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Abstract

Deep networks trained on large-scale data can learn transferable features to promote
learning multiple tasks. Since deep features eventually transition from general to
specific along deep networks, a fundamental problem of multi-task learning is how
to exploit the task relatedness underlying parameter tensors and improve feature
transferability in the multiple task-specific layers. This paper presents Multilinear
Relationship Networks (MRN) that discover the task relationships based on novel
tensor normal priors over parameter tensors of multiple task-specific layers in deep
convolutional networks. By jointly learning transferable features and multilinear
relationships of tasks and features, MRN is able to alleviate the dilemma of negative-
transfer in the feature layers and under-transfer in the classifier layer. Experiments
show that MRN yields state-of-the-art results on three multi-task learning datasets.

1 Introduction

Supervised learning machines trained with limited labeled samples are prone to overfitting, while
manual labeling of sufficient training data for new domains is often prohibitive. Thus it is imperative
to design versatile algorithms for reducing the labeling consumption, typically by leveraging off-the-
shelf labeled data from relevant tasks. Multi-task learning is based on the idea that the performance
of one task can be improved using related tasks as inductive bias [4]. Knowing the task relationship
should enable the transfer of shared knowledge from relevant tasks such that only task-specific features
need to be learned. This fundamental idea of task relatedness has motivated a variety of methods,
including multi-task feature learning that learns a shared feature representation [1, 2, 6, 5, 23], and
multi-task relationship learning that models inherent task relationship [10, 14, 29, 31, 15, 17, 8].

Learning inherent task relatedness is a hard problem, since the training data of different tasks may be
sampled from different distributions and fitted by different models. Without prior knowledge on the
task relatedness, the distribution shift may pose a major difficulty in transferring knowledge across
different tasks. Unfortunately, if cross-task knowledge transfer is impossible, then we will overfit
each task due to limited amount of labeled data. One way to circumvent this dilemma is to use an
external data source, e.g. ImageNet, to learn transferable features through which the shift in the
inductive biases can be reduced such that different tasks can be correlated more effectively. This idea
has motivated some latest deep learning methods for learning multiple tasks [25, 22, 7, 27], which
learn a shared representation in feature layers and multiple independent classifiers in classifier layer.

However, these deep multi-task learning methods do not explicitly model the task relationships.
This may result in under-transfer in the classifier layer as knowledge can not be transferred across
different classifiers. Recent research also reveals that deep features eventually transition from general
to specific along the network, and feature transferability drops significantly in higher layers with
increasing task dissimilarity [28], hence the sharing of all feature layers may be risky to negative-
transfer. Therefore, it remains an open problem how to exploit the task relationship across different
deep networks while improving the feature transferability in task-specific layers of the deep networks.
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This paper presents Multilinear Relationship Network (MRN) for multi-task learning, which discovers
the task relationships based on multiple task-specific layers of deep convolutional neural networks.
Since the parameters of deep networks are natively tensors, the tensor normal distribution [21] is
explored for multi-task learning, which is imposed as the prior distribution over network parameters
of all task-specific layers to learn find-grained multilinear relationships of tasks, classes and features.
By jointly learning transferable features and multilinear relationships, MRN is able to circumvent the
dilemma of negative-transfer in feature layers and under-transfer in classifier layer. Experiments show
that MRN learns fine-grained relationships and yields state-of-the-art results on standard benchmarks.

2 Related Work

Multi-task learning is a learning paradigm that learns multiple tasks jointly by exploiting the shared
structures to improve generalization performance [4, 19] and mitigate manual labeling consumption.
There are generally two categories of approaches: (1) multi-task feature learning, which learns a
shared feature representation such that the distribution shift across different tasks can be reduced
[1, 2, 6, 5, 23]; (2) multi-task relationship learning, which explicitly models the task relationship
in the forms of task grouping [14, 15, 17] or task covariance [10, 29, 31, 8]. While these methods
have achieved improved performance, they may be restricted by their shallow learning paradigm that
cannot embody task relationships by suppressing the task-specific variations in transferable features.

Deep networks learn abstract representations that disentangle and hide explanatory factors of variation
behind data [3, 16]. Deep representations manifest invariant factors underlying different populations
and are transferable across similar tasks [28]. Thus deep networks have been successfully explored
for domain adaptation [11, 18] and multi-task learning [25, 22, 32, 7, 20, 27], where significant
performance gains have been witnessed. Most multi-task deep learning methods [22, 32, 7] learn a
shared representation in the feature layers and multiple independent classifiers in the classifier layer
without inferring the task relationships. However, this may result in under-transfer in the classifier
layer as knowledge cannot be adaptively propagated across different classifiers, while the sharing of
all feature layers may still be vulnerable to negative-transfer in the feature layers, as the higher layers
of deep networks are tailored to fit task-specific structures and may not be safely transferable [28].

