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Abstract
Deep models have achieved impressive progress
in solving partial differential equations (PDEs).
A burgeoning paradigm is learning neural opera-
tors to approximate the input-output mappings of
PDEs. While previous deep models have explored
the multiscale architectures and various operator
designs, they are limited to learning the operators
as a whole in the coordinate space. In real phys-
ical science problems, PDEs are complex cou-
pled equations with numerical solvers relying on
discretization into high-dimensional coordinate
space, which cannot be precisely approximated
by a single operator nor efficiently learned due to
the curse of dimensionality. We present Latent
Spectral Models (LSM) toward an efficient and
precise solver for high-dimensional PDEs. Go-
ing beyond the coordinate space, LSM enables an
attention-based hierarchical projection network to
reduce the high-dimensional data into a compact
latent space in linear time. Inspired by classical
spectral methods in numerical analysis, we design
a neural spectral block to solve PDEs in the latent
space that approximates complex input-output
mappings via learning multiple basis operators,
enjoying nice theoretical guarantees for conver-
gence and approximation. Experimentally, LSM
achieves consistent state-of-the-art and yields a
relative gain of 11.5% averaged on seven bench-
marks covering both solid and fluid physics. Code
is available at https://github.com/thuml/Latent-
Spectral-Models.

1. Introduction
Extensive real-world phenomena are governed by underly-
ing partial differential equations (PDEs), such as turbulence,
atmospheric circulation and stress of deformed materials

1School of Software, BNRist, Tsinghua University.
Haixu Wu <whx20@mails.tsinghua.edu.cn>. Correspondence to:
Mingsheng Long <mingsheng@tsinghua.edu.cn>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

(Wazwaz, 2002; Roubı́ček, 2013). Thus, solving PDEs is the
shared foundation problem among many scientific and en-
gineering areas and can further benefit essential real-world
applications, like airflow modeling for airfoil design, atmo-
spheric simulation for weather forecasting and stress test
in civil engineering. Recently, deep models have achieved
great progress in various tasks (He et al., 2016; Devlin et al.,
2019; Liu et al., 2021). In view of the great nonlinear mod-
eling capability of deep models, they have been widely used
to solve PDEs by approximating the mapping between input-
output pairs in PDE-governed tasks (Hao et al., 2022; Raissi
et al., 2019; Lu et al., 2021; Li et al., 2021; Cao, 2021).

Concretely, in real-world applications, PDEs are usually
discretized into high-dimensional coordinate spaces, such
as point cloud, mesh and grid. For example, as shown in
Figure 1(c), the fluid simulation task governed by spatiotem-
poral continuous Navier-Stokes equations (Temam, 2001)
can be discretized into successive grid frames, where the di-
mension of coordinate space is equal to the number of pixels
in all frames. However, this high-dimensionality will bring
thorny challenges to the solving process. Firstly, accord-
ing to the phenomenon of curse of dimensionality (Trunk,
1979; Han et al., 2017), the solving process will cause huge
computation cost in the high-dimensional space. Secondly,
due to intricate interactions among multiple physical vari-
ates of coupled equations in high-dimensional coordinate
space, the input-output mappings will be too complex to be
approximated by a rough deep model (Trunk, 1979; Karni-
adakis et al., 2021). Thus, how to efficiently and precisely
approximate complex mappings between high-dimensional
input-output pairs is the key problem to solving PDEs.

In previous works, the well-acknowledged paradigm is to
learn neural operators to approximate the complex input-
output mappings (Li et al., 2020; Lu et al., 2021). Extensive
designs of operators have been proposed, such as approx-
imating the integral operator in Fourier space (Li et al.,
2021; Tran et al., 2023), capturing the global information by
Transformers (Vaswani et al., 2017; Cao, 2021; Liu et al.,
2022) and etc. Note that all these designs attempt to learn
the operator as a whole to approximate input-output map-
pings. However, in high-dimensional space, the input-output
mappings can be too complex to be covered by a single op-
erator, which may suffer from optimization problems and
limited performance. Besides, some works introduce the
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Figure 1. Examples of PDE-governed tasks, including solid (left) and fluid (right) physics, whose solving processes are approximating
complex input-output mappings in discretized high-dimensional coordinate spaces. All the tasks are covered in our experiments.

multiscale architecture into deep models (Wen et al., 2021;
Rahman et al., 2022). Although they can downsample the
input into various scales, they are still limited to learning
operators in the coordinate space, thereby still undergoing
high-dimensionality challenges to some extent.

To tackle the above challenges, we start from the inherent
property of PDE-governed tasks. It is observed that all their
inputs and outputs follow certain PDE constraints, indicat-
ing that these high-dimensional data can be projected to
a more compact latent space. Based on this insight, we
propose the Latent Spectral Models (LSM) with a hierar-
chical projection network. Different from solely downsam-
pling data like previous methods, by leveraging the atten-
tion mechanism with latent tokens as physical prompts, our
projection network can reduce the high-dimensional data
into compact latent space in linear time, which will also
highlight the physics properties and remove the redundant
coordinate information. Benefiting from this projection,
LSM can get rid of the unwieldy coordinate space and solve
PDEs in the latent space. Besides, to tackle the complex
mappings, inspired by the classical spectral methods in nu-
merical analysis (Gottlieb & Orszag, 1977), we present the
neural spectral block to decompose complex nonlinear map-
pings into multiple basis operators, which also holds the uni-
versal approximation capacity with theoretical guarantees.
Experimentally, LSM achieves consistent state-of-the-art on
seven well-established benchmarks and also presents good
transferability between PDEs of different conditions. Our
contributions are summarized as follows:

• Instead of solving PDEs in the coordinate space, we
present the LSM with a hierarchical projection network,
which can reduce high-dimensional data into compact
latent space with linear complexity.

• Inspired by spectral methods, we propose the neural
spectral block to tackle complex mappings by learning
multiple basis operators, which holds the universal
approximation capacity under theoretical guarantees.

• LSM achieves an 11.5% relative error reduction with

respect to the previous state-of-the-art models averaged
from seven PDE-solving benchmarks, covering repre-
sentative PDEs in both solid and fluid physics, and also
presents favorable efficiency and transferability.

2. Preliminaries
2.1. Spectral Methods

Spectral methods are widely acknowledged in applied math-
ematics and scientific computing in solving PDEs numeri-
cally (Gottlieb & Orszag, 1977; Fornberg, 1998; Kopriva,
2009). The key idea is to approximate the solution f of a
certain PDE as a finite sum of N orthogonal basis functions
{f1, f2, · · · , fN}. Concretely, the approximation solution
fN can be formulized as follows:

f ≈ fN =

N∑

i=1

wifi, (1)

where N is the hyperparameter and wi is the coefficient
for fi, i ∈ {1, · · · , N}. With the above approximation, the
solving process can be simplified as optimizing coefficients
{w1, w2, · · · , wN} to make fN satisfy the PDE better. The
spectral methods hold nice approximation and convergence
properties in solving PDEs (Gottlieb & Orszag, 1977).

2.2. Deep Models for PDEs

Due to the immense importance in extensive scientific and
engineering areas, solving PDEs has attached great interest.
Since it is usually impossible to work out explicit formu-
las for PDE solutions, many numerical methods have been
explored (Ŝolı́n, 2005; Grossmann et al., 2007). However,
these classical methods need to recalculate for different in-
stances, such as different initial velocity fields in fluid simu-
lation or different meshes in solid stress estimation. Besides,
these classical methods also suffer from poor computation
efficiency, especially in processing the high-dimensional
data. Recently, various deep models have been developed.
The mainstream works can be roughly categorized into
equation-constraint and operator-learning methods.

2



Solving High-Dimensional PDEs with Latent Spectral Models

Equation-constraint methods. This category of works
directly parameterizes the PDE solution as a deep model
and formalizes equation constraints, e.g. the PDEs and their
corresponding initial and boundary conditions, as the objec-
tive function (Weinan & Yu, 2017; Raissi et al., 2019; Wang
et al., 2020a;b). By doing this, they can directly obtain
the solution for a certain PDE through model optimization.
However, these methods require the exact formalization of
underlying PDEs, which is hard to acquire in real-world ap-
plications. Thus, instead of the equation-constraint methods,
this paper focuses on the operator-learning paradigm, which
does not need explicit PDE formalizations.

Operator-learning methods. This paradigm attempts to
present deep models with novel architectures to approximate
the mapping between input-output pairs, such as from past
observations of fluid velocity to future prediction or from the
structure of elastic material to inner stress. Technically, by
rewriting inputs and outputs as functions w.r.t. coordinates,
the solving process can be formulized as learning operators
between input-output Banach spaces.

Some previous works have presented various designs for
operators. Lu et al. present the DeepONet as a branch-trunk
architecture derived from the universal approximation the-
orem (Chen & Chen, 1995). FNO (Li et al., 2021) adopts
the linear transformation in the Fourier domain to approx-
imate the integral operator. Further, geo-FNO (Li et al.,
2022) is proposed to handle tasks with complex geometrics
(e.g. point cloud) by transforming the data into and back
from a latent uniform mesh. F-FNO (Tran et al., 2023)
improves FNO with the separable Fourier transform and
residual connection. KNO (Xiong et al., 2023a) enhances
the temporal dynamic modeling of FNO based on the Koop-
man theory (Brunton et al., 2021). Besides, MWT (Gupta
et al., 2021) introduces the multiwavelet-based operator,
which can capture complex dependencies at various scales.
SNO (Fanaskov & Oseledets, 2022) reformulates the input
and output functions as coefficients of basis functions and
adopts the neural network to learn the mapping between
coefficients. Recently, Cao explored the self-attention mech-
anism (Vaswani et al., 2017) and presented a Galerkin-type
attention with linear complexity for solving PDEs. Unlike
previous methods, instead of approximating mappings with
a single operator, LSM decomposes the complex nonlinear
operator into several basis operators by the neural spectral
block, thereby benefiting complex PDEs solving.

