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Abstract
Estimating heterogeneous treatment effects (HTE)
from observational studies is rising in importance
due to the widespread accumulation of data in
many fields. Due to the selection bias behind the
inaccessibility of counterfactual data, the problem
differs fundamentally from supervised learning in
a challenging way. However, existing works on
modeling selection bias and corresponding algo-
rithms do not naturally generalize to non-binary
treatment spaces. To address this limitation, we
propose to use mutual information to describe se-
lection bias in estimating HTE and derive a novel
error bound using the mutual information between
the covariates and the treatments, which is the first
error bound to cover general treatment schemes in-
cluding multinoulli or continuous spaces. We then
bring forth theoretically justified algorithms, the
Mutual Information Treatment Network (MitNet),
using adversarial optimization to reduce selection
bias and obtain more accurate HTE estimations.
Our algorithm reaches remarkable performance
in both simulation study and empirical evaluation.

1. Introduction
Estimating heterogeneous treatment effects from observa-
tional data is a central problem in a broad variety of fields,
including drug development in medical studies (Foster et al.,
2011), policy analysis in economics (Heckman, 2000) and
pollution assessment in ecology (Wang et al., 2016). A
plethora of machine learning methods have been designed
for inferring treatment effects with the increasing availabil-
ity of observational data in these fields, which involve the
use of tree models (Hill, 2011; Athey & Imbens, 2016;
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Figure 1. We study the learning bounds and algorithms for estimat-
ing heterogeneous treatment effect on general treatment spaces.

Wager & Athey, 2018), Gaussian processes (Alaa & Van
Der Schaar, 2017; 2018) and neural networks (Johansson
et al., 2016; Shalit et al., 2017).

Following the Neyman-Rubin causal model (Rubin, 2005),
the treatment effect for any individual is defined as the dif-
ference between the potential outcomes of receiving and
not receiving a particular treatment (referred to as the inter-
vention of being treated and controlled). In contrast to the
standard supervised learning setups, for any individual only
the factual outcome is observed while the counterfactual is
not obtained. This is close to “learning from logged bandit
feedback” (Strehl et al., 2010; Swaminathan & Joachims,
2015) in machine learning literature, with the distinction
that we do not have access to the model generating the ac-
tions (or interventions in causal contexts). One simple way
to overcome this barrier is to model the response surfaces of
potential outcomes for both treated and control groups by
some machine learning methods to enable causal estimation.

Different from randomized controlled trials (RCT) where
interventions are randomly assigned to each individual, ob-
servational studies are usually subject to the sample selec-
tion bias, which is the main focus in this article. Sample
selection bias is when the distributions differ as a result of
an unknown sample rejection process (Quionero-Candela
et al., 2009), causing confounding where the covariates af-
fect both the factual treatment and the potential outcomes.
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For example, richer patients might better afford a certain
medical treatment, so individuals measured with a larger
value of wealth has a larger probability of receiving the treat-
ment. Thus the data drawn from the control group would
be less concentrated for the rich and vice versa. Ignoring
selection bias could result in highly inaccurate models and
biased average effects (Dorie et al., 2019).

For the case of binary interventions, the selection bias could
be estimated using the propensity score or some distribu-
tional discrepancy in previous works. The propensity score
is defined as the probability for an individual to receive the
treatment. Matching (Rubin, 1973) and weighting (Rosen-
baum & Rubin, 1983) methods are proposed to reduce selec-
tion bias based on the estimation and adjustment of propen-
sity scores. Another measurement of selection bias is the
distributional difference between factual and counterfactual
data since estimating HTE requires predicting outcomes
over the counterfactual distribution distinct from the ob-
served one. Such a phenomenon contradicts the common
i.i.d. assumption in standard supervised learning and is
closely related to domain adaptation (Quionero-Candela
et al., 2009; Cortes & Mohri, 2014; Zhang et al., 2019).
Typically, representation learning methods (Johansson et al.,
2016) are proposed to reduce such distribution shift.

Shalit et al. (2017) propose to use the integral probability
metrics (IPM) including maximum mean discrepancy and
Wasserstein distance to develop a learning error bound for
this problem. To be specific, the expected precision in the
estimation of heterogeneous effect (PEHE, Equation (5)) is
controlled by the expected mean squared error and an IPM
term. With notations defined in Section 2, their bound is
interpreted as

ϵPEHE [f] ⩽ 2(ϵ1F [f] + ϵ0F [f]
+BG IPMG(µX ∣T=1, µX ∣T=0)),

(1)

where IPMG is the integral probability metric with respect
to function class G and BG is a constant related both to G
and hypothesis space of the predictors. In their algorithm,
Shalit et al. (2017) extract features from the original covari-
ates and minimize the right-hand side of Equation (1) in the
representation space.

Although they provide a novel view and rigorous theoretical
guarantees for this problem, there are still a few drawbacks.
First, their measurement could not be naturally extended to
general intervention schemes as the counterfactual distribu-
tion could not be well-defined beyond binary settings. In
addition, their theory relies on strong assumptions such as
bijectivity and twice differentiability of the feature learner,
which are not trivially satisfied in practical algorithms.

To overcome these shortcomings, we propose a novel theory
and guided algorithms using mutual information to capture
and control selection bias. Compared with previous works,

our theory has two main advantages. First, mutual infor-
mation is a versatile measurement for variables on general
spaces, hence can be used beyond the tasks with binary
treatments. Second, as an essential analytical tool, the use
of mutual information allows us to obtain a more precise
estimation of the dependencies which reflect the degree of
selection bias. Inspired by our theory and the representation
learning methods similar to Shalit et al. (2017), we map the
original covariates to a new space and use representation
from that space to predict potential outcomes in the hope
that the learned features could be less dependent on the in-
terventions. In particular, we use the mutual information as
a regularization term to reduce the dependence between the
learned features of covariants and the treatments. Our main
contributions are summarized as follows:

• We develop a unified theory with rigorous error bounds
using mutual information, which could not only deal
with binary treatments, but also problems with general
forms of treatments.

