Supplementary Materials
Open Domain Generalization with Domain-Augmented Meta-Learning

Yang Shu*, Zhangjie Cao*, Chenyu Wang, Jianmin Wang, Mingsheng Long (X))
School of Software, BNRist, Tsinghua University, China

{shu-vy18,caozjl4,cy-wangl8}@mails.tsinghua.edu.cn, {jimwang,mingsheng}@tsinghua.edu.cn

In the supplementary materials, we will provide more
details on the implementation and more experiment results.

1. Experiment Details

In this section, we clarify more details of the experiment
settings due to the space limit in the main text.

1.1. Datasets

For each dataset, we show the exact class splits for each
domain.

PACS [5] dataset consists of four domains correspond-
ing to four different image styles, including photo (P), art-
painting (A), cartoon (C) and sketch (S). The four domains
have the same label set of 7 classes. We assign an index
to each category, 0-Dog, 1-Elephant, 2-Giraffe, 3-Guitar,
4-Horse, 5-House, 6-Person. We use each domain as the tar-
get domain and the other three domains as source domains
to form four cross-domain tasks: CPS-A, PAC-S, ACS-P,
SPA-C. To construct the open-domain situations, we split the
label space of the dataset, resulting in various label spaces
across different domains. The specific categories contained
in each domain are shown in Table 1.

Table 1. Open-domain split of PACS dataset.

Domain Classes
Source-1 3,0,1
Source-2 4,0,2
Source-3 5,1,2
Target 0,1,2,3,4,5,6

Office-Home [0] comprises of images from four differ-
ent domains: Artistic (Ar), Clip art (Cl), Product (Pr) and
Real-world (Rw). It has a large domain gap and 65 classes
which is much more than other DG datasets, so it is very
challenging. Similar to the PACS dataset, we spread these 65
classes among the four domains to derive an open-domain
dataset and construct four open generalization tasks based
on it: ArPrRw-Cl, ArCIPr-Rw, ArCIRw-Pr, CIPrRw-Ar,

“Equal contribution.

where each domain is used as the target domain respectively,
and the other three domains serve as source domains. With
more classes, it is possible to construct more complicated
open-domain situations compared with PACS dataset. The
categories contained in each domain are shown in Figure 1.

Table 2. Open-domain split of Office-Home dataset.

Domain Classes

Source-1 0—-2,3—-8,9—14,21 - 31

Source-2 0—2,3—8,15—20,32 — 42

Source-3 0—2,9—14,15—20,43 — 53
Target 0,3—4,9—-10,15 — 16,

21 — 23,32 — 34,43 — 45,54 — 64

Source domain 3

(54-64)

Source domain 1 Source domain 2

Figure 1. Illustration of the open-domain split of Office-Home
Dataset. Indices without brackets show the distribution of cate-
gories among source domains, while indices in brackets indicate
the categories of the target domain.

Table 3. Class details in Multi-Datasets.

Domain Classes
Office-31 0—30
Visda 1,31 — 41
STL-10 31,33,34,41,42 — 47
DomainNet 0,1,5,6,10,11,14,17, 20,26

31 — 36,39 — 43,45 — 46, 48 — 67

Multi-Datasets scenario is constructed in this paper to
consider a more realistic situation of learning generalizable
representations from arbitrary source domains. We simulate
the process where we obtain source domains from different
resources and try to learn a generalizable model to achieve
high accuracy on an unseen target domain. We leverage
several public datasets including Office-31 [9], STL-10 [1]
and Visda2017 [8] as source domains, and evaluate the gen-
eralization performance on DomainNet [7]. In Office-31,
we use the Amazon domain, which consists of 31 classes of
office environment objects, and the images are downloaded
from online merchants, which is a very popular way to ac-
quire data. STL-10 is composed of 10 classes for general
object recognition, and we use its labeled data as one of the
source domains. Visda2017 dataset forms a simulation-to-
real situation. We leverage its training data as the source
domain, which contains synthetic images of 12 classes from
CAD models. DomainNet is a new benchmark for evaluating
cross-domain generalization performance. We use its four
domains: Clip art, Real, Painting and Sketch as the target
domains. For DomainNet, we preserve all the 23 classes ex-
isting in the joint label set of source domains and randomly
sample 20 other classes as unknown classes, since there are
too many open classes in it. Note that there exist huge dis-
tribution discrepancy and label-set disparity across the four
datasets, which forms a natural open-domain generalization
scenario.

