A) 0.690 118.3 0.583 180.1 0.651 162.4
CONVLSTM (SHI ET AL., 2015) 0.707 103.3 0.597 156.2 0.673 142.1
TRAJGRU (SHI ET AL., 2017) 0.713 106.9 0.588 163.0 0.682 134.0
CDNA (FINN ET AL., 2016) 0.721 97.4 0.609 142.3 0.669 138.2
DFN (DE BRABANDERE ET AL., 2016) 0.726 89.0 0.601 149.5 0.679 140.5
VPN* (KALCHBRENNER ET AL., 2017) 0.870 64.1 0.620 129.6 0.734 112.3
PREDRNN (WANG ET AL., 2017) 0.867 56.8 0.645 112.2 0.782 93.4

CAUSAL LSTM 0.882 52.5 0.685 100.7 0.795 89.2
CAUSAL LSTM (VARIANT: SPATIAL-TO-TEMPORAL) 0.875 54.0 0.672 103.6 0.784 91.8
PREDRNN + GHU 0.886 50.7 0.713 98.4 0.790 88.9
CAUSAL LSTM + GHU (FINAL) 0.898 46.5 0.733 91.1 0.814 81.7
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(b) MNIST-3

Figure 5. Frame-wise MSE over the test sets. Lower curves denote
higher prediction quality. All models are trained on MNIST-2.

than the distant previous inputs (please see our afterwards
gradient analysis). Similar situations happen in the second
example, all compared models present various but incorrect
shapes of digit “2” in predicted frames, while PredRNN++
maintains its appearance. It is the gradient highway archi-
tecture that enables our approach to learn more disentangled
representations and predict both correct shapes and trajecto-
ries of moving objects.

Ablation Study As shown in Table 1, it is beneficial to
use causal LSTMs in place of ST-LSTMs, improving the
SSIM score of PredRNN from 0.867 to 0.882. It proves the
superiority of the cascaded structure over the simple con-
catenation in connecting the spatial and temporal memories.
As a control experiment, we swap the positions of spatial
and temporal memories in causal LSTMs. This structure
(the spatial-to-temporal variant) outperforms the original
ST-LSTMs, with SSIM increased from 0.867 to 0.875, but
yields a lower accuracy than using standard causal LSTMs.

Table 1 also indicates that the gradient highway unit (GHU)
cooperates well with both ST-LSTMs and causal LSTMs.
It could boost the performance of deep transition recurrent

models consistently. In Table 2, we discuss multiple network
variants that inject the GHU into different slots between
causal LSTMs. It turns out that setting this unit right above
the bottom causal LSTM performs best. In this way, the
GHU could select the importance of the three information
streams: the long-term features in the highway, the short-
term features in the deep transition path, as well as the
spatial features extracted from the current input frame.

Table 2. Ablation study: injecting the GHU into a 4-layer causal
LSTM network. The slot of the GHU is positioned by the indexes
(k1, k2) of the causal LSTMs that are connected with it.

LOCATION k1, k2 SSIM MSE

BOTTOM (PREDRNN++) 1,2 0.898 46.5
MIDDLE 2,3 0.894 48.1
TOP 3,4 0.885 52.0

Gradient Analysis We observe that the moving digits are
frequently entangled, in a manner similar to real-world oc-
clusions. If digits get tangled up, it becomes difficult to
separate them apart in future predictions while maintain-
ing their original shapes. This is probably caused by the
vanishing gradient problem that prevents the deep-in-time
networks from capturing long-term frame relations. We eval-
uate the gradients of these models in Figure 7(a). krXtL20k
is the gradient norm of the last time-step loss function w.r.t.
each input frame. Unlike other models that have gradient
curves that steeply decay back in time, indicating a severe
vanishing gradient problem, our model has a unique bowl-
shape curve, which shows that it manages to ease vanishing
gradients. We also observe that this bowl-shape curve is
in accordance with the occlusion frequencies over time as
shown in Figure 7(b), which demonstrates that the proposed
model manages to capture the long-term dependencies.
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PredRNN++: Towards A Resolution of the Deep-in-Time Dilemma in Spatiotemporal Predictive Learning
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(c) PredRNN++

Figure 6. The gradient norm of the loss function at the last time step, L20, with respect to intermediate activities in the encoder, including
hidden states, temporal memory states and the spatial memory states: krHk

t
L20k, krCk

t
L20k, krMtL20k.
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Figure 7. Gradient analysis: (a) The gradient norm of the loss
function at the last time step with respect to each input frame,
averaged over the test set. (b) The frequency of digits entangling
in each input frame among 5, 000 sequences over the test set.