• We bring forward representation learning algorithms
utilizing mutual information estimator with neural net-
works. The algorithms are theoretically justified and
reach state-of-art performance in both simulation and
semi-synthetic data.

2. Preliminaries
Our analysis hinges on a generalized version of the Neyman-
Rubin potential outcomes model (Rubin, 2005). Let X ⊂
Rd,T ,Y ⊂ R be a covariate space, a treatment space and an
outcome space respectively. For a unit with features x ∈ X
and any treatment t ∈ T , there is a potential outcome Yt ∈ Y .
In particular, Y0 is the potential outcome of receiving no
treatment.

Definition 2.1. Let

m(x, t) = E[Yt ∣x]. (2)

The heterogeneous treatment effect (HTE) or the conditional
average treatment effect (CATE) of treatment t is defined as

τ(x, t) =m(x, t) −m(x,0) = E[Yt − Y0 ∣x]. (3)

Denote by YT the space for random vectors or functions
gathering all potential outcomes. Assume that the data
(x, t,y) satisfies some underlying distribution µ on X ×
T × YT . Unfortunately, in real applications, for each unit
x only one treatment t is assigned and the only observation
y is the corresponding factual outcome y = yt (also known
as the consistency assumption). Under this setting, we are
interested in learning a function f ∶ X × T → Y from
the training data consisting of partially observed samples
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S = {(x(i), t(i), y(i)) ∶ i = 1,⋯, n}, such that

τ̂f(x, t) = f(x, t) − f(x,0) (4)

serves as an estimation of the HTE τ(x, t) on unit x and
treatment t. Due to the missing of counterfactual outcomes
and the selection bias, the learning of f differs from standard
supervised learning. Next we will introduce criterons for
the ideal and factual cases, respectively.

Assume all potential outcomes can be observed. In order to
judge how well τ is approximated, Hill (2011) suggested
a criterion called precision in estimation of heterogeneous
effect (PEHE) for the binary treatment case:

ϵPEHE [f] = EµX
[(τ̂f(X,1) − τ(X,1))2]

= EµX
[((f(X,1) − f(X,0))

− (m(X,1) −m(X,0)))2].
(5)

In this paper, we study more general cases where treatment
t is multinoulli or continuous, and extend the above notion
by defining the generalized PEHE with respect to f :

Definition 2.2. (Generalized PEHE)

ϵPEHE [f] = EµT ∣T≠0
EµX
[(τ̂f(X, T ) − τ(X, T ))2]

= EµT ∣T≠0
EµX
[((f(X, T ) − f(X,0))

− (m(X, T ) −m(X,0)))2],
(6)

where µX is the marginal distribution of X and µT ∣T≠0 is
the conditional distribution of T given that T ≠ 0.

Remark 2.3. This extension is natural and reasonable since
in real applications we care about the precision of effects
not only for a particular treatment but also for various treat-
ments chosen according to some population-level informa-
tion. Thus, our goal is to learn a function f that minimizes
ϵPEHE [f].

However, as we have discussed previously, only the factual
outcomes are actually observed. We therefore define:

Definition 2.4. The (expected) factual error is the (ex-
pected) mean squared error of predicting potential outcomes
for individuals with the observed treatment:

ϵF [f] = EµX,T
[(f(X, T ) −m(X, T ))2], (7)

where the expectation is taken over the joint distribution of
covariate X and treatment T .

Due to the selection bias mentioend previously, X and T
might be highly correlated, and it is not enough to train f
to only minimize ϵF [f] for a good HTE estimation. One
general approach to handle selection bias is by creating a
pseudo group which is approximately close to the interested
group (Yao et al., 2021). Along this line, we will introduce

a bound on ϵF [f] as a guidance for the learning of a feature
representation to create pseudo groups.

In order to make the conditional causal effect identifiable,
we need an extension of the strong ignorability condition
(Rubin, 2005):

Assumption 2.5. (Strong Ignorability)

• (Ignorability) Y á T ∣X = x for all x, where Y de-
notes the random vector or function collecting all the
potential outcomes.

• (Overlap) ∀ measurable setM ⊂ T , 0 <P[T ∈M]< 1
implies 0 < P[T ∈M ∣X = x] < 1 for all x.

Remark 2.6. The first condition ensures that there would
be “no-hidden confounding” and the second describes the
overlap of distributions across treatment groups. Note that
the validity of strong ignorability could be only determined
by domain knowledge and prior understanding of the causal
relationships and cannot be assessed solely from training
data (Pearl, 2017).

3. Mutual Information Bounds for HTE
We provide a theoretical bound on the generalized PEHE
ϵPEHE [f] in Equation (6) with the mutual information term
to measure the impact of selection bias. We further extend
it to a tightened bound through representation learning and
discuss the correction of the selection bias. We start with a
brief introduction to the notion of mutual information so as
to present our main result.

Definition 3.1. In probability theory and information theory,
the mutual information (MI) of two random variables Z1

and Z2 is a measure of the mutual dependence between
them:

MI(Z1;Z2)
=KL(µZ1,Z2 ∥µZ1 ⊗ µZ2)

=∫
Z×Z

pZ1,Z2(z1, z2) log
pZ1,Z2(z1, z2)
pZ1(z1)pZ2(z2)

dz1dz2,

(8)

where KL(⋅ ∥ ⋅) denotes the Kullback-Leibler divergence.
µZ1,Z2 is the joint probability distribution of Z1 and Z2.
µZ1 and µZ2 are the marginal distributions and µZ1 ⊗ µZ2

is their product distribution. p⋆ indicates the probability
mass or density function corresponding to distribution µ⋆.
A larger divergence between the joint and product implies
stronger dependence between Z1 and Z2. In particular, the
mutual information vanishes for fully independent variables.