Other works attempt to enhance deep models with the mul-
tiscale architecture. U-FNO (Wen et al., 2021) and U-NO
(Rahman et al., 2022) integrate U-Net (Ronneberger et al.,
2015) and FNO to empower the model with multiscale
processing capability. HT-Net (Liu et al., 2022) incorpo-
rates the advanced Transformers (Vaswani et al., 2017; Liu
et al., 2021) into a hierarchical framework to capture high-

frequency components in PDEs. In contrast to previous
methods, LSM presents an attention-based hierarchical pro-
jection network to project high-dimensional data into com-
pact latent space, which is free from the redundant coordi-
nate space and focuses on the essential physical information.

3. Latent Spectral Models
As aforementioned, we highlight the difficulties of solv-
ing high-dimensional PDEs as huge computation costs and
complex input-output mappings. To tackle these challenges,
we present LSM with a hierarchical projection network to
project the high-dimensional data into compact latent space
with favorable efficiency. Further, inspired by spectral meth-
ods, we design the neural spectral block to approximate
complex mappings with multiple basis operators, which
holds nice approximation and convergence properties.

Problem setup. For a PDE-governed task, given the coor-
dinates in a bounded open set D ⊂ Rd, both inputs and
outputs can be rewritten as functions w.r.t. coordinates,
which are in the Banach spaces X = X (D;Rdx) and
Y = Y(D;Rdy ) respectively (Lu et al., 2021; Li et al.,
2021). Rdx and Rdy are the range of input and output func-
tions. For example, as Figure 2 shows, both inputs and
outputs are in the regular grid. Thus, D is a finite set of grid
points within the rectangle area in R2. For each coordinate
s ∈ D, x(s) ∈ Rdx and y(s) ∈ Rdy represent the input and
output function values at position s, corresponding to pixel
values in the case of Figure 2. With the above formalization,
the solving process is to approximate the optimal operator
F : X → Y with deep model Fθ, which is learned from
observed samples {(x,y)} and θ ∈ Θ is the parameter set.

Overall framework. Instead of directly solving PDEs in
high-dimensional coordinate space like previous methods,
by introducing latent space, LSM can get rid of redundant
coordinate information. As shown in Figure 2, LSM breaks
the PDE solving process into three modules as follows:

Fθ = FθLatentToCoord ◦ FθSolve ◦ FθCoordToLatent , (2)

where ◦ denotes the operator composition. In LSM, the
hierarchical projection network provides an attention-based
instantiation for FθCoordToLatent : X → TX and FθLatentToCoord :
TY → Y , where TX (D;Rdlatent) and TY(D;Rdlatent) are the
latent input-output Banach spaces respectively. And the
neural spectral block instantiates FθSolve : TX → TY to ap-
proximate complex nonlinear mappings in the latent space.

3.1. Hierarchical Projection Network

To make the solving process free from unwieldy coordinate
space, we present the hierarchical projection network by
embedding attention-based projectors in a patchified multi-
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1. Introduction
Extensive real-world applications and phenomena are gov-
erned by underlying partial differential equations (PDEs),
such as aviation, meteorology, and civil engineering.

2. Preliminaries
2.1. Spectral Methods

Spectral methods are widely-acknowledged in applied math-
ematics and scientific computing in solving partial differ-
ential equations (PDEs) numerically (Gottlieb & Orszag,
1977; Fornberg, 1998; Kopriva, 2009). The key idea is to ap-
proximate the solution f of a certain PDE as a finite sum of
N orthogonal basis functions {f1, f2, · · · , fN}, where the
approximation solution fN can be formalized as follows:

f ⇡ fN =
NX

i=1

wifi, (1)

where N is the hyper-parameter and wi is the coefficient
for fi, i 2 {1, · · · , N}. With the above approximation, the
problem can be simplified as the optimization of coefficients
{w1, w2, · · · , wN} to make fN satisfy the PDE better. The
spectral methods hold great approximation and convergence
properties in solving PDEs (Gottlieb & Orszag, 1977).

2.2. Deep Models for PDEs

Due to the immense importance in extensive scientific and
engineering areas, solving PDEs has attached great interest.
Since it is usually impossible to work out explicit formulas
for PDEs solutions, many numerical methods have been
explored (Ŝolı́n, 2005; Grossmann et al., 2007). However,
these classical methods are designed to solve one specific in-
stance and are hard to generalize to new scenarios. Besides,
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these classical methods also suffer from poor computation
efficiency, especially in processing high-dimensional data.
Recently, various deep models have been developed. The
mainstream works can be roughly categorized into equation-
constraint and operator-learning methods.

Equation-constraint methods. This category of works
directly parameterizes the PDE solution as a deep model
and formalizes equation constraints, e.g. the PDEs and their
corresponding initial and boundary conditions, as the ob-
jective function (Weinan & Yu, 2017; Raissi et al., 2019;
Wang et al., 2020a;b). By doing this, they can directly ob-
tain the solution for a certain PDE with model optimization.
However, these methods require the exact formalization of
underlying PDEs, which is hard to acquire in real-world
applications. Besides, calculating the equation constraints
will also make them suffer from poor generality and effi-
ciency as classical numerical methods. Thus, instead of the
objective function, this paper focuses on the architecture
design, namely the operator-learning paradigm.

Operator-learning methods. This paradigm attempts to
propose deep models with novel architectures to learn the
mapping from scientific information to PDE solutions, such
as from past observations of fluid velocity to future predic-
tion or from the structure of elastic material to inner stress.

Technically, given the coordinates in a bounded open set
D ⇢ Rd, the inputs and outputs of deep models can be
re-written as functions w.r.t. the coordinates, which are in
the Banach spaces X = X (D; Rdx) and Y = Y(D; Rdy )
respectively. Rdx and Rdy are the range of input and output
functions. Thus, the PDE-governed task is to approximate
the optimal operator F : X ! Y with deep model learned
from observed input-output pairs. Concretely, suppose we
have collected M observations {xi, yi}M

i=1, where xi � µ
is one instance of i.i.d. input functions with the probability
measure µ supported on A. Given a metric L : Y ⇥Y ! R,
the optimization process can be formalized as:

min
✓2�

Ex�µ

�
L
�
F✓(x), F(x)

��
, (2)

where F✓ is the learned deep model and ✓ is selected from
the model parameter space ⇥. Optimized purely from data,
these methods do not require any knowledge of underlying
PDEs and focus more on the architecture design.
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efficiency, especially in processing high-dimensional data.
Recently, various deep models have been developed. The
mainstream works can be roughly categorized into equation-
constraint and operator-learning methods.

Equation-constraint methods. This category of works
directly parameterizes the PDE solution as a deep model
and formalizes equation constraints, e.g. the PDEs and their
corresponding initial and boundary conditions, as the ob-
jective function (Weinan & Yu, 2017; Raissi et al., 2019;
Wang et al., 2020a;b). By doing this, they can directly ob-
tain the solution for a certain PDE with model optimization.
However, these methods require the exact formalization of
underlying PDEs, which is hard to acquire in real-world
applications. Besides, calculating the equation constraints
will also make them suffer from poor generality and effi-
ciency as classical numerical methods. Thus, instead of the
objective function, this paper focuses on the architecture
design, namely the operator-learning paradigm.

Operator-learning methods. This paradigm attempts to
propose deep models with novel architectures to learn the
mapping from scientific information to PDE solutions, such
as from past observations of fluid velocity to future predic-
tion or from the structure of elastic material to inner stress.

Technically, given the coordinates in a bounded open set
D ⇢ Rd, the inputs and outputs of deep models can be
re-written as functions w.r.t. the coordinates, which are in
the Banach spaces X = X (D; Rdx) and Y = Y(D; Rdy )
respectively. Rdx and Rdy are the range of input and output
functions. Thus, the PDE-governed task is to approximate
the optimal operator F : X ! Y with deep model learned
from observed input-output pairs. Concretely, suppose we
have collected M observations {xi, yi}M

i=1, where xi � µ
is one instance of i.i.d. input functions with the probability
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the optimization process can be formalized as:
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where F✓ is the learned deep model and ✓ is selected from
the model parameter space ⇥. Optimized purely from data,
these methods do not require any knowledge of underlying
PDEs and focus more on the architecture design.
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these methods do not require any knowledge of underlying
PDEs and focus more on the architecture design.
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1. Introduction
Extensive real-world applications and phenomena are gov-
erned by underlying partial differential equations (PDEs),
such as aviation, meteorology, and civil engineering.

2. Preliminaries
2.1. Spectral Methods

Spectral methods are widely-acknowledged in applied math-
ematics and scientific computing in solving partial differ-
ential equations (PDEs) numerically (Gottlieb & Orszag,
1977; Fornberg, 1998; Kopriva, 2009). The key idea is to ap-
proximate the solution f of a certain PDE as a finite sum of
N orthogonal basis functions {f1, f2, · · · , fN}, where the
approximation solution fN can be formalized as follows:

f ⇡ fN =
NX

i=1

wifi, (1)

where N is the hyper-parameter and wi is the coefficient
for fi, i 2 {1, · · · , N}. With the above approximation, the
problem can be simplified as the optimization of coefficients
{w1, w2, · · · , wN} to make fN satisfy the PDE better. The
spectral methods hold great approximation and convergence
properties in solving PDEs (Gottlieb & Orszag, 1977).

2.2. Deep Models for PDEs

Due to the immense importance in extensive scientific and
engineering areas, solving PDEs has attached great interest.
Since it is usually impossible to work out explicit formulas
for PDEs solutions, many numerical methods have been
explored (Ŝolı́n, 2005; Grossmann et al., 2007). However,
these classical methods are designed to solve one specific in-
stance and are hard to generalize to new scenarios. Besides,
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these classical methods also suffer from poor computation
efficiency, especially in processing high-dimensional data.
Recently, various deep models have been developed. The
mainstream works can be roughly categorized into equation-
constraint and operator-learning methods.