Figure 6 analyzes by what means our approach eases the
vanishing gradient problem, illustrating the absolute values
of the loss function derivatives at the last time step with
respect to intermediate hidden states and memory states:
krHk

t
L20k, krCk

t
L20k, and krMtL20k. The vanishing

gradient problem leads the gradients to decrease from the
top layer down to the bottom layer. For simplicity, we ana-
lyze recurrent models consisting of 2 layers. In Figure 6(a),
the gradient of H1

t vanishes rapidly back in time, indicating
that previous true frames yield negligible influence on the
last frame prediction. With temporal memory connections
C1
t , the PredRNN model in Figure 6(b) provides the gradi-

ent a shorter pathway from previous bottom states to the
top. As the curve of H1

t arises back in time, it emphasizes
the representations of the more correlated hidden states. In
Figure 6(c), the gradient highway states Zt hold the largest
derivatives while krH2

t
L20k decays steeply back in time,

indicating that gradient highway stores long-term dependen-
cies and allows causal LSTMs to concentrate on short-term
frame relations. By this means, PredRNN++ disentangles
video representations in different time scales with different
network components, leading to more accurate predictions.

5.2. KTH Action Dataset

The KTH action dataset (Schuldt et al., 2004) contains 6
types of human actions (walking, jogging, running, boxing,
hand waving and hand clapping) in different scenarios: in-
doors and outdoors with scale variations or different clothes.
Each video clip has a length of four seconds in average and
was taken with a static camera in 25 fps frame rate.

Implementation The experimental setup is adopted from
(Villegas et al., 2017a): videos clips are divided into a train-
ing set of 108, 717 and a test set of 4, 086 sequences. Then
we resize each frame into a resolution of 128⇥ 128 pixels.
We train all of the compared models by giving them 10
frames and making them generate the subsequent 10 frames.
The mini-batch size is set to 8 and the training process is
terminated after 200, 000 iterations. At test time, we extend
the prediction horizon to 20 future time steps.

Results Although few occlusions exist due to monotonous
actions and plain backgrounds, predicting a longer video
sequence accurately is still difficult for previous methods,
probably resulting from the vanishing gradient problem. The
key to this problem is to capture long-term frame relations.
In this dataset, it means learning human movements that are
performing repeatedly in the long term, such as the swinging
arms and legs when the actor is walking (Figure 9).

We use quantitative metrics PSNR (Peak Signal to Noise
Ratio) and SSIM to evaluate the predicted video frames.
PSNR emphasizes the foreground appearance, and a higher
score indicates a greater similarity between two images. Em-
pirically, we find that these two metrics are complementary
in some aspects: PSNR is more concerned about pixel-level
correctness, while SSIM is also sensitive to the difference in
image sharpness. In general, both of them need to be taken
into account to assess a predictive model. Table 3 evaluates
the overall prediction quality. For each sequence, the metric
values are averaged over the 20 generated frames. Figure
8 provides a more specific frame-wise comparison. Our
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Figure 6. The gradient norm of the loss function at the last time step, L20, with respect to intermediate activities in the encoder, including
hidden states, temporal memory states and the spatial memory states: krHk

t
L20k, krCk

t
L20k, krMtL20k.
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Figure 7. Gradient analysis: (a) The gradient norm of the loss
function at the last time step with respect to each input frame,
averaged over the test set. (b) The frequency of digits entangling
in each input frame among 5, 000 sequences over the test set.
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C1
t , the PredRNN model in Figure 6(b) provides the gradi-
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top. As the curve of H1

t arises back in time, it emphasizes
the representations of the more correlated hidden states. In
Figure 6(c), the gradient highway states Zt hold the largest
derivatives while krH2
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indicating that gradient highway stores long-term dependen-
cies and allows causal LSTMs to concentrate on short-term
frame relations. By this means, PredRNN++ disentangles
video representations in different time scales with different
network components, leading to more accurate predictions.

5.2. KTH Action Dataset

The KTH action dataset (Schuldt et al., 2004) contains 6
types of human actions (walking, jogging, running, boxing,
hand waving and hand clapping) in different scenarios: in-
doors and outdoors with scale variations or different clothes.
Each video clip has a length of four seconds in average and
was taken with a static camera in 25 fps frame rate.

Implementation The experimental setup is adopted from
(Villegas et al., 2017a): videos clips are divided into a train-
ing set of 108, 717 and a test set of 4, 086 sequences. Then
we resize each frame into a resolution of 128⇥ 128 pixels.
We train all of the compared models by giving them 10
frames and making them generate the subsequent 10 frames.
The mini-batch size is set to 8 and the training process is
terminated after 200, 000 iterations. At test time, we extend
the prediction horizon to 20 future time steps.

Results Although few occlusions exist due to monotonous
actions and plain backgrounds, predicting a longer video
sequence accurately is still difficult for previous methods,
probably resulting from the vanishing gradient problem. The
key to this problem is to capture long-term frame relations.
In this dataset, it means learning human movements that are
performing repeatedly in the long term, such as the swinging
arms and legs when the actor is walking (Figure 9).