In the following, we present our main theorem on mutual
information-based bounds for HTE estimation.
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Theorem 3.2 (Mutual Information Bound). Let π = P[T ≠
0]. Suppose the value of potential outcomes are bounded by
a constant B. With the assumption of strong igorability and
0 < π < 1, the expected PEHE could be controlled by the
expected factual error together with the mutual information
between X and T :

ϵPEHE [f] ⩽
1

π(1 − π)
(4B2

√
2MI(X;T ) + ϵF [f] ). (9)

Proof. See Appendix A.1.

Remark 3.3. In Theorem 3.2, the mutual information is
used as a bridge to establish the binding relationship be-
tween PEHE and factual error. Formally, the PEHE could
be bounded jointly by the factual error and the mutual infor-
mation term between covariants X and treatments T . When
there is no selection bias, the treatment T is independent on
X and the bound degenerates into the factual error (µX,T ).
Otherwise, the MI term in the bound could give a quantitive
measurement of the error caused by the selection bias.

For multinoulli treatment spaces, there is another natural
extension (Schwab et al., 2019; Kaddour et al., 2021), which
is not the main focus of this paper. As a supplement, we
briefly introduce this definition and the corresponding the-
ory. The form is no more than a coefficient compared with
Theorem 3.2, hence further analyses are all applicable.

Corollary 3.4 (Mutural Information Bound on Alternative
Extension for Multinoulli Treatment Space). Given treat-
ment space T = {1,2, ..., k}, define

ϵmPEHE [f] = ∑
1≤j<l≤k

Eµx[( (f(x, j) − f(x, l))

(m(x, j) −m(x, l)) )2],
(10)

then we have

ϵmPEHE [f] ≤
2

k
⋅ 1
π2
(ϵF [f] + 4B2

√
2MI(X;T )) . (11)

Further, we consider a corollary of this theorem for repre-
sentation learning. We consider the hypothesis f with the
form f(x, t) = g(ϕ(x), t) where ϕ ∶ X → R is a feature
learner from the covariate space X to a feature spaceR and
g ∶R × T → Y is a predictor. For simplicity we denote

ϵ⋆ [ϕ, g] = ϵ⋆ [f] . (12)

Fixing the feature learner ϕ, we have the following collary.

Corollary 3.5 (Mutual Information Bound with Representa-
tion Learning).

ϵPEHE [ϕ, g] ⩽
1

π(1 − π)
(4B2

√
2MI(ϕ(X);T )+ϵF [ϕ, g] ).

(13)

Remark 3.6. Corollary 3.5 is a natural extension of The-
orem 3.2 under a specific hypothesis space. Note that
MI(ϕ(X);T ) ≤ MI(X;T ) (see proof in Appendix A.3),
so the bound in the corollary is tightened from the original
version with arbitrary hypothesis f .

Corollary 3.5 implies that we can benefit from correcting se-
lection bias by training the feature learner ϕ to minimize the
mutual information. Now we show how far representation
learning can go in correcting selection bias while preserving
correlation of potential outcomes. To elaborate, consider
the chain rule of mutual information:

MI(ϕ(X);T )
=MI((ϕ(X),Y);T ) −MI(Y;T ∣ϕ(X))
=MI(Y;T ) +MI(ϕ(X);T ∣Y) −MI(Y;T ∣ϕ(X)).

(14)

When ϕ preserves all correlation of potential outcomes, the
ignorability can be proved to extend to MI(Y;T ∣ϕ(X)) =
0 (see Appendix A.4.). Now that MI(Y;T ) is constant for
a particular learning problem, minimizing MI(ϕ(X);T )
is actually minimizing MI(ϕ(X);T ∣Y). The ideal state
is MI(ϕ(X);T ∣Y) = 0 and MI(ϕ(X);T ) = MI(Y;T ),
implying that the features that have impact on treatments
rather than outcomes are removed.

In summary, our theory applies to general treatment spaces
without any reliance on superfluous assumptions other than
compactness. We further tighten this bound under represen-
tation learning for guiding HTE estimation algorithms.

4. Mutual Information Treatment Networks
According to our theory, we use mutual information (MI)
as a regularization term in our objective function1:

min
ϕ,g

ϵ̂F [ϕ, g] + αM̂I(ϕ(X);T ), (15)

where α is a hyperparameter. ϵ̂F and M̂I are estimations of
ϵF and MI from finite samples. We present a class of repre-
sentation learning algorithms, coined Mutual Information
Treatment Network (MitNet), using this objective function.
MitNet consists of three parts: a feature learner ϕ, a predic-
tor g, and a co-trained MI estimator ψ. The design of ϕ and
g basically follows Shalit et al. (2017). The feature learner
is a multilayer network with ReLU activations. For discrete
intervention settings with T = {0,1, ..., k}, we parameterize
gt(⋅) = g(⋅, t) as k + 1 separate heads. For the continuous
treatment space with dosage t ∈ [0,1], we treat the dosage
variable as an additional feature and concatenate t ⋅ ϕ(x)
with ϕ(x) as input to g to handle the dimension scaling
issue.

1For computational convenience, we remove the square root
function. Empirically, this does not show a significant difference.
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Figure 2. Architecture of MitNet for the direct esimation of MI.

On the design of the MI estimator ψ, despite the simple
form of the objective function, estimating and minimizing
MI have historically been difficult (Paninski, 2003). Recent
works of Belghazi et al. (2018) offer a general-purpose Mu-
tual Information Neural Estimator (MINE) that is compati-
ble with representation learning models and could perform
well if the estimator networks are chosen properly.