This paper presents a multilinear relationship network based on novel tensor normal priors to learn
transferable features and task relationships that mitigate both under-transfer and negative-transfer. Our
work contrasts from prior relationship learning [29, 31] and multi-task deep learning [22, 32, 7, 27]
methods in two key aspects. (1) Tensor normal prior: our work is the first to explore tensor normal
distribution as priors of network parameters in different layers to learn multilinear task relationships in
deep networks. Since the network parameters of multiple tasks natively stack into high-order tensors,
previous matrix normal distribution [13] cannot be used as priors of network parameters to learn task
relationships. (2) Deep task relationship: we define the tensor normal prior on multiple task-specific
layers, while previous deep learning methods do not learn the task relationships. To our knowledge,
multi-task deep learning by tensor factorization [27] is the first work that tackles multi-task deep
learning by tensor factorization, which learns shared feature subspace from multilayer parameter
tensors; in contrast, our work learns multilinear task relationships from multiplayer parameter tensors.

3 Tensor Normal Distribution

3.1 Probability Density Function

Tensor normal distribution is a natural extension of multivariate normal distribution and matrix-variate
normal distribution [13] to tensor-variate distributions. The multivariate normal distribution is order-1
tensor normal distribution, and matrix-variate normal distribution is order-2 tensor normal distribution.
Before defining tensor normal distribution, we first introduce the notations and operations of order-K
tensor. An order-K tensor is an element of the tensor product of K vector spaces, each of which
has its own coordinate system. A vector x ∈ Rd1 is an order-1 tensor with dimension d1. A matrix
X ∈ Rd1×d2 is an order-2 tensor with dimensions (d1, d2). A order-K tensor X ∈ Rd1×...×dK

with dimensions (d1, . . . , dK) has elements {xi1...iK : ik = 1, . . . , dk}. The vectorization of X is
unfolding the tensor into a vector, denoted by vec(X ). The matricization of X is a generalization of
vectorization, reordering the elements of X into a matrix. In this paper, to simply the notations and
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describe the tensor relationships, we use the mode-k matricization and denote by X(k) the mode-k
matrix of tensor X , where row i of X(k) contains all elements of X having the k-th index equal to i.

Consider an order-K tensor X ∈ Rd1×...×dK . Since we can vectorize X to a (
∏K

k=1 dk)× 1 vector,
the normal distribution on a tensor X can be considered as a multivariate normal distribution on vector
vec(X ) of dimension

∏K
k=1 dk. However, such an ordinary multivariate normal distribution ignores

the special structure of X as a d1 × . . .× dK tensor, and as a result, the covariance characterizing the
correlations across elements of X is of size (

∏K
k=1 dk)× (

∏K
k=1 dk), which is often prohibitively

large for modeling and estimation. To exploit the structure of X , tensor normal distributions assume
that the (

∏K
k=1 dk) × (

∏K
k=1 dk) covariance matrix Σ1:K can be decomposed into the Kronecker

product Σ1:K = Σ1⊗ . . .⊗ΣK , and elements of X (in vectorization) follow the normal distribution,

vec (X ) ∼ N (vec (M) ,Σ1 ⊗ . . .⊗ΣK) , (1)
where⊗ is the Kronecker product, Σk ∈ Rdk×dk is a positive definite matrix indicating the covariance
between the dk rows of the mode-k matricization X(k) of dimension dk × (

∏
k′ 6=k dk′), andM is a

mean tensor containing the expectation of each element of X . Due to the decomposition of covariance
as the Kronecker product, the tensor normal distribution of an order-K tensor X , parameterized by
mean tensorM and covariance matrices Σ1, . . . ,ΣK , can define probability density function as [21]

p (x) = (2π)
−d/2

(
K∏

k=1

|Σk|−d/(2dk)

)
× exp

(
−1

2
(x− µ)

T
Σ−11:K (x− µ)

)
, (2)

where |·| is the determinant of a square matrix, and x = vec (X ) ,µ = vec (M) ,Σ1:K = Σ1⊗. . .⊗
ΣK , d =

∏K
k=1 dk. The tensor normal distribution corresponds to the multivariate normal distribution

with Kronecker decomposable covariance structure. X following tensor normal distribution, i.e.
vec (X ) following the normal distribution with Kronecker decomposable covariance, is denoted by

X ∼ T Nd1×...×dK
(M,Σ1, . . . ,ΣK) . (3)

3.2 Maximum Likelihood Estimation

Consider a set of n samples {Xi}ni=1 where each Xi is an order-3 tensor generated by a tensor normal
distribution as in Equation (2). The maximum likelihood estimation (MLE) of the mean tensorM is

M̂ =
1

n

n∑
i=1

Xi. (4)

The MLE of covariance matrices Σ̂1, . . . , Σ̂3 are computed by iteratively updating these equations:

Σ̂1 =
1

nd2d3

n∑
i=1

(Xi −M)(1)

(
Σ̂3 ⊗ Σ̂2

)−1

(Xi −M)T(1),

Σ̂2 =
1

nd1d3

n∑
i=1

(Xi −M)(2)

(
Σ̂3 ⊗ Σ̂1

)−1

(Xi −M)T(2),

Σ̂3 =
1

nd1d2

n∑
i=1

(Xi −M)(3)

(
Σ̂2 ⊗ Σ̂1

)−1

(Xi −M)T(3).