Equation-constraint methods. This category of works
directly parameterizes the PDE solution as a deep model
and formalizes equation constraints, e.g. the PDEs and their
corresponding initial and boundary conditions, as the ob-
jective function (Weinan & Yu, 2017; Raissi et al., 2019;
Wang et al., 2020a;b). By doing this, they can directly ob-
tain the solution for a certain PDE with model optimization.
However, these methods require the exact formalization of
underlying PDEs, which is hard to acquire in real-world
applications. Besides, calculating the equation constraints
will also make them suffer from poor generality and effi-
ciency as classical numerical methods. Thus, instead of the
objective function, this paper focuses on the architecture
design, namely the operator-learning paradigm.

Operator-learning methods. This paradigm attempts to
propose deep models with novel architectures to learn the
mapping from scientific information to PDE solutions, such
as from past observations of fluid velocity to future predic-
tion or from the structure of elastic material to inner stress.

Technically, given the coordinates in a bounded open set
D ⇢ Rd, the inputs and outputs of deep models can be
re-written as functions w.r.t. the coordinates, which are in
the Banach spaces X = X (D; Rdx) and Y = Y(D; Rdy )
respectively. Rdx and Rdy are the range of input and output
functions. Thus, the PDE-governed task is to approximate
the optimal operator F : X ! Y with deep model learned
from observed input-output pairs. Concretely, suppose we
have collected M observations {xi, yi}M

i=1, where xi � µ
is one instance of i.i.d. input functions with the probability
measure µ supported on A. Given a metric L : Y ⇥Y ! R,
the optimization process can be formalized as:

min
✓2�

Ex�µ

�
L
�
F✓(x), F(x)

��
, (2)

where F✓ is the learned deep model and ✓ is selected from
the model parameter space ⇥. Optimized purely from data,
these methods do not require any knowledge of underlying
PDEs and focus more on the architecture design.
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and formalizes equation constraints, e.g. the PDEs and their
corresponding initial and boundary conditions, as the ob-
jective function (Weinan & Yu, 2017; Raissi et al., 2019;
Wang et al., 2020a;b). By doing this, they can directly ob-
tain the solution for a certain PDE with model optimization.
However, these methods require the exact formalization of
underlying PDEs, which is hard to acquire in real-world
applications. Besides, calculating the equation constraints
will also make them suffer from poor generality and effi-
ciency as classical numerical methods. Thus, instead of the
objective function, this paper focuses on the architecture
design, namely the operator-learning paradigm.

Operator-learning methods. This paradigm attempts to
propose deep models with novel architectures to learn the
mapping from scientific information to PDE solutions, such
as from past observations of fluid velocity to future predic-
tion or from the structure of elastic material to inner stress.

Technically, given the coordinates in a bounded open set
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where F✓ is the learned deep model and ✓ is selected from
the model parameter space ⇥. Optimized purely from data,
these methods do not require any knowledge of underlying
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explored (Ŝolı́n, 2005; Grossmann et al., 2007). However,
these classical methods are designed to solve one specific in-
stance and are hard to generalize to new scenarios. Besides,

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

these classical methods also suffer from poor computation
efficiency, especially in processing high-dimensional data.
Recently, various deep models have been developed. The
mainstream works can be roughly categorized into equation-
constraint and operator-learning methods.

Equation-constraint methods. This category of works
directly parameterizes the PDE solution as a deep model
and formalizes equation constraints, e.g. the PDEs and their
corresponding initial and boundary conditions, as the ob-
jective function (Weinan & Yu, 2017; Raissi et al., 2019;
Wang et al., 2020a;b). By doing this, they can directly ob-
tain the solution for a certain PDE with model optimization.
However, these methods require the exact formalization of
underlying PDEs, which is hard to acquire in real-world
applications. Besides, calculating the equation constraints
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ciency as classical numerical methods. Thus, instead of the
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these classical methods also suffer from poor computation
efficiency, especially in processing high-dimensional data.
Recently, various deep models have been developed. The
mainstream works can be roughly categorized into equation-
constraint and operator-learning methods.

Equation-constraint methods. This category of works
directly parameterizes the PDE solution as a deep model
and formalizes equation constraints, e.g. the PDEs and their
corresponding initial and boundary conditions, as the ob-
jective function (Weinan & Yu, 2017; Raissi et al., 2019;
Wang et al., 2020a;b). By doing this, they can directly ob-
tain the solution for a certain PDE with model optimization.
However, these methods require the exact formalization of
underlying PDEs, which is hard to acquire in real-world
applications. Besides, calculating the equation constraints
will also make them suffer from poor generality and effi-
ciency as classical numerical methods. Thus, instead of the
objective function, this paper focuses on the architecture
design, namely the operator-learning paradigm.

Operator-learning methods. This paradigm attempts to
propose deep models with novel architectures to learn the
mapping from scientific information to PDE solutions, such
as from past observations of fluid velocity to future predic-
tion or from the structure of elastic material to inner stress.

Technically, given the coordinates in a bounded open set
D ⇢ Rd, the inputs and outputs of deep models can be
re-written as functions w.r.t. the coordinates, which are in
the Banach spaces X = X (D; Rdx) and Y = Y(D; Rdy )
respectively. Rdx and Rdy are the range of input and output
functions. Thus, the PDE-governed task is to approximate
the optimal operator F : X ! Y with deep model learned
from observed input-output pairs. Concretely, suppose we
have collected M observations {xi, yi}M

i=1, where xi � µ
is one instance of i.i.d. input functions with the probability
measure µ supported on A. Given a metric L : Y ⇥Y ! R,
the optimization process can be formalized as:
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where F✓ is the learned deep model and ✓ is selected from
the model parameter space ⇥. Optimized purely from data,
these methods do not require any knowledge of underlying
PDEs and focus more on the architecture design.
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corresponding initial and boundary conditions, as the ob-
jective function (Weinan & Yu, 2017; Raissi et al., 2019;
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underlying PDEs, which is hard to acquire in real-world
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will also make them suffer from poor generality and effi-
ciency as classical numerical methods. Thus, instead of the
objective function, this paper focuses on the architecture
design, namely the operator-learning paradigm.

Operator-learning methods. This paradigm attempts to
propose deep models with novel architectures to learn the
mapping from scientific information to PDE solutions, such
as from past observations of fluid velocity to future predic-
tion or from the structure of elastic material to inner stress.

Technically, given the coordinates in a bounded open set
D ⇢ Rd, the inputs and outputs of deep models can be
re-written as functions w.r.t. the coordinates, which are in
the Banach spaces X = X (D; Rdx) and Y = Y(D; Rdy )
respectively. Rdx and Rdy are the range of input and output
functions. Thus, the PDE-governed task is to approximate
the optimal operator F : X ! Y with deep model learned
from observed input-output pairs. Concretely, suppose we
have collected M observations {xi, yi}M

i=1, where xi � µ
is one instance of i.i.d. input functions with the probability
measure µ supported on A. Given a metric L : Y ⇥Y ! R,
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will also make them suffer from poor generality and effi-
ciency as classical numerical methods. Thus, instead of the
objective function, this paper focuses on the architecture
design, namely the operator-learning paradigm.

Operator-learning methods. This paradigm attempts to
propose deep models with novel architectures to learn the
mapping from scientific information to PDE solutions, such
as from past observations of fluid velocity to future predic-
tion or from the structure of elastic material to inner stress.

Technically, given the coordinates in a bounded open set
D ⇢ Rd, the inputs and outputs of deep models can be
re-written as functions w.r.t. the coordinates, which are in
the Banach spaces X = X (D; Rdx) and Y = Y(D; Rdy )
respectively. Rdx and Rdy are the range of input and output
functions. Thus, the PDE-governed task is to approximate
the optimal operator F : X ! Y with deep model learned
from observed input-output pairs. Concretely, suppose we
have collected M observations {xi, yi}M

i=1, where xi � µ
is one instance of i.i.d. input functions with the probability
measure µ supported on A. Given a metric L : Y ⇥Y ! R,
the optimization process can be formalized as:

min
✓2�

Ex�µ

�
L
�
F✓(x), F(x)

��
, (2)

where F✓ is the learned deep model and ✓ is selected from
the model parameter space ⇥. Optimized purely from data,
these methods do not require any knowledge of underlying
PDEs and focus more on the architecture design.
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Spectral methods are widely-acknowledged in applied math-
ematics and scientific computing in solving partial differ-
ential equations (PDEs) numerically (Gottlieb & Orszag,
1977; Fornberg, 1998; Kopriva, 2009). The key idea is to ap-
proximate the solution f of a certain PDE as a finite sum of
N orthogonal basis functions {f1, f2, · · · , fN}, where the
approximation solution fN can be formalized as follows:

f ⇡ fN =
NX

i=1

wifi, (1)

where N is the hyper-parameter and wi is the coefficient
for fi, i 2 {1, · · · , N}. With the above approximation, the
problem can be simplified as the optimization of coefficients
{w1, w2, · · · , wN} to make fN satisfy the PDE better. The
spectral methods hold great approximation and convergence
properties in solving PDEs (Gottlieb & Orszag, 1977).

2.2. Deep Models for PDEs

Due to the immense importance in extensive scientific and
engineering areas, solving PDEs has attached great interest.
Since it is usually impossible to work out explicit formulas
for PDEs solutions, many numerical methods have been
explored (Ŝolı́n, 2005; Grossmann et al., 2007). However,
these classical methods are designed to solve one specific in-
stance and are hard to generalize to new scenarios. Besides,
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these classical methods also suffer from poor computation
efficiency, especially in processing high-dimensional data.
Recently, various deep models have been developed. The
mainstream works can be roughly categorized into equation-
constraint and operator-learning methods.

Equation-constraint methods. This category of works
directly parameterizes the PDE solution as a deep model
and formalizes equation constraints, e.g. the PDEs and their
corresponding initial and boundary conditions, as the ob-
jective function (Weinan & Yu, 2017; Raissi et al., 2019;
Wang et al., 2020a;b). By doing this, they can directly ob-
tain the solution for a certain PDE with model optimization.
However, these methods require the exact formalization of
underlying PDEs, which is hard to acquire in real-world
applications. Besides, calculating the equation constraints
will also make them suffer from poor generality and effi-
ciency as classical numerical methods. Thus, instead of the
objective function, this paper focuses on the architecture
design, namely the operator-learning paradigm.