Therefore, we suggest two variants of MitNet with differ-
ent types of MI estimators to deal with HTE estimation
towards different treatment spaces. The first is a lightweight
algorithm for discrete treatment spaces and computes the
reduced form of MI by obtaining the equilibrium of a well-
designed minimax game, akin to the generative adversarial
network (GAN) (Goodfellow et al., 2014). The latter works
for more general treatment spaces with better empirical per-
formances by adopting variations of MINE in Belghazi et al.
(2018) and also requires minimax optimization.

4.1. MitNet for Discrete Treatments

When the treatment space is discrete, we find that mutual
information (MI) can be reduced to a generalized Jensen-
Shannon divergence and be computed via adversarial op-
timization (Goodfellow et al., 2014). Let πj = P[T = j],
j ∈ {0,1,⋯, k}. Denoting by H the Shannon entropy and
JS the generalized JS divergence, we have

MI(ϕ(X);T )

=H (
k

∑
j=0

πjµϕ(X) ∣T=j) −
k

∑
j=0

πj H (µϕ(X) ∣T=j)

=JSπ0,π1,⋯,πk
(µϕ(X) ∣T=0, µϕ(X) ∣T=1,⋯, µϕ(X) ∣T=k) .

(16)

Thereby, we estimate the mutual informtion through ψ as a
discrete treatment discriminator that maximizes the classi-
fication loss of ψ by adversarial optimization. Specifically,
for problems with a binary treatment space (see Figure 2),
we parameterize ψ ∶ R → [0,1] as a binary discriminator
with the cross-entropy loss, which is trained to distinguish
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Figure 3. Architecture of MitNet for the neural estimator of MI.

between the treated and control groups:

ℓMI[ϕ,ψ] = − ∑
i s.t. ti=1

logψ ○ϕ(xi)− ∑
i s.t. ti=0

log(1−ψ ○ϕ(xi)).

(17)

Similarly, for problems with a multinoulli treatment space,
we parameterize ψ ∶R→ [0,1]k+1 as a treatment classifier
with multi-class softmax output and the cross-entropy loss,
which is trained to identify the treatment for features ϕ(x):

ℓMI[ϕ,ψ] = −
n

∑
i=1

logψti(ϕ(xi)), (18)

where ψt(ϕ(x)) denotes the predicted probability of x tak-
ing treatment t. Let

M̂I(ϕ(X);T ) = −min
ψ∈Ψ

ℓMI[ϕ,ψ] +C, (19)

where C = −∑kj=0 πj logπj . Similar to Ganin et al. (2016),
we train ψ to minimize ℓMI and ϕ to minimize our bound

ϵ̂F [ϕ, g] + αM̂I(ϕ(X);T ). (20)

It is important to note that when the equilibrium is reached,

MI(ϕ(X);T )

=
k

∑
j=0

πjE log
pϕ(X) ∣T=j(ϕ(Xj))
pϕ(X)(ϕ(Xj))

=
k

∑
j=0

πjE log
pϕ(X),T (ϕ(Xj), j)
πjpϕ(Xj)(ϕ(X))

=
k

∑
j=0

πjE logP[T = j ∣ϕ(Xj)] +C

=EµX,T
logP[T ∣ϕ(X)] +C,

(21)

where Xj ∼ µX ∣T=j for j = 0,⋯, k. Thus when equilibrium,
M̂I(ϕ(X);T ) serves as an approximation of MI(ϕ(X);T ).

4.2. MitNet with General Treatments

For general treatment spaces such as continuous dosage, Mit-
Net adopts Mutual Information Neural Estimator (MINE)
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(Belghazi et al., 2018) as the MI estimator. We first present
the core ideas of MINE and its algorithms that have been ad-
justed for our settings. MINE originates from the following
lemma on dual representation of KL divergence:

Lemma 4.1 (Donsker-Varadhan Representation(Donsker
& Varadhan, 1983)). Suppose µ and ν are two probability
distributions on Ω. The KL divergence admits the following
dual representation

KL(µ ∥ν) = sup
ψ∶Ω→R

Eµ[ψ] − logEν[eψ], (22)

where the supremum is taken over all functions ψ such that
the two expectations are finite.

In what follows, given a distribution µ, we denote by µ̂(n)

as the empirical distribution associated to n i.i.d. samples.

Definition 4.2. Denote Ψ as the family of functions ψ ∶ X ×
Z → R parametrized by neural networks with parameters
θ. Then the neural information measure and the mutual
information neural estimator (MINE) (Belghazi et al., 2018)
are defined as

MIΨ(X;Z) = sup
ψ∈Ψ

EµX,Z
[ψ] − logEµX

EµZ
[eψ], (23)

M̂IΨ(X;Z) = sup
ψ∈Ψ

E
µ̂
(n)
X,Z

[ψ] − logE
µ̂
(n)
X

E
µ̂
(n)
Z

[eψ]. (24)

Belghazi et al. (2018) show that M̂IΨ is strongly consistent.
In other words, the estimator MIΨ can be close enough to
MI if Ψ is well-chosen and the empirical M̂IΨ converges to
the expected MIΨ with the increase of sample size n.

Following this theoretical guarantee, we adopt the MI esti-
mation head ψ as a regressor for Equation 24 which takes
ϕ(x) and t as input. Due to similar input and output spaces,
we instantiate ψ as the same structure as the treatment effect
predictor g (separate heads for discrete treatments and con-
catenating as an additional feature for continuous dosages).
The special case of ψ for continuous treatments is shown in
Figure 3. With this co-trained ψ, it suffices to maximize

ℓMI[ϕ,ψ] =
1

n

n

∑
i=1

ψ (ϕ(xi), ti) − log
1

n

n

∑
i=1

eψ(ϕ(xi),t̄i),

(25)
where t̄i is resampled from distribution µT . The complete
training process of MitNet for general treatments based on
MINE (Belghazi et al., 2018) is shown in Algorithm 1.