(5)

This flip-flop algorithm [21] is efficient to solve by simple matrix manipulations and convergence is
guaranteed. Covariance matrices Σ̂1, . . . , Σ̂3 are not identifiable and the solutions to maximizing
density function (2) are not unique, while only the Kronecker product Σ1⊗. . .⊗ΣK (1) is identifiable.

4 Multilinear Relationship Networks

This work models multiple tasks by jointly learning transferable representations and task relationships.
Given T tasks with training data {Xt,Yt}Tt=1, where Xt = {xt

1, . . . ,x
t
Nt
} and Yt = {yt

1, . . . ,y
t
Nt
}

are the Nt training examples and associated labels of the t-th task, respectively drawn from D-
dimensional feature space and C-cardinality label space, i.e. each training example xt

n ∈ RD and
yt
n ∈ {1, . . . , C}. Our goal is to build a deep network for multiple tasks yt

n = ft(x
t
n) which learns

transferable features and adaptive task relationships to bridge different tasks effectively and robustly.
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Figure 1: Multilinear relationship network (MRN) for multi-task learning: (1) convolutional layers
conv1–conv5 and fully-connected layer fc6 learn transferable features, so their parameters are shared
across tasks; (2) fully-connected layers fc7–fc8 fit task-specific structures, so their parameters are
modeled by tensor normal priors for learning multilinear relationships of features, classes and tasks.

4.1 Model

We start with deep convolutional neural networks (CNNs) [16], a family of models to learn transferable
features that are well adaptive to multiple tasks [32, 28, 18, 27]. The main challenge is that in multi-
task learning, each task is provided with a limited amount of labeled data, which is insufficient to
build reliable classifiers without overfitting. In this sense, it is vital to model the task relationships
through which each pair of tasks can help with each other to enable knowledge transfer if they are
related, and can remain independent to mitigate negative transfer if they are unrelated. With this idea,
we design a Multilinear Relationship Network (MRN) that exploits both feature transferability and
task relationship to establish effective and robust multi-task learning. Figure 1 shows the architecture
of the proposed MRN model based on AlexNet [16], while other deep networks are also applicable.

We build the proposed MRN model upon AlexNet [16], which is comprised of convolutional layers
(conv1–conv5) and fully-connected layers (fc6–fc8). The `-th fc layer learns a nonlinear mapping
ht,`
n = a`

(
Wt,`ht,`−1

n + bt,`
)

for task t, where ht,`
n is the hidden representation of each point xt

n,
Wt,` and bt,` are the weight and bias parameters, and a` is the activation function, taken as ReLU
a`(x) = max(0,x) for hidden layers or softmax units a` (x) = ex/

∑|x|
j=1 e

xj for the output layer.
Denote by y = ft(x) the CNN classifier of t-th task, and the empirical error of CNN on {Xt,Yt} is

min
ft

Nt∑
n=1

J
(
ft
(
xt
n

)
,yt

n

)
, (6)

where J is the cross-entropy loss function, and ft (xt
n) is the conditional probability that CNN assigns

xt
n to label yt

n. We will not describe how to compute the convolutional layers since these layers can
learn transferable features in general [28, 18], and we will simply share the network parameters of
these layers across different tasks, without explicitly modeling the relationships of features and tasks
in these layers. To benefit from pre-training and fine-tuning as most deep learning work, we copy
these layers from a model pre-trained on ImageNet 2012 [28], and fine-tune all conv1–conv5 layers.

As revealed by the recent literature findings [28], the deep features in standard CNNs must eventually
transition from general to specific along the network, and the feature transferability decreases while
the task discrepancy increases, making the features in higher layers fc7–fc8 unsafely transferable
across different tasks. In other words, the fc layers are tailored to their original task at the expense
of degraded performance on the target task, which may deteriorate multi-task learning based on
deep neural networks. Most previous methods generally assume that the multiple tasks can be well
correlated given the shared representation learned by the feature layers conv1–fc7 of deep networks
[25, 22, 32, 27]. However, it may be vulnerable if different tasks are not well correlated under deep
features, which is common as higher layers are not safely transferable and tasks may be dissimilar.
Moreover, existing multi-task learning methods are natively designed for binary classification tasks,
which are not good choices as deep networks mainly adopt multi-class softmax regression. It remains
an open problem to explore the task relationships of multi-class classification for multi-task learning.