We use quantitative metrics PSNR (Peak Signal to Noise
Ratio) and SSIM to evaluate the predicted video frames.
PSNR emphasizes the foreground appearance, and a higher
score indicates a greater similarity between two images. Em-
pirically, we find that these two metrics are complementary
in some aspects: PSNR is more concerned about pixel-level
correctness, while SSIM is also sensitive to the difference in
image sharpness. In general, both of them need to be taken
into account to assess a predictive model. Table 3 evaluates
the overall prediction quality. For each sequence, the metric
values are averaged over the 20 generated frames. Figure
8 provides a more specific frame-wise comparison. Our
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Training techniques
I. Convergence -> layer normalization
II. Out of memory -> transpose convolution
III. Blurry -> loss function
IV. Overfitting -> data augmentation
V. Training towards inference -> curriculum learning
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After convolutions but right before nonlinearity
• Cutting memory usage 87.5% by saving mini-batch
• Cutting training time 75%
• Increase accuracy 20%

12 hours 48 hours

I. Layer Normalization -> Convergence
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Many intermediate activations -> memory explosion

Transpose convolution -> 7.15GB
Resolution 400*400 -> Memory usage 18.31GB

II. Transpose Convolution -> OOM
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II. Sampling -> OOM

Predictive Learning

Memory usage down to 0.45GB
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II. Multiple GPUs -> OOM

Cutting training time 60%
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Loss

Cutting
zero-value
points

Few high-value points

! = !1 + !2
= ∑'()*∗, -. − 0-. 1 + -. − 0-. 22

3456 = ∑
72)89: ∗ ! +
7;)89: ∗ ! +
7<)89: ∗ ! +
7=)89: ∗ !

Target= 0.5

III. Loss Function -> Blurry

Full of zero-value
points / image

Pixel intensity

Proportion

Predictive Learning 35



• 10 times training set
• 10% accuracy boost
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Testing error

Training error

Before data
augmentation

After data
augmentation

IV. Data Augmentation -> Overfitting
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V. Scheduled Sampling

Predictive Learning

Training and Inference Mismatch 
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Bengio, S., et al. “Scheduled sampling for sequence prediction with recurrent neural networks.” NIPS (2015). 

Scheduled Sampling 
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Scheduled Sampling 
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Bengio, S., et al. “Scheduled sampling for sequence prediction with recurrent neural networks.” NIPS (2015). 

Figure 1: Illustration of the Scheduled Sampling approach,
where one flips a coin at every time step to decide to use the
true previous token or one sampled from the model itself.
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Figure 2: Examples of decay
schedules.

We thus propose to use a schedule to decrease ✏i as a function of i itself, in a similar manner used
to decrease the learning rate in most modern stochastic gradient descent approaches. Examples of
such schedules can be seen in Figure 2 as follows:

• Linear decay: ✏i = max(✏, k � ci) where 0  ✏ < 1 is the minimum amount of truth to be
given to the model and k and c provide the offset and slope of the decay, which depend on
the expected speed of convergence.

• Exponential decay: ✏i = k

i where k < 1 is a constant that depends on the expected speed
of convergence.

• Inverse sigmoid decay: ✏i = k/(k+exp(i/k)) where k � 1 depends on the expected speed
of convergence.

We call our approach Scheduled Sampling. Note that when we sample the previous token ŷt�1 from
the model itself while training, we could back-propagate the gradient of the losses at times t ! T

through that decision. This was not done in the experiments described in this paper and is left for
future work.

3 Related Work

The discrepancy between the training and inference distributions has already been noticed in the
literature, in particular for control and reinforcement learning tasks.

SEARN [9] was proposed to tackle problems where supervised training examples might be different
from actual test examples when each example is made of a sequence of decisions, like acting in a
complex environment where a few mistakes of the model early in the sequential decision process
might compound and yield a very poor global performance. Their proposed approach involves a
meta-algorithm where at each meta-iteration one trains a new model according to the current policy
(essentially the expected decisions for each situation), applies it on a test set and modifies the next
iteration policy in order to account for the previous decisions and errors. The new policy is thus a
combination of the previous one and the actual behavior of the model.

In comparison to SEARN and related ideas [10, 11], our proposed approach is completely online: a
single model is trained and the policy slowly evolves during training, instead of a batch approach,
which makes it much faster to train3 Furthermore, SEARN has been proposed in the context of
reinforcement learning, while we consider the supervised learning setting trained using stochastic
gradient descent on the overall objective.

Other approaches have considered the problem from a ranking perspective, in particular for parsing
tasks [12] where the target output is a tree. In this case, the authors proposed to use a beam search
both during training and inference, so that both phases are aligned. The training beam is used to find

3In fact, in the experiments we report in this paper, our proposed approach was not meaningfully slower
(nor faster) to train than the baseline.

4

• Scheduled sampling rate
• Incremental learning (a.k.a. curriculum learning)

Bengio, S. et al. “Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks.” NIPS 2015. 
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Algorithm Inventor Year MSE/frame
ConvLSTM CUHK 2015 10.48 
CDNA OpenAI 2016 9.11 
VPN DeepMind 2017 8.49 
TrajGRU CUHK 2017 8.43 

PredRNN Tsinghua 2017 7.54
PredRNN++ Tsinghua 2018 6.38
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Precipitation Nowcasting Typhoon Monitoring



Thank You

Questions?
Mingsheng Long

mingsheng@tsinghua.edu.cn
http://ise.thss.tsinghua.edu.cn/~mlong
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