Finally, noting that for discrete treatment spaces, MINE can
be further improved by using the exact distribution of µT
instead of an empirical one, reduced to a better loss function

ℓMI[ϕ,ψ] =
1

n

n

∑
i=1

ψ (ϕ(xi), ti)−
k

∑
j=0

πj log
1

n

n

∑
i=1

eψ(ϕ(xi),j).

(26)

Algorithm 1 MitNet with general treatments.
Initialize parameters θ of the MINE network ψ.
repeat

Draw b minibatch samples from the joint distribution:
(x1, t1),⋯, (xb, tb) ∼ µX,T .
Draw b samples from the marginal distribution of T :
t̄1,⋯, t̄b ∼ µT .
Evaluate the lower bound of mutual information:

ℓMI[ϕ,ψθ] =
1

b

b

∑
i=1

ψθ(ϕ(xi), ti)−log
1

b

b

∑
i=1

eψθ(ϕ(xi),t̄i).

θ ← θ +∇θℓMI[ϕ,ψθ].
until convergence.

5. Experiments
In this section, we propose detailed experiments to show the
efficiency and generality of our methods. Code and data are
available at https://github.com/thuml/MitNet.

5.1. Simulation Study

We conduct simulation studies to identify the regularization
effect of mutual information (MI). We follow and extend the
experiment settings introduced in (Colangelo et al., 2019).
In all experiments, we generate n = 2000 i.i.d. samples from
Gaussian distribution with covariates

X = (X1,⋯,X1000) ∼ N (0,Σ),

where Σ = diag{1,⋯,1}. We define two 1000-dimensional
vectors θ and β: θj = 1

j
for j ≤ 500 and θj = 0 for j > 500,

while βj = 0 for j ≤ 500 and βj = 1
j−500

for j > 500. It can
be verified that θ and β are orthogonal.

The basic idea behind the data generation is to create treat-
ment assignments that depend on the values of covariates.
For this purpose, let the probability of subject Xi assigned
to the t-th group be generated by a binomial distribution
with parameter πi,0 ∈ [0,1]:

πi,0 = 0.5 + 0.1 ∗ sign(AiD),

where Ai, D are defined as Ai = (1,Xi,1,Xi,2,Xi,3),D =
(0,1,1,1)′. We consider a continuous treatment:

Ti = Φ
⎛
⎝
1000

∑
j=1

Xi,jθj
⎞
⎠
+ 0.01ν, Φ is the CDF of N (0,1)

with probability 1 − πi,0 and Ti = 0 with probability πi,0.
ν ∼ N (0,1) is Gaussian noise. The corresponding potential
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outcome is given by

Yi = α
⎛
⎝
Ti + T 2

i + TiXi,1 +
1000

∑
j=1

Xi,jθj
⎞
⎠

+ (1 − α)
⎛
⎝
1000

∑
j=1

βjXi,j

⎞
⎠
+ 0.01ε.

Here α ∈ [0,1] is the dependence ratio. When α is as large
as 1, the treatment effect Y highly depends on treatment
T . When α approaches 0, Y is related to ∑1000

j=1 βjXi,j . As
Ti is sampled by means Φ(∑1000

j=1 Xi,jθj) and θ, β are or-
thogonal, Y is independent to T in this case. We sample a
group of datasets when α is set as 0.1,0.3,0.5,0.7,0.9 re-
spectively. We randomly split the generated dataset to train,
validation and test parts according to the ratio of 63/27/10.
We use generalized PEHE (6) as the evaluation metric. We
implement MitNet by constructing a three-layer neural net-
work for each one of the feature learner, predictor and MI
estimator.

We show the simulation results with respect to the depen-
dence ratio α in Table 1. We provide both in-sample results
evaluated on training data (In) and the out-of-sample results
evaluated on test data (Out). When the factor α becomes
larger, output Y will be highly dependent on treatment T .
In the meantime MI(Y;T ) will increase the error bound
and enlarge the difficulties of predicting Y under different
treatments. We can see that the regularization of MI helps
reduce PEHE over all variations of the dependence ratio.
The convidence interval is reported in Appendix B.

Table 1. Results of Generalized PEHE on simulation datasets.

α 0.1 0.3 0.5 0.7 0.9

w/o MI In 0.085 0.26 0.46 0.67 0.77
Out 0.092 0.28 0.51 0.74 0.85

w/ MI In 0.079 0.23 0.38 0.58 0.70
Out 0.086 0.25 0.42 0.63 0.78

5.2. Empirical Evaluation

We performed numerical experiments on three real-world
semi-synthetic datasets with binary or multinoulli treatments
in order to illustrate the efficacy and generality of MitNet.

IHDP The Infant Health and Development Program
(IHDP) dataset (Hill, 2011) contains data from a random-
ized study on the impact of specialist visits on the cogni-
tive development of infants. It consists of 747 children
with 25 covariates describing properties of the children and
their mothers. Children that receive home visits from spe-
cialists form the treated group while those who receive no

visits form the control group. We use the treatment assign-
ments and potential outcomes implemented as setting “A”
in the NPCI package (Dorie, 2016), the same as Shalit et al.
(2017).

News The News dataset was first proposed as a benchmark
for counterfactual inference by Johansson et al. (2016) and
was extended to the multinoulli treatment setting by Schwab
et al. (2019). It consists of 5000 randomly sampled news
articles from the NY Times corpus containing data on the
opinion of media consumers on various news items. The
units are different news items represented by word counts
with dimension 2870, and the outcomes are the reader’s
opinion of the news item. k available treatments (T =
{1,⋯, k}) represent various devices that could be used for
viewing, e.g. smartphone, tablet, desktop, television or
others. We assign the observed treatment and generate the
potential outcomes according to the case k =4, 8 and κ =10
in Schwab et al. (2019) where κ is a treatment assignment
bias coefficient.