Operator-learning methods. This paradigm attempts to
propose deep models with novel architectures to learn the
mapping from scientific information to PDE solutions, such
as from past observations of fluid velocity to future predic-
tion or from the structure of elastic material to inner stress.

Technically, given the coordinates in a bounded open set
D ⇢ Rd, the inputs and outputs of deep models can be
re-written as functions w.r.t. the coordinates, which are in
the Banach spaces X = X (D; Rdx) and Y = Y(D; Rdy )
respectively. Rdx and Rdy are the range of input and output
functions. Thus, the PDE-governed task is to approximate
the optimal operator F : X ! Y with deep model learned
from observed input-output pairs. Concretely, suppose we
have collected M observations {xi, yi}M

i=1, where xi � µ
is one instance of i.i.d. input functions with the probability
measure µ supported on A. Given a metric L : Y ⇥Y ! R,
the optimization process can be formalized as:
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where F✓ is the learned deep model and ✓ is selected from
the model parameter space ⇥. Optimized purely from data,
these methods do not require any knowledge of underlying
PDEs and focus more on the architecture design.
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Figure 3. Comparison in approximating complex mapping. For clearness, we only keep key components designed for approximation.
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3.2. Neural Spectral Block

Benefitting from the hierarchical projection network, we
can solve PDEs by approximating the complex mapping
between latent input-output tokens as shown in Eq. (5).

As presented in Figure 3, instead of learning a single op-
erator, inspired by the classic spectral methods (Section
2.1), we present the neural spectral block by decomposing
complex mappings into several basis operators, namely:

F✓Solve =
NX

i=1

wiF✓Solve,i , (6)

where N is the hyperparameter and {F✓Solve,i}N
i=1 are or-

thogonal basis operators with learnable parameters {wi}N
i=1.

Following the classical design in spectral methods (Jackson,

1934; Tolstov, 2012), we select the trigonometric basis oper-
ators. Thus, for T x : D ! Rdlatent 2 TX , 8s 2 D, we define
these basis operators with hyperparameter N 0 as follows:

F✓Solve,(2k�1)

�
T x(s)

�
= sin

�
kT x(s)

�

F✓Solve,(2k)

�
T x(s)

�
= cos

�
kT x(s)

�
,

(7)

where k 2 {1, · · · , N 0} and N = 2N 0 is even. Technically,
given the input latent token Tx 2 Rdlatent , the output latent
token Ty of neural spectral block is calculated as follows:

Ty = Tx + w0 + wsin

2
64

sin(Tx)
...

sin(N 0Tx)

3
75+ wcos

2
64

cos(Tx)
...

cos(N 0Tx)

3
75 ,

(8)

where w0 2 Rdlatent ,wsin 2 R1⇥N 0
,wcos 2 R1⇥N 0

are
learnable parameters. Residual connection is also adopted to
facilitate optimization (He et al., 2016). We summarize the
process of the neural spectral block as Ty = Solve(Tx),
which will be conducted to the latent token of every patch
at every scale as Eq. (5). Also according to the analysis
in Eq. (5), like latent tokens, w0,wsin,wcos is shared in
patches of the same scale but independent in different scales.

Since PDE constraints have already been involved in input-
output pairs, during the model training, w0,wsin,wcos will
be optimized to satisfy the PDEs better, namely solving
PDEs in latent space. Besides, the neural spectral block also
holds the universal approximation capacity with favourable
convergence property guaranteed by the following theorems.

Assumption 3.1 (Finite Coordinate Set). In real-world ap-
plications, the analysis or numerical simulation of the PDE-
governed task is mainly in the regular grid, mesh or point
cloud, where the input is only observed on finite coordinates.
Thus, to simplify the following theoretical derivations, we
assume that D = {s1, · · · , sM} is a finite set with size M ,
e.g. for a frame with height H and weight W , M is H ⇥W .

Remark 3.2 (Simplification w.r.t Finite Coordinate Set).
By assuming that D is a finite set with size M , the learning
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2. Preliminaries
2.1. Spectral Methods

Spectral methods are widely-acknowledged in applied math-
ematics and scientific computing in solving partial differ-
ential equations (PDEs) numerically (Gottlieb & Orszag,
1977; Fornberg, 1998; Kopriva, 2009). The key idea is to ap-
proximate the solution f of a certain PDE as a finite sum of
N orthogonal basis functions {f1, f2, · · · , fN}, where the
approximation solution fN can be formalized as follows:

f ⇡ fN =
NX

i=1

wifi, (1)

where N is the hyper-parameter and wi is the coefficient
for fi, i 2 {1, · · · , N}. With the above approximation, the
problem can be simplified as the optimization of coefficients
{w1, w2, · · · , wN} to make fN satisfy the PDE better. The
spectral methods hold great approximation and convergence
properties in solving PDEs (Gottlieb & Orszag, 1977).

2.2. Deep Models for PDEs

Due to the immense importance in extensive scientific and
engineering areas, solving PDEs has attached great interest.
Since it is usually impossible to work out explicit formulas
for PDEs solutions, many numerical methods have been
explored (Ŝolı́n, 2005; Grossmann et al., 2007). However,
these classical methods are designed to solve one specific in-
stance and are hard to generalize to new scenarios. Besides,
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these classical methods also suffer from poor computation
efficiency, especially in processing high-dimensional data.
Recently, various deep models have been developed. The
mainstream works can be roughly categorized into equation-
constraint and operator-learning methods.

Equation-constraint methods. This category of works
directly parameterizes the PDE solution as a deep model
and formalizes equation constraints, e.g. the PDEs and their
corresponding initial and boundary conditions, as the ob-
jective function (Weinan & Yu, 2017; Raissi et al., 2019;
Wang et al., 2020a;b). By doing this, they can directly ob-
tain the solution for a certain PDE with model optimization.
However, these methods require the exact formalization of
underlying PDEs, which is hard to acquire in real-world
applications. Besides, calculating the equation constraints
will also make them suffer from poor generality and effi-
ciency as classical numerical methods. Thus, instead of the
objective function, this paper focuses on the architecture
design, namely the operator-learning paradigm.

Operator-learning methods. This paradigm attempts to
propose deep models with novel architectures to learn the
mapping from scientific information to PDE solutions, such
as from past observations of fluid velocity to future predic-
tion or from the structure of elastic material to inner stress.

Technically, given the coordinates in a bounded open set
D ⇢ Rd, the inputs and outputs of deep models can be
re-written as functions w.r.t. the coordinates, which are in
the Banach spaces X = X (D; Rdx) and Y = Y(D; Rdy )
respectively. Rdx and Rdy are the range of input and output
functions. Thus, the PDE-governed task is to approximate
the optimal operator F : X ! Y with deep model learned
from observed input-output pairs. Concretely, suppose we
have collected M observations {xi, yi}M

i=1, where xi � µ
is one instance of i.i.d. input functions with the probability
measure µ supported on A. Given a metric L : Y ⇥Y ! R,
the optimization process can be formalized as:

min
✓2�

Ex�µ

�
L
�
F✓(x), F(x)

��
, (2)

where F✓ is the learned deep model and ✓ is selected from
the model parameter space ⇥. Optimized purely from data,
these methods do not require any knowledge of underlying
PDEs and focus more on the architecture design.
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ematics and scientific computing in solving partial differ-
ential equations (PDEs) numerically (Gottlieb & Orszag,
1977; Fornberg, 1998; Kopriva, 2009). The key idea is to ap-
proximate the solution f of a certain PDE as a finite sum of
N orthogonal basis functions {f1, f2, · · · , fN}, where the
approximation solution fN can be formalized as follows:

f ⇡ fN =
NX

i=1

wifi, (1)

where N is the hyper-parameter and wi is the coefficient
for fi, i 2 {1, · · · , N}. With the above approximation, the
problem can be simplified as the optimization of coefficients
{w1, w2, · · · , wN} to make fN satisfy the PDE better. The
spectral methods hold great approximation and convergence
properties in solving PDEs (Gottlieb & Orszag, 1977).

2.2. Deep Models for PDEs

Due to the immense importance in extensive scientific and
engineering areas, solving PDEs has attached great interest.
Since it is usually impossible to work out explicit formulas
for PDEs solutions, many numerical methods have been
explored (Ŝolı́n, 2005; Grossmann et al., 2007). However,
these classical methods are designed to solve one specific in-
stance and are hard to generalize to new scenarios. Besides,
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these classical methods also suffer from poor computation
efficiency, especially in processing high-dimensional data.
Recently, various deep models have been developed. The
mainstream works can be roughly categorized into equation-
constraint and operator-learning methods.

Equation-constraint methods. This category of works
directly parameterizes the PDE solution as a deep model
and formalizes equation constraints, e.g. the PDEs and their
corresponding initial and boundary conditions, as the ob-
jective function (Weinan & Yu, 2017; Raissi et al., 2019;
Wang et al., 2020a;b). By doing this, they can directly ob-
tain the solution for a certain PDE with model optimization.
However, these methods require the exact formalization of
underlying PDEs, which is hard to acquire in real-world
applications. Besides, calculating the equation constraints
will also make them suffer from poor generality and effi-
ciency as classical numerical methods. Thus, instead of the
objective function, this paper focuses on the architecture
design, namely the operator-learning paradigm.

Operator-learning methods. This paradigm attempts to
propose deep models with novel architectures to learn the
mapping from scientific information to PDE solutions, such
as from past observations of fluid velocity to future predic-
tion or from the structure of elastic material to inner stress.

Technically, given the coordinates in a bounded open set
D ⇢ Rd, the inputs and outputs of deep models can be
re-written as functions w.r.t. the coordinates, which are in
the Banach spaces X = X (D; Rdx) and Y = Y(D; Rdy )
respectively. Rdx and Rdy are the range of input and output
functions. Thus, the PDE-governed task is to approximate
the optimal operator F : X ! Y with deep model learned
from observed input-output pairs. Concretely, suppose we
have collected M observations {xi, yi}M

i=1, where xi � µ
is one instance of i.i.d. input functions with the probability
measure µ supported on A. Given a metric L : Y ⇥Y ! R,
the optimization process can be formalized as:

min
✓2�

Ex�µ

�
L
�
F✓(x), F(x)

��
, (2)

where F✓ is the learned deep model and ✓ is selected from
the model parameter space ⇥. Optimized purely from data,
these methods do not require any knowledge of underlying
PDEs and focus more on the architecture design.