In this work, we jointly learn transferable features and multilinear relationships of features and tasks
for multiple task-specific layers L in a Bayesian framework. Based on the transferability of deep

4



networks discussed above, the task-specific layers L are set to {fc7, fc8}. Denote by X = {Xt}Tt=1,
Y = {Yt}Tt=1 the complete training data of T tasks, and by Wt,` ∈ RD`

1×D
`
2 the network parameters

of the t-th task in the `-th layer, where D`
1 and D`

2 are the rows and columns of matrix Wt,`. In order
to capture the task relationship in the network parameters of all T tasks, we construct the `-th layer
parameter tensor asW` =

[
W1,`; . . . ; WT,`

]
∈ RD`

1×D
`
2×T . Denote byW =

{
W` : ` ∈ L

}
the

set of parameter tensors of all the task-specific layers L = {fc7, fc8}. The Maximum a Posteriori
(MAP) estimation of network parametersW given training data {X ,Y} for learning multiple tasks is

p (W|X ,Y) ∝ p (W) · p (Y |X ,W )

=
∏
`∈L

p
(
W`
)
·

T∏
t=1

Nt∏
n=1

p
(
yt
n

∣∣xt
n,W`

)
,

(7)

where we assume that for prior p (W), the parameter tensor of each layerW` is independent on the
parameter tensors of the other layersW`′ 6=`, which is a common assumption made by most feed-
forward neural network methods [3]. Finally, we assume when the network parameter is sampled
from the prior, all tasks are independent. These independence assumptions lead to the factorization of
the posteriori in Equation (7), which make the final MAP estimation in deep networks easy to solve.

The maximum likelihood estimation (MLE) part p (Y |X ,W ) in Equation (7) is modeled by deep
CNN in Equation (6), which can learn transferable features in lower layers for multi-task learning.
We opt to share the network parameters of all these layers (conv1–fc6). This parameter sharing
strategy is a relaxation of existing deep multi-task learning methods [22, 32, 7], which share all the
feature layers except for the classifier layer. We do not share task-specific layers (the last feature
layer fc7 and classifier layer fc8), with the expectation to potentially mitigate negative-transfer [28].

The prior part p (W) in Equation (7) is the key to enabling multi-task deep learning since this prior
part should be able to model the multilinear relationship across parameter tensors. This paper, for the
first time, defines the prior for the `-th layer parameter tensor by tensor normal distribution [21] as

p
(
W`
)

= T ND`
1×D`

2×T
(
O,Σ`

1,Σ
`
2,Σ

`
3

)
, (8)

where Σ`
1 ∈ RD`

1×D
`
1 , Σ`

2 ∈ RD`
2×D

`
2 , and Σ`

3 ∈ RT×T are the mode-1, mode-2, and mode-3
covariance matrices, respectively. Specifically, in the tensor normal prior, the row covariance matrix
Σ`

1 models the relationships between features (feature covariance), the column covariance matrix Σ`
2

models the relationships between classes (class covariance), and the mode-3 covariance matrix Σ`
3

models the relationships between tasks in the `-th layer network parameters {W1,`, . . . ,WT,`}. A
common strategy used by previous methods is to use identity covariance for feature covariance [31, 8]
and class covariance [2], which implicitly assumes independent features and classes and cannot
capture the dependencies between them. This work learns all feature covariance, class covariance,
task covariance and all network parameters from data to build robust multilinear task relationships.

We integrate the CNN error functional (6) and tensor normal prior (8) into MAP estimation (7)
and taking negative logarithm, which leads to the MAP estimation of the network parametersW , a
regularized optimization problem for Multilinear Relationship Network (MRN) formally writing as

min
ft|Tt=1,Σ

`
k
|K
k=1

T∑
t=1

Nt∑
n=1

J
(
ft
(
xt
n

)
,yt

n

)
+
1

2

∑
`∈L

(
vec(W`)

T
(Σ`

1:K)
−1

vec(W`)−
K∑

k=1

D`

D`
k

ln
(
|Σ`

k|
))

,

(9)

where D` =
∏K

k=1D
`
k and K = 3 is the number of modes in parameter tensorW , which could be

K = 4 for the convolutional layers (width, height, number of feature maps, and number of tasks);
Σ`

1:3 = Σ`
1 ⊗Σ`

2 ⊗Σ`
3 is the Kronecker product of the feature covariance Σ`

1, class covariance Σ`
2,

and task covariance Σ`
3. Moreover, we can assume shared task relationship across different layers as

Σ`
3 = Σ3, which enhances connection between task relationships on features fc7 and classifiers fc8.