TCGA The Cancer Genomic Atlas (TCGA) project col-
lected gene expression data from various types of cancers
in 9659 individuals with 20531 covariates (Weinstein et al.,
2013). There were k =3 available clinical treatment options
including medication, chemotherapy and surgery. Each med-
ication is assigned with a continuous treatment dosage. A
synthetic outcome function called the dose-response curve
was used to simulate the risk of cancer recurrence after
receiving either of the treatment options based on the real-
world gene expression data. To model the outcomes, we
follow the same approach as in Schwab et al. (2020) with
the treatment assignment bias coefficient κ =10.

Baselines We examine MitNet together with several cate-
gories of benchmarks: traditional statistical methods (linear
regression with the treatment as a feature (OLS/LR-1), lin-
ear regression with separate regressors for each treatment
group (OLS/LR-2), inverse probability weighting (IPW), k-
nearest neighbor matching (k-NN)), tree-based algorithms
(BART (Chipman et al., 2010; Hill, 2011), Random Forests
(Breiman, 2001), Causal Forests (Wager & Athey, 2018)),
Gaussian processes (CMGP (Alaa & Van Der Schaar, 2017),
NSGP (Alaa & Van Der Schaar, 2018)) and representation
learning methods (GANITE (Yoon et al., 2018), BNN (Jo-
hansson et al., 2016), TARNet, CFR-Wasserstein (Shalit
et al., 2017), PM (Schwab et al., 2019), DRNet (Schwab
et al., 2020)). Note that some of these benchmarks are not
applicable for News and TCGA (denoted as n.a. in Table 2)
and DRNet is regarded as an extension of TARNet for the
treatment scheme in TCGA.

Evaluation Although the generalized PEHE (6) could
serve as a prior choice to measure the performance of HTE
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Table 2. Results for HTE estimation on IHDP, News and TCGA. A lower metric indicates better performance.

Method IHDP News-4 News-8 TCGA
√
ϵ̂PEHE ϵ̂ATE

√
ϵ̂mPEHE ϵ̂mATE

√
ϵ̂mPEHE ϵ̂mATE

√
ϵ̂MISE

OLS/LR-1 5.1±.4 .90±.06 n.a. n.a. n.a. n.a. 35.7±.1
OLS/LR-2 2.4±.1 .30±.02 43.2±2.4 23.1±2.5 40.3±2.2 19.6±2.4 n.a.
IPW 5.8±.3 .35±.03 39.5±3.3 15.6±2.7 38.4±3.7 12.9±1.6 26.3±.1
k-NN 2.7±.2 .79±.06 27.9±2.4 19.4±3.1 26.2±2.2 15.1±2.3 n.a.

BART (2011) 2.3±.2 .34±.02 26.4±3.1 17.1±3.5 25.8±2.7 14.8±2.6 n.a.
Random Forest (2001) 2.2±.2 .94±.06 26.6±3.0 18.0±3.2 23.8±2.1 12.4±2.3 16.3±.3
Causal Forest (2018) 2.8±.2 .48±.03 23.9±2.5 13.5±2.5 22.6±2.3 9.7±1.9 15.2±.1

CMGP (2017) .76±.01 .29±.01 n.a. n.a. n.a. n.a. n.a.
NSGP (2018) .64±.03 .23±.01 n.a. n.a. n.a. n.a. n.a.

GANITE (2018) 3.8±.8 .58±.07 24.5±2.3 13.8±2.7 23.6±2.5 11.2±2.8 15.4±.2
BNN (2016) 2.2±.2 .46±.03 n.a. n.a. n.a. n.a. n.a.
TARNet (2017) & DRNet (2020) .95±.03 .28±.01 23.4±2.2 13.6±2.2 22.4±2.3 9.4±2.0 9.6±.0
CFR-Wasserstein (2017) .76±.02 .27±.01 22.7±2.0 13.0±1.7 21.6±1.8 8.8±1.7 n.a.
PM (2019) .80±.06 .31±.02 21.6±2.6 10.0±2.7 20.8±1.9 6.5±1.7 9.7±.2
MitNet (discrete) .66±.04 .30±.02 19.3±1.7 13.3±2.1 19.1±1.9 9.8±2.2 n.a.
MitNet (general) .60±.03 .25±.01 19.2±2.2 11.2±2.0 18.9±2.0 7.9±2.1 9.3±.2

estimation, it may be difficult to compute and does not
directly apply to the News and TCGA datasets as there does
not exist an additional control group. The treatment effect
is directly computed as the difference of potential outcomes
between a pair of treatment groups. Therefore, we introduce
several variations of such metric with respect to each of
the three datasets according to Schwab et al. (2019; 2020).
For News, we consider the average of PEHE between every
possible pair of treatments following Schwab et al. (2019):

ϵ̂mPEHE [f] =
2

k(k − 1)
k

∑
j=1

j−1

∑
l=1

ϵ̂PEHE, j, l [f]

= 2

k(k − 1)n
k

∑
j=1

j−1

∑
l=1

n

∑
i=1

((f(xi, j) − f(xi, l))

− (yi,j − yi,l))2,

where yi,j denotes the potential outcome for the i-th indi-
vidual in the sample to receive treatment j.

For TCGA, we aim to measure a predictive model’s ability to
recover the dose-response curve across the range of dosage
values and use the mean integrated square error (MISE) as
defined in Schwab et al. (2020):

ϵ̂MISE [f] =
1

kn

k

∑
t=1

n

∑
i=1
∫

1

0
(f(xi, (t, s)) − υi(t, s))2ds.

Note that the treatment in this problem is given by (t, s) and
υi(t, s) denotes the potential outcome for the i-th individual
given the t-th treatment with dosage s.