(b) FNO: Linear Transformation in Fourier Domain

(c) LSM: Decompose into Basis Operators
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where N is the hyper-parameter and wi is the coefficient
for fi, i 2 {1, · · · , N}. With the above approximation, the
problem can be simplified as the optimization of coefficients
{w1, w2, · · · , wN} to make fN satisfy the PDE better. The
spectral methods hold great approximation and convergence
properties in solving PDEs (Gottlieb & Orszag, 1977).

2.2. Deep Models for PDEs

Due to the immense importance in extensive scientific and
engineering areas, solving PDEs has attached great interest.
Since it is usually impossible to work out explicit formulas
for PDEs solutions, many numerical methods have been
explored (Ŝolı́n, 2005; Grossmann et al., 2007). However,
these classical methods are designed to solve one specific in-
stance and are hard to generalize to new scenarios. Besides,
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these classical methods also suffer from poor computation
efficiency, especially in processing high-dimensional data.
Recently, various deep models have been developed. The
mainstream works can be roughly categorized into equation-
constraint and operator-learning methods.

Equation-constraint methods. This category of works
directly parameterizes the PDE solution as a deep model
and formalizes equation constraints, e.g. the PDEs and their
corresponding initial and boundary conditions, as the ob-
jective function (Weinan & Yu, 2017; Raissi et al., 2019;
Wang et al., 2020a;b). By doing this, they can directly ob-
tain the solution for a certain PDE with model optimization.
However, these methods require the exact formalization of
underlying PDEs, which is hard to acquire in real-world
applications. Besides, calculating the equation constraints
will also make them suffer from poor generality and effi-
ciency as classical numerical methods. Thus, instead of the
objective function, this paper focuses on the architecture
design, namely the operator-learning paradigm.

Operator-learning methods. This paradigm attempts to
propose deep models with novel architectures to learn the
mapping from scientific information to PDE solutions, such
as from past observations of fluid velocity to future predic-
tion or from the structure of elastic material to inner stress.

Technically, given the coordinates in a bounded open set
D ⇢ Rd, the inputs and outputs of deep models can be
re-written as functions w.r.t. the coordinates, which are in
the Banach spaces X = X (D; Rdx) and Y = Y(D; Rdy )
respectively. Rdx and Rdy are the range of input and output
functions. Thus, the PDE-governed task is to approximate
the optimal operator F : X ! Y with deep model learned
from observed input-output pairs. Concretely, suppose we
have collected M observations {xi, yi}M

i=1, where xi � µ
is one instance of i.i.d. input functions with the probability
measure µ supported on A. Given a metric L : Y ⇥Y ! R,
the optimization process can be formalized as:

min
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F✓(x), F(x)
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, (2)

where F✓ is the learned deep model and ✓ is selected from
the model parameter space ⇥. Optimized purely from data,
these methods do not require any knowledge of underlying
PDEs and focus more on the architecture design.
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where N is the hyper-parameter and wi is the coefficient
for fi, i 2 {1, · · · , N}. With the above approximation, the
problem can be simplified as the optimization of coefficients
{w1, w2, · · · , wN} to make fN satisfy the PDE better. The
spectral methods hold great approximation and convergence
properties in solving PDEs (Gottlieb & Orszag, 1977).
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engineering areas, solving PDEs has attached great interest.
Since it is usually impossible to work out explicit formulas
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these classical methods are designed to solve one specific in-
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these classical methods also suffer from poor computation
efficiency, especially in processing high-dimensional data.
Recently, various deep models have been developed. The
mainstream works can be roughly categorized into equation-
constraint and operator-learning methods.

Equation-constraint methods. This category of works
directly parameterizes the PDE solution as a deep model
and formalizes equation constraints, e.g. the PDEs and their
corresponding initial and boundary conditions, as the ob-
jective function (Weinan & Yu, 2017; Raissi et al., 2019;
Wang et al., 2020a;b). By doing this, they can directly ob-
tain the solution for a certain PDE with model optimization.
However, these methods require the exact formalization of
underlying PDEs, which is hard to acquire in real-world
applications. Besides, calculating the equation constraints
will also make them suffer from poor generality and effi-
ciency as classical numerical methods. Thus, instead of the
objective function, this paper focuses on the architecture
design, namely the operator-learning paradigm.

Operator-learning methods. This paradigm attempts to
propose deep models with novel architectures to learn the
mapping from scientific information to PDE solutions, such
as from past observations of fluid velocity to future predic-
tion or from the structure of elastic material to inner stress.

Technically, given the coordinates in a bounded open set
D ⇢ Rd, the inputs and outputs of deep models can be
re-written as functions w.r.t. the coordinates, which are in
the Banach spaces X = X (D; Rdx) and Y = Y(D; Rdy )
respectively. Rdx and Rdy are the range of input and output
functions. Thus, the PDE-governed task is to approximate
the optimal operator F : X ! Y with deep model learned
from observed input-output pairs. Concretely, suppose we
have collected M observations {xi, yi}M

i=1, where xi � µ
is one instance of i.i.d. input functions with the probability
measure µ supported on A. Given a metric L : Y ⇥Y ! R,
the optimization process can be formalized as:
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where F✓ is the learned deep model and ✓ is selected from
the model parameter space ⇥. Optimized purely from data,
these methods do not require any knowledge of underlying
PDEs and focus more on the architecture design.
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Spectral methods are widely-acknowledged in applied math-
ematics and scientific computing in solving partial differ-
ential equations (PDEs) numerically (Gottlieb & Orszag,
1977; Fornberg, 1998; Kopriva, 2009). The key idea is to ap-
proximate the solution f of a certain PDE as a finite sum of
N orthogonal basis functions {f1, f2, · · · , fN}, where the
approximation solution fN can be formalized as follows:

f ⇡ fN =
NX

i=1

wifi, (1)

where N is the hyper-parameter and wi is the coefficient
for fi, i 2 {1, · · · , N}. With the above approximation, the
problem can be simplified as the optimization of coefficients
{w1, w2, · · · , wN} to make fN satisfy the PDE better. The
spectral methods hold great approximation and convergence
properties in solving PDEs (Gottlieb & Orszag, 1977).

2.2. Deep Models for PDEs

Due to the immense importance in extensive scientific and
engineering areas, solving PDEs has attached great interest.
Since it is usually impossible to work out explicit formulas
for PDEs solutions, many numerical methods have been
explored (Ŝolı́n, 2005; Grossmann et al., 2007). However,
these classical methods are designed to solve one specific in-
stance and are hard to generalize to new scenarios. Besides,
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these classical methods also suffer from poor computation
efficiency, especially in processing high-dimensional data.
Recently, various deep models have been developed. The
mainstream works can be roughly categorized into equation-
constraint and operator-learning methods.

Equation-constraint methods. This category of works
directly parameterizes the PDE solution as a deep model
and formalizes equation constraints, e.g. the PDEs and their
corresponding initial and boundary conditions, as the ob-
jective function (Weinan & Yu, 2017; Raissi et al., 2019;
Wang et al., 2020a;b). By doing this, they can directly ob-
tain the solution for a certain PDE with model optimization.
However, these methods require the exact formalization of
underlying PDEs, which is hard to acquire in real-world
applications. Besides, calculating the equation constraints
will also make them suffer from poor generality and effi-
ciency as classical numerical methods. Thus, instead of the
objective function, this paper focuses on the architecture
design, namely the operator-learning paradigm.

Operator-learning methods. This paradigm attempts to
propose deep models with novel architectures to learn the
mapping from scientific information to PDE solutions, such
as from past observations of fluid velocity to future predic-
tion or from the structure of elastic material to inner stress.

Technically, given the coordinates in a bounded open set
D ⇢ Rd, the inputs and outputs of deep models can be
re-written as functions w.r.t. the coordinates, which are in
the Banach spaces X = X (D; Rdx) and Y = Y(D; Rdy )
respectively. Rdx and Rdy are the range of input and output
functions. Thus, the PDE-governed task is to approximate
the optimal operator F : X ! Y with deep model learned
from observed input-output pairs. Concretely, suppose we
have collected M observations {xi, yi}M

i=1, where xi � µ
is one instance of i.i.d. input functions with the probability
measure µ supported on A. Given a metric L : Y ⇥Y ! R,
the optimization process can be formalized as:

min
✓2�

Ex�µ

�
L
�
F✓(x), F(x)

��
, (2)

where F✓ is the learned deep model and ✓ is selected from
the model parameter space ⇥. Optimized purely from data,
these methods do not require any knowledge of underlying
PDEs and focus more on the architecture design.
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from observed input-output pairs. Concretely, suppose we
have collected M observations {xi, yi}M

i=1, where xi � µ
is one instance of i.i.d. input functions with the probability
measure µ supported on A. Given a metric L : Y ⇥Y ! R,
the optimization process can be formalized as:
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✓2�

Ex�µ

�
L
�
F✓(x), F(x)

��
, (2)

where F✓ is the learned deep model and ✓ is selected from
the model parameter space ⇥. Optimized purely from data,
these methods do not require any knowledge of underlying
PDEs and focus more on the architecture design.
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Figure 3. Comparison in approximating complex mapping. For clearness, we only keep key components designed for approximation.

After the de-patchify operation, we splice the patches into
the output for k-th scale as {ŷk(s)}s2Dk . Then, we succes-
sively upsample the outputs in different scales from coarse to
fine. Concretely, for the k-th scale, {ŷk(s)}s2Dk is concate-
nated with the interpolation-upsampled {ŷk+1(s)}s2Dk+1

and further projected to Rdk
model with a linear layer in

R(dk+1
model+dk

model)⇥dk
model . Finally, we obtain the finest output

{ŷ(s)}s2D with ŷ(s) 2 Rdmodel . After the linear layer with
parameters in Rdmodel⇥dy , we can obtain the final output.
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{xk(s)}s2Dk
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3.2. Neural Spectral Block

Benefitting from the hierarchical projection network, we
can solve PDEs by approximating the complex mapping
between latent input-output tokens as shown in Eq. (5).