4.2 Algorithm

The optimization problem (9) is jointly non-convex with respect to the parameter tensorsW as well as
feature covariance Σ`

1, class covariance Σ`
2, and task covariance Σ`

3. Thus, we alternatively optimize
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one set of variables with the others fixed. We first update Wt,`, the parameter of task-t in layer-`.
When training deep CNN by back-propagation, we only require the gradient of the objective function
(denoted by O) in Equation (10) w.r.t. Wt,` on each data point (xt

n,y
t
n), which can be computed as

∂O (xt
n,y

t
n)

∂Wt,`
=
∂J (ft (xt

n) ,yt
n)

∂Wt,`
+
[
(Σ`

1:3)−1vec
(
W`
)]
··t, (10)

where [(Σ`
1:3)−1vec

(
W`
)
]··t is the (:, :, t) slice of a tensor folded from elements (Σ`

1:3)−1vec(W`)

that are corresponding to parameter matrix Wt,`. Since training a deep CNN requires a large amount
of labeled data, which is prohibitive for many multi-task learning problems, we fine-tune from an
AlexNet model pre-trained on ImageNet as in [28]. In each epoch, after updatingW , we can update
the feature covariance Σ`

1, class covariance Σ`
2, and task covariance Σ`

3 by the flip-flop algorithm as

Σ`
1 =

1

D`
2T

(W`)(1)

(
Σ`

3 ⊗Σ`
2

)−1

(W`)T(1) + εID`
1
,

Σ`
2 =

1

D`
1T

(W`)(2)

(
Σ`

3 ⊗Σ`
1

)−1

(W`)
T
(2) + εID`

2
,

Σ`
3 =

1

D`
1D

`
2

(W`)(3)

(
Σ`

2 ⊗Σ`
1

)−1

(W`)T(3) + εIT .

(11)

where the last term of each update equation is a small penalty traded off by ε for numerical stability.

However, the above updating equations (11) are computationally prohibitive, due to the dimension
explosion of the Kronecker product, e.g. Σ`

2 ⊗Σ`
1 is of dimension D`

1D
`
2 ×D`

1D
`
2. To speed up

computation, we will use the following rules of Kronecker product: (A⊗B)
−1

= A−1 ⊗B−1 and(
BT ⊗A

)
vec (X) = vec (AXB). Taking the computation of Σ`

3 ∈ RT×T as an example, we have

(Σ`
3)ij =

1

D`
1D

`
2

(W`)(3),i·
(
Σ`

2 ⊗Σ`
1

)−1
(W`)T(3),j· + εIij

=
1

D`
1D

`
2

(W`)(3),i·vec
(

(Σ`
1)
−1W`

··j(Σ
`
2)
−1)

+ εIij ,

(12)

where (W`)(3),i· denotes the i-th row of the mode-3 matricization of tensorW`, andW`
··j denotes

the (:, :, j) slice of tensorW`. We can derive that updating Σ`
3 has a computational complexity of

O
(
T 2D`

1D
`
2

(
D`

1 +D`
2

))
, similarly for Σ`

1 and Σ`
2. The total computational complexity of updating

covariance matrices Σ`
k|3k=1 will be O

(
D`

1D
`
2T
(
D`

1D
`
2 +D`

1T +D`
2T
))

, which is still expensive.

A key to computation speedup is that the covariance matrices Σ`
k|3k=1 should be low-rank, since the

features and tasks are enforced to be correlated for multi-task learning. Thus, the inverses of Σ`
k|3k=1

do not exist in general and we have to compute the generalized inverses using eigendecomposition.
We perform eigendecomposition for each Σ`

k and maintain all eigenvectors with eigenvalues greater
than zero. The rank r of the eigen-reconstructed covariance matrices should be r ≤ min(D`

1, D
`
2, T ).

Thus, the total computational complexity for Σ`
k|3k=1 is reduced to O

(
rD`

1D
`
2T
(
D`

1 +D`
2 + T

))
. It

is straight-forward to see the computational complexity of updating the parameter tensorW is the cost
of back-propagation in standard CNNs plus the cost for computing the gradient of regularization term
by Equation (10), which is O

(
rD`

1D
`
2T
(
D`

1 +D`
2 + T

))
given generalized inverses (Σ`

k)−1|3k=1.

4.3 Discussion

The proposed Multilinear Relationship Network (MRN) is very flexible and can be easily configured
to deal with different network architectures and multi-task learning scenarios. For example, replacing
the network backbone from AlexNet to VGGnet [24] boils down to configuring task-specific layers
L = {fc7, fc8}, where fc7 is the last feature layer while fc8 is the classifier layer in the VGGnet.
The architecture of MRN in Figure 1 can readily cope with homogeneous multi-task learning where
all tasks share the same output space. It can cope with heterogeneous multi-task learning where
different tasks have different output spaces by setting L = {fc7}, by only considering feature layers.