Implementation To enable a fair comparison, we chose
the same hyperparameters including the batch size and num-
ber of hidden layers for TARNet, CFR-Wasserstein, PM, and
MitNet. We adopt the model selection method mentioned in
Schwab et al. (2019) to choose optimal α and learning rate
η. We use the implementation from Dorie (2016) and Shalit
et al. (2017) for previous methods on IHDP and the reported
results of Schwab et al. (2019) and Schwab et al. (2020)
on News-4/8 and TCGA if available. For IHDP we report
the mean value and 95% confidence interval of results aver-
aged over 1000 realizations of the potential outcomes. For
News-4/8 we report the mean value and standard deviation
of results in 50 repeated experiments. All experiments are
performed with 63/27/10 train/validation/test splits. Early
stopping is performed for network-based methods according
to the value of the objective function on the validation set
and all results are reported on the test set.

Analysis We show our methods can work well for general
forms of treatments through three kinds of datasets when the
types of treatments cover binary values (IHDP), multinoulli
values (News) and continuous dosage (TCGA). From Table
2, we could see that MitNet for general cases ranked the first
on all three datasets, while lightweight MitNet for discrete
spaces reached the third on IHDP and second place on News-
4/8. They consistently outperform all other network models
on a large margin in terms of HTE estimation. Among
all baselines, TARNet is a clean model that assigns each
treatment a separate network without any selection bias
reduction. CRF, PM and MitNet are developed to collect
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selection bias based on the architecture of TARNet. Our
methods based on mutual information control are the most
flexible and effective compared with predecessors that could
only get advantages on certain kinds of treatments.

6. Related Work
Machine learning for estimating HTE. Machine learn-
ing has longly been applied to estimating Heterogeneous
Treatment Effect (HTE). Traditional non-parametric models
(Hill, 2011; Hahn et al., 2020; Athey & Imbens, 2016; Wa-
ger & Athey, 2018; Alaa & Van Der Schaar, 2017; 2018) and
learning schemes (Nie & Wager, 2021; Künzel et al., 2019)
are designed to tackle this problem. Recently, neural net-
works have become a prevalent choice due to their flexibility
and convenience (Louizos et al., 2017; Atan et al., 2018;
Yoon et al., 2018; Zhang et al., 2020; Jesson et al., 2020;
van Amersfoort et al., 2021; Jesson et al., 2021; Kaddour
et al., 2021).

Handling selection bias. To cope with selection bias in
observational data for HTE estimation, a series of methods
from the perspective of data include Perfect Match (PM)
(Schwab et al., 2019), context-aware importance weighting
(Hassanpour & Greiner, 2019), and targeted regularization
(Shi et al., 2019). For neural network-based approaches,
the impact of selection bias can be mitigated by reducing
the distribution shift in the representation space. Johansson
et al. (2016) propose to add a regularization term called
the discrepancy distance (Mansour et al., 2009). Shalit
et al. (2017) propose counterfactual regression networks
(CFR) with IPM regularization and Yao et al. (2018) add a
local similarity preserving component. Zhang et al. (2020)
propose to keep the distribution overlap. Jesson et al. (2020);
van Amersfoort et al. (2021); Jesson et al. (2021) quantify
the uncertainty. Our work goes along with representation
learning methods and gives a novel theoretical analysis to
quantify selection bias at the representation level.

Non-binary intervensions. While the vast majority of
works deal with a single treatment, fewer account for non-
binary interventions. For Average Treatment Effect (ATE)
and Average Potential Outcome (APO), existing methods
could be adapted to both multinoulli (Lopez et al., 2017;
Scotina & Gutman, 2019; Tu et al., 2013) and continuous
cases (Wu et al., 2022; Fong et al., 2018; Kallus & Santacat-
terina, 2019; Kennedy et al., 2017; Colangelo et al., 2019;
Nie et al., 2021; Jesson et al., 2022). As in the case of HTE,
although several machine learning methods designed for bi-
nary interventions could also be naturally applied (Gu et al.,
2020; Schwab et al., 2019; 2020), few of them could deal
with the problem of selection bias in the meantime. How-
ever, our proposed algorithms could reduce the selection
bias in all settings of treatments.

HTE estimation and domain adaptation. As pointed
out by Johansson et al. (2016), HTE estimation with the
selection bias has technical connections with domain adap-
tion. Both our error bound and the ones of IPM (Shalit et al.,
2017) have similarities with generalization bounds in do-
main adaptation given by Mansour et al. (2009); Ben-David
et al. (2010); Cortes & Mohri (2014); Zhang et al. (2019).
Our algorithm is related to domain adversarial neural net-
work (Ganin et al., 2016) in the adversarial paradigm.

7. Discussion
Additional Parameters. MitNet introduces a mutual in-
formation estimator in the model architecture, which takes
additional time and memory over the fundamental regres-
sion model in the training process. Thanks to our extended
theory to representation learning scenarios, we can append
the mutual information estimator upon the learned represen-
tation. Hence the estimator is lightweight for direct estima-
tion and has the same architecture as the prediction head
for neural estimation. While there still exists extra time and
memory consumption at the training stage, at the inference
stage we can completely remove the mutual information
estimator and thus eliminate such extra consumption.

Optimization Issues. MitNet adopts a minimax objec-
tive function for mutual information estimation, which is
harder to optimize than plain models. Despite the remark-
able performance gains in Table 2, we have not improved
MitNet from the perspective of optimization. Noting that
minimax optimization has been the foundation of many
well-established algorithms such as generative adversarial
networks (GANs), we believe our algorithms for estimating
heterogeneous treatment effects are acceptable. However, a
future research direction is to design optimization-friendly
models or algorithms from our mutual information bounds.