As presented in Figure 3, instead of learning a single op-
erator, inspired by the classic spectral methods (Section
2.1), we present the neural spectral block by decomposing
complex mappings into several basis operators, namely:

F✓Solve =
NX

i=1

wiF✓Solve,i , (6)

where N is the hyperparameter and {F✓Solve,i}N
i=1 are or-

thogonal basis operators with learnable parameters {wi}N
i=1.

Following the classical design in spectral methods (Jackson,

1934; Tolstov, 2012), we select the trigonometric basis oper-
ators. Thus, for T x : D ! Rdlatent 2 TX , 8s 2 D, we define
these basis operators with hyperparameter N 0 as follows:

F✓Solve,(2k�1)

�
T x(s)

�
= sin

�
kT x(s)

�

F✓Solve,(2k)

�
T x(s)

�
= cos

�
kT x(s)

�
,

(7)

where k 2 {1, · · · , N 0} and N = 2N 0 is even. Technically,
given the input latent token Tx 2 Rdlatent , the output latent
token Ty of neural spectral block is calculated as follows:

Ty = Tx + w0 + wsin

2
64

sin(Tx)
...

sin(N 0Tx)

3
75+ wcos

2
64

cos(Tx)
...

cos(N 0Tx)

3
75 ,

(8)

where w0 2 Rdlatent ,wsin 2 R1⇥N 0
,wcos 2 R1⇥N 0

are
learnable parameters. Residual connection is also adopted to
facilitate optimization (He et al., 2016). We summarize the
process of the neural spectral block as Ty = Solve(Tx),
which will be conducted to the latent token of every patch
at every scale as Eq. (5). Also according to the analysis
in Eq. (5), like latent tokens, w0,wsin,wcos is shared in
patches of the same scale but independent in different scales.

Since PDE constraints have already been involved in input-
output pairs, during the model training, w0,wsin,wcos will
be optimized to satisfy the PDEs better, namely solving
PDEs in latent space. Besides, the neural spectral block also
holds the universal approximation capacity with favourable
convergence property guaranteed by the following theorems.

Assumption 3.1 (Finite Coordinate Set). In real-world ap-
plications, the analysis or numerical simulation of the PDE-
governed task is mainly in the regular grid, mesh or point
cloud, where the input is only observed on finite coordinates.
Thus, to simplify the following theoretical derivations, we
assume that D = {s1, · · · , sM} is a finite set with size M ,
e.g. for a frame with height H and weight W , M is H ⇥W .

Remark 3.2 (Simplification w.r.t Finite Coordinate Set).
By assuming that D is a finite set with size M , the learning

Figure 2. Overview of LSM. The solving process is applied to each patch of each scale with three successive modules: projecting coordinate
space into latent space (CoordToLatent), solving PDEs in latent space and projecting back to coordinate space (LatentToCoord).

scale architecture, which can reduce high-dimensional data
into compact latent space for efficient PDE solving.

Attention-based projectors. If we directly apply self-
attention (Vaswani et al., 2017) among observations at mul-
tiple coordinates, the results will still be in high-dimensional
coordinate space. Thus, to extract essential physical infor-
mation of PDEs from redundant high-dimensional data, we
propose attention-based projectors with latent tokens. The
latent tokens are shared among all input-output pairs, initial-
ized as learnable model parameters, and optimized to cover
the common properties of data, namely PDE constraints,
thereby providing physical prompts for projection.

Concretely, given the coordinates set D and the deep repre-
sentations of inputs {x(s)}s∈D,x(s) ∈ R1×dmodel , we will
randomly initialize C latent tokens {Ti}Ci=1,Ti ∈ R1×dlatent

to provide physical prompts. As shown in Figure 2, we
adopt the latent tokens as queries and deep representations
as keys and values in the attention mechanism. The residual
connection is also used to ease model optimization (He et al.,
2016). This process can be formulized as:

Tx,i = Ti +
∑

s∈D

Sim
(
Ti,x(s)WK

)
∑

s′∈D Sim
(
Ti,x(s′)WK

) (x(s)WV) ,

(3)

where i ∈ {1, · · · , C} and WK,WV ∈ Rdmodel×dlatent are
linear layers for keys and values. Sim

(
Ti,x(s)WK

)
=

exp
(
Ti (x(s)WK)

T ) is for the similarity calculation. Un-
der the physical prompts of learned latent tokens {Ti}Ci=1,
the deep representations {x(s)}s∈D in the high-dimensional
coordinate space are projected to C tokens {Tx,i}Ci=1 in la-
tent space, where the latter is free from redundant coordinate
information. To simplify notations, we summarize Eq. (3)
as {Tx,i}Ci=1 = CoordToLatent({Ti}Ci=1, {x(s)}s∈D).

After solving PDEs in latent space by the neural spectral
block, the latent input tokens {Tx,i}Ci=1 are mapped to the
latent output tokens {Ty,i}Ci=1. We summarize the solving
process in latent space as {Ty,i}Ci=1 = Solve({Tx,i}Ci=1).

Finally, we need to project latent output tokens back to high-
dimensional coordinate space as the final output. Similar to
Eq. (3), by taking input representations as queries to provide
coordinate information and latent output tokens as keys and
values, this process can be formulized as follows:

ŷ(s) = x(s) +

C∑

i=1

Sim
(
x(s),Ty,iW

′
K

)
∑C

i′=1 Sim
(
x(s),Ty,i′W′

K

) (Ty,iW
′
V),

(4)

where s ∈ D and W′
K,W

′
V ∈ Rdlatent×dmodel are linear layers

for keys and values. Eq. (4) is summarized as {ŷ(s)}s∈D =
LatentToCoord({x(s)}s∈D, {Ty,i}Ci=1). The computa-
tion complexity of projectors in Eq. (3) and (4) is linear
w.r.t. the size of coordinate set D, namely O(|D|).
Patchified multiscale architecture. It is notable that
PDEs always present different physical states according
to the observed scales and regions (Karniadakis et al., 2021).
For example, in turbulent flow, unsteady vortices appear of
many sizes, which interact with each other, leading to a very
complex phenomenon (Morrison, 2013). To fit the intrinsic
multiscale property and complex interactions of PDEs, we
present a patchified multiscale architecture and attempt to
solve PDEs in different regions and scales.

Technically, for the raw inputs in Rdx , we firstly map them
into deep representations {x(s)}s∈D,x(s) ∈ R1×dmodel by
the linear layer with parameters in Rdx×dmodel . As shown in
Figure 2, we employ the parameterized downsample layer
to obtain deep representations {{xk(s)}s∈Dk}Kk=1 in K
scales by aggregating the local observations with learnable
parameters, where xk(s) ∈ R1×dk

model and {x(s)}s∈D =
{x1(s)}s∈D1 is in the finest resolution. For the k-th scale,
we further adopt the patchify operation (Dosovitskiy et al.,
2021) to split the coordinate set Dk into Pk nonoverlapping
patches {Dk

j }Pk
j=1 for different regions, where Dk

j ⊂ Dk

denotes coordinate set of the j-th patch. More details about
downsample and patchify operations are in Appendix I.

By randomly initializing
{
{Tk

i }Ci=1

}K
k=1

, Tk
i ∈ R1×dk

latent
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{ŷk(s)}s2Dk

{xk(s)}s2Dk

x

F(x)

F✓(x)

1 Introduction

1

check

xxx

January 2023
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1. Introduction
Extensive real-world applications and phenomena are gov-
erned by underlying partial differential equations (PDEs),
such as aviation, meteorology, and civil engineering.

2. Preliminaries
2.1. Spectral Methods

Spectral methods are widely-acknowledged in applied math-
ematics and scientific computing in solving partial differ-
ential equations (PDEs) numerically (Gottlieb & Orszag,
1977; Fornberg, 1998; Kopriva, 2009). The key idea is to ap-
proximate the solution f of a certain PDE as a finite sum of
N orthogonal basis functions {f1, f2, · · · , fN}, where the
approximation solution fN can be formalized as follows:

f ⇡ fN =
NX

i=1

wifi, (1)

where N is the hyper-parameter and wi is the coefficient
for fi, i 2 {1, · · · , N}. With the above approximation, the
problem can be simplified as the optimization of coefficients
{w1, w2, · · · , wN} to make fN satisfy the PDE better. The
spectral methods hold great approximation and convergence
properties in solving PDEs (Gottlieb & Orszag, 1977).

2.2. Deep Models for PDEs

Due to the immense importance in extensive scientific and
engineering areas, solving PDEs has attached great interest.
Since it is usually impossible to work out explicit formulas
for PDEs solutions, many numerical methods have been
explored (Ŝolı́n, 2005; Grossmann et al., 2007). However,
these classical methods are designed to solve one specific in-
stance and are hard to generalize to new scenarios. Besides,

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

these classical methods also suffer from poor computation
efficiency, especially in processing high-dimensional data.
Recently, various deep models have been developed. The
mainstream works can be roughly categorized into equation-
constraint and operator-learning methods.

Equation-constraint methods. This category of works
directly parameterizes the PDE solution as a deep model
and formalizes equation constraints, e.g. the PDEs and their
corresponding initial and boundary conditions, as the ob-
jective function (Weinan & Yu, 2017; Raissi et al., 2019;
Wang et al., 2020a;b). By doing this, they can directly ob-
tain the solution for a certain PDE with model optimization.
However, these methods require the exact formalization of
underlying PDEs, which is hard to acquire in real-world
applications. Besides, calculating the equation constraints
will also make them suffer from poor generality and effi-
ciency as classical numerical methods. Thus, instead of the
objective function, this paper focuses on the architecture
design, namely the operator-learning paradigm.