The multilinear relationship learning in Equation (9) is a general framework that readily subsumes
many classical multi-task learning methods as special cases. Many regularized multi-task algorithms
can be classified into two main categories: learning with feature covariances [1, 2, 6, 5] and learning
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with task relations [10, 14, 29, 31, 15, 17, 8]. Learning with feature covariances can be viewed
as a representative formulation in feature-based methods while learning with task relations is for
parameter-based methods [30]. More specifically, previous multi-task feature learning methods [1, 2]
can be viewed as a special case of Equation (9) by setting all covariance matrices but the feature
covariance to identity matrix, i.e. Σk = I|Kk=2; and previous multi-task relationship learning methods
[31, 8] can be viewed as a special case of Equation (9) by setting all covariance matrices but the
task covariance to identity matrix, i.e. Σk = I|K−1k=1 . The proposed MRN is more general in the
architecture perspective in dealing with parameter tensors in multiple layers of deep neural networks.

It is noteworthy to highlight a concurrent work on multi-task deep learning using tensor decomposition
[27], which is feature-based method that explicitly learns the low-rank shared parameter subspace.
The proposed multilinear relationship across parameter tensors can be viewed as a strong alternative
to the tensor decomposition, with the advantage to explicitly model the positive and negative relations
across features and tasks. As a defense of [27], the tensor decomposition can extract finer-grained
feature relations (what to share and how much to share) than the proposed multilinear relationships.

5 Experiments

We compare MRN with state-of-the-art multi-task and deep learning methods to verify the efficacy of
learning transferable features and multilinear task relationships. Codes and datasets will be released.

5.1 Setup

Office-Caltech [12] This dataset is the standard benchmark for multi-task learning and transfer
learning. The Office part consists of 4,652 images in 31 categories collected from three distinct
domains (tasks): Amazon (A), which contains images downloaded from amazon.com, Webcam (W)
and DSLR (D), which are images taken by Web camera and digital SLR camera under different
environmental variations. This dataset is organized by selecting the 10 common categories shared by
the Office dataset and the Caltech-256 (C) dataset [12], hence it yields four multi-class learning tasks.

Spoon Sink Mug Pen Knife Bed Bike Kettle TV Keyboard Classes Alarm-Clock Desk-Lamp Hammer Chair Fan
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Figure 2: Examples of the Office-Home dataset.

Office-Home1 [26] This dataset is to evaluate
transfer learning algorithms using deep learning.
It consists of images from 4 different domains:
Artistic images (A), Clip Art (C), Product im-
ages (P) and Real-World images (R). For each
domain, the dataset contains images of 65 object
categories collected in office and home settings.

ImageCLEF-DA2 This dataset is the benchmark for ImageCLEF domain adaptation challenge,
organized by selecting the 12 common categories shared by the following four public datasets (tasks):
Caltech-256 (C), ImageNet ILSVRC 2012 (I), Pascal VOC 2012 (P), and Bing (B). All three datasets
are evaluated using DeCAF7 [9] features for shallow methods and original images for deep methods.

We compare MRN with standard and state-of-the-art methods: Single-Task Learning (STL), Multi-
Task Feature Learning (MTFL) [2], Multi-Task Relationship Learning (MTRL) [31], Robust Multi-
Task Learning (RMTL) [5], and Deep Multi-Task Learning with Tensor Factorization (DMTL-TF)
[27]. STL performs per-task classification in separate deep networks without knowledge transfer.
MTFL extracts the low-rank shared feature representations by learning feature covariance. RMTL
extends MTFL to further capture the task relationships using a low-rank structure and identify outlier
tasks using a group-sparse structure. MTRL captures the task relationships using task covariance of a
matrix normal distribution. DMTL-TF tackles multi-task deep learning by tensor factorization, which
learns shared feature subspace instead of multilinear task relationship in multilayer parameter tensors.

To go deep into the efficacy of jointly learning transferable features and multilinear task relationships,
we evaluate two MRN variants: (1) MRN8, MRN using only one network layer fc8 for multilinear
relationship learning; (2) MRNt, MRN using only task covariance Σ3 for single-relationship learning.
The proposed MRN model can natively deal with multi-class problems using the parameter tensors.
However, most shallow multi-task learning methods such as MTFL, RMTL and MTRL are formulated

1http://hemanthdv.org/OfficeHome-Dataset
2http://imageclef.org/2014/adaptation
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Table 1: Classification accuracy on Office-Caltech with standard evaluation protocol (AlexNet).