8. Conclusion
We propose to use mutual information to describe selection
bias in estimating HTE and derive a rigorous error bound
using the mutual information between the covariates and
treatments. We then bring forth theoretically justified algo-
rithms called the Mutual Information Treatment Network
(MitNet), which applies adversarial optimization to reduce
selection bias and obtain a more accurate estimation of HTE.
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A. Mathemetical Proof
A.1. Proof of Theorem 3.2

In this subsection we prove our main theorem

ϵPEHE [f] ⩽
1

π(1 − π)
(4B2

√
2MI(X;T ) + ϵF [f] ).

Proof. By Cauchy inequality and Pinsker’s inequality

ϵPEHE [f] (27)

=EµT ∣T≠0
EµX
[((f(X, T )−f(X,0))−(m(X, T )−m(X,0)))2] (28)

=EµT ∣T≠0
EµX
[((f(X, T )−m(X, T ))−(f(X,0)−m(X,0)))2] (29)

Cauchy
⩽ ( 1

π
+ 1

1 − π
) EµT ∣T≠0

EµX
[π(f(X, T ) −m(X, T ))2 + (1 − π)(f(X,0) −m(X,0))2] (30)

= 1

π(1 − π)EµT
EµX
[(f(X, T ) −m(X, T ))2] (31)

⩽ 1

π(1 − π) (EµX,T
[(f(X, T ) −m(X, T ))2] + 4B2 ∫

X×T
∣pX(x)pT (t) − pX,T (x, t)∣dxdt) (32)

Pinsker
⩽ 1

π(1 − π) (4B
2
√
2KL(µX,T ∥µX ⊗ µT ) + ϵF [f]) (33)

⩽ 1

π(1 − π) (4B
2
√
2MI(X;T ) + ϵF [f]) . (34)

A.2. Proof of Corollary 3.4

In this subsection we prove the extended theory

ϵmPEHE [f] ≤
2

k
⋅ 1
π2
(ϵF [f] + 4B2

√
2MI(X;T ))

Proof. We have

ϵmPEHE[f]

= 2

k(k − 1) ∑
1≤j<l≤k

EµX
[(f(X, j) − f(X, l)) − (m(X, j) −m(X, l))2]

= 2

k(k − 1) ∑
1≤j<l≤k

EµX
[(f(X, j) −m(X, j)) − (f(X, l) −m(X, l))2]

Cauchy
⩽ 2

k(k − 1) ∑
1≤j<l≤k

1

πjπl
EµX
[πj(f(X, j) −m(X, j))2 + πl(f(X, l) −m(X, l))2]

≤ 2

k(k − 1) ∑
1≤j<l≤k

1

π2
EµX
[πj(f(X, j) −m(X, j))2 + πl(f(X, l) −m(X, l))2]

=2
k
⋅ 1
π2

EµT
EµX
[(f(X, t) −m(X, t))2] .

Until now, we obtain a similar term as (31), and following the same procedure we complete the proof.

A.3. Proof of Mutual Information Decay

In this subsection we prove MI(ϕ(X);T ) ≤MI(X;T ).

13
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Proof. According to the chain rule of mutual information, we have

MI(ϕ(X);T ) +MI(X;T ∣ϕ(X))
=MI((X, ϕ(X);T )
=MI(X;T ) +MI(ϕ(X);T ∣X).

Since ϕ(X) á T ∣X, it follows MI(ϕ(X);T ∣X) = 0, which completes the proof.

A.4. Proof of Extended Ignorability

In this subsection we aim to discuss the extended ignorability

Y á T ∣ϕ(X),

when ϕ simply preserves correlation of potential outcomes, i.e., Y áX ∣ϕ(X).

Proof. From the ignorability, we have

P (Y, T ∣X) = P (Y ∣X)P (T ∣X)
⇒P (Y, T,X)P (X) = P (Y,X)P (T,X)
⇒P (Y, T,X, ϕ(X))P (X, ϕ(X)) = P (Y,X, ϕ(X))P (T,X, ϕ(X))
⇒P (Y, T,X ∣ϕ(X))P (X ∣ϕ(X)) = P (Y,X ∣ϕ(X))P (T,X ∣ϕ(X)).

Since Y áX ∣ϕ(X), it follows
P (Y,X ∣ϕ(X)) = P (Y ∣ϕ(X))P (X ∣ϕ(X)).

By combining the above two equations, we finally have

P (Y, T,X ∣ϕ(X)) = P (Y ∣ϕ(X))P (T,X ∣ϕ(X))
⇒P (Y, T ∣ϕ(X)) = P (Y ∣ϕ(X))P (T ∣ϕ(X))
⇒Y á T ∣ϕ(X).

Note that the preservation of confounders is a weaker condition than the bijectivity of ϕ, with which the extended ignorability
holds trivially. For example, let x = (a, b)′, t = b and yt0 = a + t0 for any t0, then a possible ϕ is ϕ(x) = a, which is not a
bijection.

B. Simulation Study with Confidence Interval
In this section we report the 95% confidence interval for the simulation study in Table 1. Results are shown in Table 3.
Although introducing MI gives a slightly larger variance, MitNet still outperforms the baseline in a significant way.

Table 3. Results of Generalized PEHE on simulation datasets with 95% confidence intervals.

α 0.1 0.3 0.5 0.7 0.9

w/o MI In 0.085 ± 0.001 0.26 ± 0.003 0.46 ± 0.009 0.67 ± 0.012 0.77 ± 0.018
Out 0.092 ± 0.003 0.28 ± 0.004 0.51 ± 0.010 0.74 ± 0.017 0.85 ± 0.021

w/ MI In 0.079 ± 0.003 0.23 ± 0.005 0.38 ± 0.014 0.58 ± 0.019 0.70 ± 0.029
Out 0.086 ± 0.005 0.25 ± 0.007 0.42 ± 0.019 0.63 ± 0.028 0.78 ± 0.036

C. License of Assets
Consider the datasets we used throughout experiments: IHDP and News are under MIT License. TCGA is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
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