Operator-learning methods. This paradigm attempts to
propose deep models with novel architectures to learn the
mapping from scientific information to PDE solutions, such
as from past observations of fluid velocity to future predic-
tion or from the structure of elastic material to inner stress.

Technically, given the coordinates in a bounded open set
D ⇢ Rd, the inputs and outputs of deep models can be
re-written as functions w.r.t. the coordinates, which are in
the Banach spaces X = X (D; Rdx) and Y = Y(D; Rdy )
respectively. Rdx and Rdy are the range of input and output
functions. Thus, the PDE-governed task is to approximate
the optimal operator F : X ! Y with deep model learned
from observed input-output pairs. Concretely, suppose we
have collected M observations {xi, yi}M

i=1, where xi ⇠ µ
is one instance of i.i.d. input functions with the probability
measure µ supported on A. Given a metric L : Y ⇥Y ! R,
the optimization process can be formalized as:

min
✓2⇥

Ex⇠µ


L
�
F✓(x), F(x)

��
, (2)

where F✓ is the learned deep model and ✓ is selected from
the model parameter space ⇥. Optimized purely from data,
these methods do not require any knowledge of underlying
PDEs and focus more on the architecture design.

Linear Transformation

(a) U-Net: Directly Learn Mapping
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N orthogonal basis functions {f1, f2, · · · , fN}, where the
approximation solution fN can be formalized as follows:

f ⇡ fN =
NX
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wifi, (1)

where N is the hyper-parameter and wi is the coefficient
for fi, i 2 {1, · · · , N}. With the above approximation, the
problem can be simplified as the optimization of coefficients
{w1, w2, · · · , wN} to make fN satisfy the PDE better. The
spectral methods hold great approximation and convergence
properties in solving PDEs (Gottlieb & Orszag, 1977).

2.2. Deep Models for PDEs

Due to the immense importance in extensive scientific and
engineering areas, solving PDEs has attached great interest.
Since it is usually impossible to work out explicit formulas
for PDEs solutions, many numerical methods have been
explored (Ŝolı́n, 2005; Grossmann et al., 2007). However,
these classical methods are designed to solve one specific in-
stance and are hard to generalize to new scenarios. Besides,
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these classical methods also suffer from poor computation
efficiency, especially in processing high-dimensional data.
Recently, various deep models have been developed. The
mainstream works can be roughly categorized into equation-
constraint and operator-learning methods.

Equation-constraint methods. This category of works
directly parameterizes the PDE solution as a deep model
and formalizes equation constraints, e.g. the PDEs and their
corresponding initial and boundary conditions, as the ob-
jective function (Weinan & Yu, 2017; Raissi et al., 2019;
Wang et al., 2020a;b). By doing this, they can directly ob-
tain the solution for a certain PDE with model optimization.
However, these methods require the exact formalization of
underlying PDEs, which is hard to acquire in real-world
applications. Besides, calculating the equation constraints
will also make them suffer from poor generality and effi-
ciency as classical numerical methods. Thus, instead of the
objective function, this paper focuses on the architecture
design, namely the operator-learning paradigm.

Operator-learning methods. This paradigm attempts to
propose deep models with novel architectures to learn the
mapping from scientific information to PDE solutions, such
as from past observations of fluid velocity to future predic-
tion or from the structure of elastic material to inner stress.

Technically, given the coordinates in a bounded open set
D ⇢ Rd, the inputs and outputs of deep models can be
re-written as functions w.r.t. the coordinates, which are in
the Banach spaces X = X (D; Rdx) and Y = Y(D; Rdy )
respectively. Rdx and Rdy are the range of input and output
functions. Thus, the PDE-governed task is to approximate
the optimal operator F : X ! Y with deep model learned
from observed input-output pairs. Concretely, suppose we
have collected M observations {xi, yi}M

i=1, where xi ⇠ µ
is one instance of i.i.d. input functions with the probability
measure µ supported on A. Given a metric L : Y ⇥Y ! R,
the optimization process can be formalized as:

min
✓2⇥

Ex⇠µ


L
�
F✓(x), F(x)

��
, (2)

where F✓ is the learned deep model and ✓ is selected from
the model parameter space ⇥. Optimized purely from data,
these methods do not require any knowledge of underlying
PDEs and focus more on the architecture design.
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for fi, i 2 {1, · · · , N}. With the above approximation, the
problem can be simplified as the optimization of coefficients
{w1, w2, · · · , wN} to make fN satisfy the PDE better. The
spectral methods hold great approximation and convergence
properties in solving PDEs (Gottlieb & Orszag, 1977).
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engineering areas, solving PDEs has attached great interest.
Since it is usually impossible to work out explicit formulas
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these classical methods also suffer from poor computation
efficiency, especially in processing high-dimensional data.
Recently, various deep models have been developed. The
mainstream works can be roughly categorized into equation-
constraint and operator-learning methods.

Equation-constraint methods. This category of works
directly parameterizes the PDE solution as a deep model
and formalizes equation constraints, e.g. the PDEs and their
corresponding initial and boundary conditions, as the ob-
jective function (Weinan & Yu, 2017; Raissi et al., 2019;
Wang et al., 2020a;b). By doing this, they can directly ob-
tain the solution for a certain PDE with model optimization.
However, these methods require the exact formalization of
underlying PDEs, which is hard to acquire in real-world
applications. Besides, calculating the equation constraints
will also make them suffer from poor generality and effi-
ciency as classical numerical methods. Thus, instead of the
objective function, this paper focuses on the architecture
design, namely the operator-learning paradigm.

Operator-learning methods. This paradigm attempts to
propose deep models with novel architectures to learn the
mapping from scientific information to PDE solutions, such
as from past observations of fluid velocity to future predic-
tion or from the structure of elastic material to inner stress.

Technically, given the coordinates in a bounded open set
D ⇢ Rd, the inputs and outputs of deep models can be
re-written as functions w.r.t. the coordinates, which are in
the Banach spaces X = X (D; Rdx) and Y = Y(D; Rdy )
respectively. Rdx and Rdy are the range of input and output
functions. Thus, the PDE-governed task is to approximate
the optimal operator F : X ! Y with deep model learned
from observed input-output pairs. Concretely, suppose we
have collected M observations {xi, yi}M

i=1, where xi ⇠ µ
is one instance of i.i.d. input functions with the probability
measure µ supported on A. Given a metric L : Y ⇥Y ! R,
the optimization process can be formalized as:
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where F✓ is the learned deep model and ✓ is selected from
the model parameter space ⇥. Optimized purely from data,
these methods do not require any knowledge of underlying
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Figure 3. Comparison in approximating complex input-output mapping. For clarity, we only keep key components for approximation.

as latent tokens in K scales, the solving process for the j-th
patch in the k-th scale can be formulized as follows:

{Tk
x,i,j}Ci=1 = CoordToLatent

(
{Tk

i }Ci=1, {xk(s)}s∈Dk
j

)

{Tk
y,i,j}Ci=1 = Solve

(
{Tk

x,i,j}Ci=1

)

{ŷk(s)}s∈Dk
j
= LatentToCoord

(
{xk(s)}s∈Dk

j
, {Tk

y,i,j}Ci=1

)
.

(5)

More details of Solve(·) are deferred into the next section.
Note that the patches in the same scale are governed by the
same underlying PDEs, while in different scales, the coef-
ficients of PDEs will change. Thus, the model parameters,
e.g. latent tokens and linear layers, are shared in patches of
the same scale but independent in different scales.

After the de-patchify operation, we splice patches into the
output for the k-th scale as {ŷk(s)}s∈Dk . Then, we succes-
sively upsample the outputs in different scales from coarse to
fine. Concretely, for the k-th scale, {ŷk(s)}s∈Dk is concate-
nated with the interpolation-upsampled {ŷk+1(s)}s∈Dk+1

and further projected to Rdk
model with a linear layer parame-

terized in R(dk+1
model+dk

model)×dk
model . Finally, we obtain the finest

output {ŷ(s)}s∈D with ŷ(s) ∈ Rdmodel . After the linear layer
with parameters in Rdmodel×dy , we can obtain the final output.

3.2. Neural Spectral Block

Benefitting from the hierarchical projection network, we
can solve PDEs by approximating the complex mapping
between latent input-output tokens as described in Eq. (5).

As shown in Figure 3, instead of learning a single operator,
inspired by classical spectral methods in numerical analysis
(Section 2.1), we present the neural spectral block by de-
composing complex mappings into multiple basis operators:

FθSolve =

N∑

i=1

wiFθSolve,i , (6)

where N is the hyperparameter and {FθSolve,i}Ni=1 are or-
thogonal basis operators with learnable parameters {wi}Ni=1.

Following the classical design in spectral methods (Jackson,
1934; Tolstov, 2012), we select the trigonometric basis oper-
ators. Thus, for tx : D → Rdlatent ∈ TX ,∀s ∈ D, we define
the multiple basis operators as follows:

FθSolve,(2k−1)

(
tx(s)

)
= sin

(
ktx(s)

)

FθSolve,(2k)

(
tx(s)

)
= cos

(
ktx(s)

)
,

(7)

where k ∈ {1, · · · , N
2 } and N is even. Technically, given

the latent input token Tx ∈ Rdlatent , the latent output token
Ty of the neural spectral block is calculated as follows:

Ty = Tx +w0 +wsin




sin(Tx)
...

sin(N2 Tx)


+wcos




cos(Tx)
...

cos(N2 Tx)


 ,

(8)

where w0 ∈ Rdlatent ,wsin ∈ R1×N
2 ,wcos ∈ R1×N

2 are learn-
able parameters. Residual connection is also adopted to
facilitate optimization (He et al., 2016). We summarize the
process of the neural spectral block as Ty = Solve(Tx),
which is applied to the latent input tokens of every patch
at every scale. Also according to the analysis in Eq. (5),
like latent tokens, w0,wsin,wcos is shared in patches of the
same scale but independent in different scales.

Since PDE constraints have already been involved in input-
output pairs, during the model training, w0,wsin,wcos will
be optimized to satisfy the PDEs better, namely solving
PDEs in latent space. Besides, the neural spectral block also
holds the universal approximation capacity with favorable
convergence property guaranteed by the following theorems.