Method 5% 10% 20%
A W D C Avg A W D C Avg A W D C Avg

STL (AlexNet) 88.9 73.0 80.4 88.7 82.8 92.2 80.9 88.2 88.9 87.6 91.3 83.3 93.7 94.9 90.8
MTFL [2] 90.0 78.9 90.2 86.9 86.5 92.4 85.3 89.5 89.2 89.1 93.5 89.0 95.2 92.6 92.6
RMTL [6] 91.3 82.3 88.8 89.1 87.9 92.6 85.2 93.3 87.2 89.6 94.3 87.0 96.7 93.4 92.4

MTRL [31] 86.4 83.0 95.1 89.1 88.4 91.1 87.1 97.0 87.6 90.7 90.0 88.8 99.2 94.3 93.1
DMTL-TF [27] 91.2 88.3 92.5 85.6 89.4 92.2 91.9 97.4 86.8 92.0 92.6 97.6 94.5 88.4 93.3

MRN8 91.7 96.4 96.9 86.5 92.9 92.7 97.1 97.3 86.6 93.4 93.2 96.9 99.4 82.8 94.4
MRNt 91.1 96.3 97.4 86.1 92.7 92.5 97.7 96.6 86.7 93.4 91.9 96.6 95.9 90.0 93.6

MRN (full) 92.5 97.5 97.9 87.5 93.8 93.6 98.6 98.6 87.3 94.5 94.4 98.3 99.9 89.1 95.5

Table 2: Classification accuracy on Office-Home with standard evaluation protocol (VGGnet).

Method 5% 10% 20%
A C P R Avg A C P R Avg A C P R Avg

STL (VGGnet) 35.8 31.2 67.8 62.5 49.3 51.0 40.7 75.0 68.8 58.9 56.1 54.6 80.4 71.8 65.7
MTFL [2] 40.1 30.4 61.5 59.5 47.9 50.3 35.0 66.3 65.0 54.2 55.2 38.8 69.1 70.0 58.3
RMTL [6] 42.3 32.8 62.3 60.6 49.5 49.7 34.6 65.9 64.6 53.7 55.2 39.2 69.6 70.5 58.6

MTRL [31] 42.7 33.3 62.9 61.3 50.1 51.6 36.3 67.7 66.3 55.5 55.8 39.9 70.2 71.2 59.3
DMTL-TF [27] 49.2 34.5 67.1 62.9 53.4 57.2 42.3 73.6 69.9 60.8 58.3 56.1 79.3 72.1 66.5

MRN8 52.7 34.7 70.1 67.6 56.3 59.1 42.7 75.1 72.8 62.4 58.4 55.6 80.4 72.4 66.7
MRNt 52.0 34.0 69.9 66.8 55.7 58.6 42.6 74.9 72.4 62.1 57.7 54.8 80.2 71.6 66.1

MRN (full) 53.3 36.4 70.5 67.7 57.0 59.9 42.7 76.3 73.0 63.0 58.5 55.6 80.7 72.8 66.9

only for binary-class problems, due to the difficulty in dealing with order-3 parameter tensors for
multi-class problems. We adopt one-vs-rest strategy to enable them working on multi-class datasets.

We follow the standard evaluation protocol [31, 5] for multi-task learning and randomly select 5%,
10%, and 20% samples from each task as training set and use the rest of the samples as test set. We
compare the average classification accuracy for all tasks based on five random experiments, where
standard errors are generally less than ±0.5%, which are not significant and thus are not reported for
space limitation. We conduct model selection for all methods using five-fold cross-validation on the
training set. For deep learning methods, we adopt AlexNet [16] and VGGnet [24], fix convolutional
layers conv1–conv5, fine-tune fully-connected layers fc6–fc7, and train classifier layer fc8 via
back-propagation. As the classifier layer is trained from scratch, we set its learning rate to be 10 times
that of the other layers. We use mini-batch stochastic gradient descent (SGD) with 0.9 momentum
and learning rate decaying strategy, and select learning rate between 10−5 and 10−2 by stepsize 10

1
2 .

5.2 Results

The multi-task classification results on the Office-Caltech, Office-Home and ImageCLEF-DA datasets
based on 5%, 10%, and 20% sampled training data are shown in Tables 1, 2 and 3, respectively. We
observe that the proposed MRN model significantly outperforms the comparison methods on most
multi-task problems. The substantial accuracy improvement validates that our multilinear relationship
networks through multilayer and multilinear relationship learning is able to learn both transferable
features and adaptive task relationships, which enables effective and robust multi-task deep learning.

We can make the following observations from the results. (1) Shallow multi-task learning methods
MTFL, RMTL, and MTRL outperform single-task deep learning method STL in most cases, which
confirms the efficacy of learning multiple tasks by exploiting shared structures. Among the shallow
multi-task methods, MTRL gives the best accuracies, showing that exploiting task relationship may
be more effective than extracting shared feature subspace for multi-task learning. It is worth noting
that, although STL cannot learn from knowledge transfer, it can be fine-tuned on each task to improve
performance, and thus when the number of training samples are large enough and when different
tasks are dissimilar enough (e.g. Office-Home dataset), STL may outperform shallow multi-task
learning methods, as evidenced by the results in Table 2. (2) Deep multi-task learning method
DMTL-TF outperforms shallow multi-task learning methods with deep features as input, which
confirms the importance of learning deep transferable features to enable knowledge transfer across
tasks. However, DMTL-TF only learns the shared feature subspace based on tensor factorization of
the network parameters, while the task relationships in multiple network layers are not captured. This
may result in negative-transfer in the feature layers [28] and under-transfer in the classifier layers.
Negative-transfer can be witnessed by comparing multi-task methods with single-task methods: if
multi-task learning methods yield lower accuracy in some of the tasks, then negative-transfer arises.
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Table 3: Classification accuracy on ImageCLEF-DA with standard evaluation protocol (AlexNet).