1.2. Implementation

We implement our algorithm in PyTorch [6]. We use
ResNet-18 [4] pre-trained on ImageNet as the backbone net-
work and train our model for 30 epochs with SGD as the opti-
mization algorithm. For the proposed DAML, similar to [2],
we use fast first-order approximation to estimate gradients.
To enable open-class detection for non-open-set methods,
we set a confidence threshold 7" on the prediction, where T’
is selected similar to the open set recognition method [3],
by sorting the confidence on the source validation data, and
then picking a certain percentile. The initial learning rate
B is 0.001, and is decayed after 24 epochs by a factor of
10. In PACS dataset, we follow the protocol in [5] for train
and validation split. In other datasets, we randomly select
10% data in each category of the source domains as their
validation sets. We tune the hyper-parameters and choose the
models for test on the held-out validation sets. We choose
the step for inner update of meta-training 7 = 0.01, and the
parameters for Dirichlet mixup amax = 0.6, amin = 0.2. For
DAML and all the compared methods, we use the same basic
data preprocessing on the image and the same backbone. We
run each experiment 3 times and compute the average and
the standard deviation.

2. Computing Infrastructure

We use PyTorch 1.5, torchvison 0.6 and CUDA 10 li-
braries. We use a machine with 32 CPUs, 256 GB memory
and one NVIDIA TITAN X. The average training time for
each run is 2 hours.

3. Experiment Results

In this section, we provide more experiment results, in-
cluding the sensitivity of hyperparameters, the results of
different classes, the effect of sharing parameters, and the
visualization of classification results.

0.61 /\’/ 0.61 /\

058 0.2 0.3 04 05 06 0.7 08 09 1.0 0.1 0.2 0.3 0.4 0.5 0.6

(2) omax (b) Amin

Figure 2. Sensitivity of hyper-Parameters cumax and omin.

0.55 0.61 R

0”‘&0001 0.0003 0.001 0.003 0.01 D58{1001 0.003 0.01 0.03 0.1

(@ B (®)
Figure 3. Sensitivity of hyper-Parameters /5 and 7.

3.1. Parameter Sensitivity

We test the sensitivity of parameter aumax, Qmin, 5 and 7.
We want to demonstrate two claims: (1) The performance
is stable near the optimal value of the hyper-parameters; (2)
The performance will drop much when the hyper-parameters
deviate from the optimal value much. The first claim demon-
strates that the hyper-parameters are not sensitive and easy
to tune while the second claim indicates that the hyper-
parameters are still necessary even though they are not sensi-
tive.

For auin, We fix amax to be optimal, i.e. amax = 0.6
and change auin. For amax, We fix apip to be optimal, i.e.
amin = 0.2 and change ay,,x. We evaluate the performance

- AGG 0.8 W AGG
05 DAML DAML
07
Zo4 Zo6
g gos
203 2
& 804
4 g
§02 g03
2 2
02
01
01
0. X
a w Pr Ar a W

R
Target Domain

(a) Classes in 1 source domain

(b) Classes in 2 source domains

10
- AGG
DAML
08
gos6
<
&
goa
2
02
0.
Pr Ar a Rw Pr Ar

R\
Target Domain

Target Domain

(c) Classes in 3 source domains

Figure 4. The average accuracy of target data from classes existing in 1 source domain, 2 source domains and 3 source domains.

with different hyper-parameters on the DAML on ArCIRw-
Pr task. As shown in Figure 2 and 3, the performance is
fairly stable around the optimal value for ayyax, Qtmin and 7.
For j3, the learning rate to finally update the parameters, the
performance is stable within range [0.0003, 0.003], which is
a widely adopted range for learning rate. On the other hand,
when deviating from the optimal value a lot, the performance
drops much.

3.2. Classes with Different Domain Variations

We have discussed in the main text that the disparate
label sets between source domains cause different classes to
have different domain variations. And the different domain
variations lead to different performance and generalization
abilities for different classes. We also argue that the previous
domain generalization works fail to consider the minor class
existing in few domains and thus does not perform well on
such class. We empirically demonstrate the above claims in
this section.