Method 5% 10% 20%
C I P B Avg C I P B Avg C I P B Avg

STL (AlexNet) 77.4 60.3 48.0 45.0 57.7 78.9 70.5 48.1 41.8 59.8 83.3 74.9 49.2 47.1 63.6
MTFL [2] 79.9 68.6 43.4 41.5 58.3 82.9 71.4 56.7 41.7 63.2 83.1 72.2 54.5 52.5 65.6
RMTL [6] 81.1 71.3 52.4 40.9 61.4 81.5 71.7 55.6 45.3 63.5 83.3 73.3 53.7 49.2 64.9

MTRL [31] 80.8 68.4 51.9 42.9 61.0 83.1 72.7 54.5 45.5 63.9 83.7 75.5 57.5 49.4 66.5
DMTL-TF [27] 87.9 70.0 58.1 34.1 62.5 89.1 82.1 58.7 48.0 69.5 91.7 80.0 63.2 54.1 72.2

MRN8 87.0 74.4 61.8 47.6 67.7 89.1 82.2 64.4 49.3 71.2 91.1 84.1 65.7 54.1 73.7
MRNt 88.5 73.5 63.3 51.1 69.1 88.0 83.1 67.4 54.8 73.3 91.1 83.5 65.7 55.7 74.0

MRN (full) 89.6 76.9 65.4 49.4 70.3 88.1 84.6 68.7 55.6 74.3 92.8 83.3 67.4 57.8 75.3

We go deeper into MRN by reporting the results of the two MRN variants: MRN8 and MRNt, all
significantly outperform the comparison methods but generally underperform MRN (full), which
verify our motivation that jointly learning transferable features and multilinear task relationships can
bridge multiple tasks more effectively. (1) The disadvantage of MRN8 is that it does not learn the
task relationship in the lower layers fc7, which are not safely transferable and may result in negative
transfer [28]. (2) The shortcoming of MRNt is that it does not learn the multilinear relationship of
features, classes and tasks, hence the learned relationships may only capture the task covariance
without capturing the feature covariance and class covariance, which may lose some intrinsic relations.

A W D C

A

W

D

C

(a) MTRL Relationship
A W D C

A

W

D

C

(b) MRN Relationship

C A W D

(c) DMTL-TF Features

C A W D

(d) MRN Features

Figure 3: Hinton diagram of task relationships (a)(b) and t-SNE embedding of deep features (c)(d).

5.3 Visualization Analysis

We show that MRN can learn more reasonable task relationships with deep features than MTRL with
shallow features, by visualizing the Hinton diagrams of task covariances learned by MTRL and MRN
(Σfc8

3 ) in Figures 3(a) and 3(b), respectively. Prior knowledge on task similarity in the Office-Caltech
dataset [12] describes that tasks A, W and D are more similar with each other while they are relatively
dissimilar to task C. MRN successfully captures this prior task relationship and enhances the task
correlation across dissimilar tasks, which enables stronger transferability for multi-task learning.
Furthermore, all tasks are positively correlated (green color) in MRN, implying that all tasks can
better reinforce each other. However, some of the tasks (D and C) are still negatively correlated (red
color) in MTRL, implying these tasks should be drawn far apart and cannot improve with each other.

We illustrate the feature transferability by visualizing in Figures 3(c) and 3(d) the t-SNE embeddings
[18] of the images in the Office-Caltech dataset with DMTL-TF features and MRN features, respec-
tively. Compared with DMTL-TF features, the data points with MRN features are discriminated better
across different categories, i.e., each category has small intra-class variance and large inter-class
margin; the data points are also aligned better across different tasks, i.e. the embeddings of different
tasks overlap well, implying that different tasks reinforce each other effectively. This verifies that with
multilinear relationship learning, MRN can learn more transferable features for multi-task learning.

6 Conclusion

This paper presented multilinear relationship networks (MRN) that integrate deep neural networks
with tensor normal priors over the network parameters of all task-specific layers, which model the task
relatedness through the covariance structures over tasks, classes and features to enable transfer across
related tasks. An effective learning algorithm was devised to jointly learn transferable features and
multilinear relationships. Experiments testify that MRN yields superior results on standard datasets.
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