We evaluate the accuracy of target data in four tasks of the
open-domain Office-Home dataset, where each task transfers
from three domains to the remaining domain. We divide
the non-open target classes into three parts by how many
domains each class exists in, where we have classes existing
in one, two and three domains. As shown in Figure 4, we can
observe that DAML outperforms the performance of AGG in
nearly all classes, especially on the classes that exist in only
one domain, which demonstrates that DAML can address
the different domain variations for different classes. Also,
we can observe that the accuracy of classes existing in one
domain is much lower than classes in two and three domains,
which demonstrates our claim on the inferior performance
of minor classes.

3.3. Trade-off between Accuracy and Efficiency

In the ODG problem, a large domain gap exists between
the source and target domains. Using a shared network for
all domains is detrimental to the discriminative power on all
domains. We prioritize the performance in our network de-
sign, so we use separate networks for different domains. Al-
though using separate networks for different domains makes
the training and inference time increase linearly with the
number of domains, the DAML framework also allows net-

works of different domains to share parameters. We explore
the architecture where the three domains each have a spe-
cific classifier but share the whole backbone, denoted as
DAML-S. We compare DAML, DAML-S and the baseline
of domain aggregation in a shared network (AGG) on the
open-domain Office-Home dataset. As shown in Table 4,
the accuracy drops a little when sharing all the backbone
parameters across domains, but DAML-S still outperforms
the baseline with a large margin. Note that with the shared
backbone, DAML-S has only a bit more per-batch training
time and nearly the same per-image inference time compared
with only one network. Thus, we can consider sharing parts
of the network parameters across domains as a trade-off
between accuracy and efficiency.

Table 4. Results on the Office-Home dataset with shared backbone.
Method Cl Rw Pr Ar Avg

AGG 42.83 62.40 b54.27 4222 50.43
DAML 45.13 65.99 61.54 53.13 56.45
DAML-S 44.21 64.73 59.47 50.81 54.81

3.4. Visualization

We visualize the classification results of DAML and AGG
on the CIPrRw-Ar task in the Office-Home dataset in Fig-
ure 5. We visualize the source images and target images clas-
sified wrongly by both, classified correctly by both DAML
and AGG, only classified correctly by AGG, and only clas-
sified correctly by DAML. We can observe that the image
classified wrongly by both and only classified correctly by
AGG are quite different from all the source domains, like
multiple clocks and confusing background. We manually
check the images only classified correctly by AGG and find
that most of them are accidentally classified correctly in one
run while classified wrongly in a different random seed. For
the images only classified correctly by DAML, we can see a
digital clock among all the mechanical clocks. The digital
clock also exists in the source domains but AGG fails to learn
the knowledge of them, which demonstrates that DAML can
learn a more generalizable representation.

= =e
Source Domains e
-
Both Wrong l '% n

Both Correct X,
0 O1TeC %

AGG Correct

DAML Correct

Figure 5. Visualization of classification results.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

Adam Coates, Andrew Ng, and Honglak Lee. An analysis
of single-layer networks in unsupervised feature learning.
In International Conference on Artificial Intelligence and
Statistics (AISTATS), pages 215-223,2011. 2

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In International Conference on Machine Learning (ICML),
volume 70, pages 1126-1135, 2017. 2

Mehadi Hassen and Philip K Chan. Learning a neural-
network-based representation for open set recognition. In
SIAM International Conference on Data Mining (SDM), pages
154-162. SIAM, 2020. 2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In /JEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR),
pages 770-778, 2016. 2

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M
Hospedales. Deeper, broader and artier domain generaliza-
tion. In IEEE International Conference on Computer Vision
(ICCV), pages 5543-5551. IEEE, 2017. 1, 2

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. In Ad-
vances in Neural Information Processing Systems (NeurlPS),
pages 8024-8035, 2019. 2

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment matching for multi-source
domain adaptation. In IEEE International Conference on
Computer Vision (ICCV), pages 1406-1415, 2019. 2
Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman,
Dequan Wang, and Kate Saenko. Visda: The visual domain
adaptation challenge, 2017. 2

K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual
category models to new domains. In European Conference
on Computer Vision (ECCV), 2010. 2

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty,
and Sethuraman Panchanathan. Deep hashing network for

unsupervised domain adaptation. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017. 1