Assumption 3.1 (Finite Coordinate Set). In real-world ap-
plications, the analysis or numerical simulation of the PDE-
governed task is mainly in the regular grid, mesh or point
cloud, where the input is only observed on finite coordinates.
Thus, to simplify the following theoretical derivations, we
assume that D = {s1, · · · , sM} is a finite set with size M ,
e.g. for a frame with height H and weight W , M is H×W .

Remark 3.2 (Simplification w.r.t. Finite Coordinate Set).
By assuming that D is a finite set with M coordinates, the
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learning process of operator F : X (D;Rdx) → Y(D;Rdy )
is simplified to solve the function f : RM×dx → RM×dy ,
where F(x) = f ◦x,∀x ∈ X . Since the channel dimension
can be seen as independent, we only focus on the coordinate
dimension M in the following derivations.

Theorem 3.3 (Convergence of Trigonometric Approxima-
tion in High-dimensional Space). (Dyachenko, 1995) Let
f : RM → RM be a 2π-periodic function w.r.t. the variable
on each dimension, where f ∈ Lp

(
[−π, π)M

)
,M ≥ 2,

1 ≤ p ≤ ∞ and p ̸= 2. For f defined on the M -dimension
space, its trigonometric approximation fN is defined as

fN (x) =
∑

k∈ZM ,|k|≤N

(
1

2π

∫

[−π,π)M
f(t)e−iktdt

)
eikx,

(9)

If f satisfies the Lipschitz condition, namely there is a non-
negative constant K1 such that

∥f(x)− f(y)∥p ≤ K1∥x− y∥p, ∀x,y ∈ RM , (10)

and if (M − 1)| 12 − 1
p | < 1, then there exists a constant K2

such that
∥∥f − fN

∥∥
p
≤ K2N

(M−1)| 12− 1
p |−1. (11)

Remark 3.4 (Slow Convergence Rate in High-dimensional
Space). As demonstrated in Theorem 3.3, the convergence
rate of trigonometric approximation is directly related to the
dimension M , indicating that the spectral methods suffer
from the slow convergence rate for high-dimensional space,
e.g. M = H ×W for a frame with height H and width W .
Actually, the convergence properties of spectral methods
in high-dimensional spaces are still under explored as an
open problem (Brandolini et al., 2020). These results also
support our design in solving PDEs in latent space instead
of high-dimensional coordinate space.
Remark 3.5 (Solving Process in Latent Space). After pro-
jecting the M -dimension data into independent latent tokens
and further restricting each latent token within [0, π] through
proper normalization, the solving process in the latent space
is to approximate f : [0, π] → R.

Theorem 3.6 (Approximation and Convergence Prop-
erties of Neural Spectral Block). Given f : [0, π] → R,
if f satisfies the Lipschitz condition, there is a choice of
model parameters such that the approximation fN defined
in neural spectral block (trigonometric approximation with
residual) can uniformly converge to f with the speed as

|f(x)− fN (x)| ≤ K3 lnN

N
,∀x ∈ [0, π], (12)

where K3 is a constant that does not depend on f nor N .

Proof. See Appendix A.

4. Experiments
We extensively evaluate the proposed LSM on seven bench-
marks, covering the typical PDEs in both solid and fluid
physics and samples in various geometrics.

Table 1. Summary of experiment benchmarks.

PHYSICS BENCHMARKS GEOMETRY #DIM

SOLID
ELASTICITY-P POINT CLOUD 2D
ELASTICITY-G REGULAR GRID 2D

PLASTICITY STRUCTURED MESH 3D

FLUID

NAVIER–STOKES REGULAR GRID 3D
DARCY REGULAR GRID 2D
AIRFOIL STRUCTURED MESH 2D

PIPE STRUCTURED MESH 2D

Benchmarks. As shown in Table 1, the experimental sam-
ples of seven benchmarks are recorded in various geomet-
rics, including the regular grid, point cloud and structured
mesh in the 2D or 3D space. These benchmarks are gener-
ated by different PDEs for different tasks. For clearness, we
summarize the tasks of all benchmarks in Figure 1. Specif-
ically, Elasticity-G is interpolated from Elasticity-P. More
details can be found in Appendix B, including the governing
PDEs, size of benchmarks and input-output resolutions.

Baselines. We compare the LSM with fourteen well-
acknowledged and advanced models in all seven bench-
marks, including three baselines proposed for vision tasks:
U-Net (2015), ResNet (2016), Swin Transformer (2021),
and ten baselines presented for PDEs: DeepONet (2021),
TF-Net (2019), FNO (2021), U-FNO (2021), WMT (2021),
Galerkin Transformer (2021), SNO (2022), U-NO (2022),
HT-Net (2022), F-FNO (2023), KNO (2023a). U-NO and
HT-Net are previous state-of-the-art models in solving PDEs.
Note that all the above baselines are proposed for regular
grid or structured mesh. Thus, for the Elasticity-P bench-
mark in point cloud, we adopt the special transformation
proposed by geo-FNO (2022) at the beginning and end of
these models, which can transform irregular input domain
into or back from a uniform mesh.

Implementation. For fairness, all the methods are trained
with L2 loss and 500 epochs, using the ADAM (Kingma
& Ba, 2015) optimizer with an initial learning rate of 10−3.
The batch size is set to 20. We adopt the sum of mean
squared error (MSE) on each coordinate as the metric. A
comprehensive description is provided in Appendix I.

4.1. Main Results

Results. As shown in Table 2, LSM achieves consistent
state-of-the-art performance on all seven benchmarks, cover-
ing both solid and fluid physics, justifying the generality of
LSM on different PDEs, geometrics and dimensions. Over-
all, LSM averagely outperforms the previous best method on

6



Solving High-Dimensional PDEs with Latent Spectral Models

Table 2. Performance comparison with fourteen baselines on all benchmarks. MSE is recorded. A smaller MSE indicates better
performance. For clarity, the best result is in bold and the second best is underlined. Promotion refers to the relative error reduction
w.r.t. the second best model on each benchmark. We only compare KNO (2023a; 2023b) and TF-Net (2019) on the Navier–Stokes
benchmark, since they are proposed for auto-regressive tasks in fluid simulation. In addition to the quantitative performance, we also rank
the models on each benchmark. See Table 13 for the performance rankings.

MODEL
SOLID PHYSICS∗ FLUID PHYSICS†

ELASTICITY-P ‡ ELASTICITY-G PLASTICITY NAVIER–STOKES DARCY AIRFOIL PIPE

U-NET (2015) 0.0235 0.0531 0.0051 0.1982 0.0080 0.0079 0.0065
RESNET (2016) 0.0262 0.0843 0.0233 0.2753 0.0587 0.0391 0.0120
TF-NET (2019) / / / 0.1801 / / /
SWIN (2021) 0.0283 0.0819 0.0170 0.2248 0.0397 0.0270 0.0109
DEEPONET (2021) 0.0965 0.0900 0.0135 0.2972 0.0588 0.0385 0.0097
FNO (2021) 0.0229 0.0508 0.0074 0.1556 0.0108 0.0138 0.0067
U-FNO (2021) 0.0239 0.0480 0.0039 0.2231 0.0183 0.0269 0.0056
WMT (2021) 0.0359 0.0520 0.0076 0.1541 0.0082 0.0075 0.0077
GALERKIN (2021) 0.0240 0.1681 0.0120 0.2684 0.0170 0.0118 0.0098
SNO (2022) 0.0390 0.0987 0.0070 0.2568 0.0495 0.0893 0.0294
U-NO (2022) 0.0258 0.0469 0.0034 0.1713 0.0113 0.0078 0.0100
HT-NET (2022) 0.0372 0.0472 0.0333 0.1847 0.0079 0.0065 0.0059
F-FNO (2023) 0.0263 0.0475 0.0047 0.2322 0.0077 0.0078 0.0070
KNO (2023A) / / / 0.2023 / / /

LSM 0.0218 0.0408 0.0025 0.1535 0.0065 0.0059 0.0050
PROMOTION 4.8% 13.0% 26.5% 0.4% 15.6% 9.2% 10.7%

∗ Top 5 ranking methods of solid benchmarks: LSM (ours), U-NO (2022), U-FNO (2021), FNO (2021), F-FNO (2023).
† Top 5 ranking methods of fluid benchmarks: LSM (ours), HT-Net (2022), WMT (2021), U-Net (2015), F-FNO (2023).
‡ All the experiments in Elasticity-P adopt the special transformation from geo-FNO (2022) to handle the point cloud geometric.
Especially, FNO (2021) with the special transformation is just equivalent to geo-FNO (2022).

each benchmark by 11.5%. Specifically, our method accom-
plishes remarkable promotions on tasks with semantically
heterogeneous input and output, such as 13.0% on Elasticity-
G (0.0469→0.0408), 15.6% on Darcy (0.0077→0.0065).
Note that these two tasks require the model to capture com-
plex mappings between input and output, e.g. mapping from
structure to inner stress on Elasticity-G or from the porous
medium to flow on Darcy. From Table 2, we can find that
the well-acknowledged FNO performs mediocrely on these
complex tasks, verifying the advantages of LSM in approxi-
mating complex mappings of PDEs.

Ablations. To verify the effectiveness of each component
in LSM, we provide detailed ablations, covering both remov-
ing components (w/o) and replacing projector (rep) experi-
ments. From Table 3, we have the following observations.

In removing experiments, we can find that all components
are essential to the final performance. Without the pro-
jector, model performance on both benchmarks will drop
seriously, demonstrating the necessity of solving PDEs in
latent space. Besides, the neural spectral block also reduces
the estimation error significantly: 13.8% (0.0253→0.0218)
in Elasticity-P and 13.3% (0.0075→0.0065) in Darcy. We
can also find that the multiscale design can fit the Darcy
benchmark well and the patchify operation is essential to the
Elasticity-P benchmark, where the former always presents
the multiphase flow and the latter mainly relies on the local

Table 3. Ablations on hierarchical projection network (Projection,
Multiscale, Patchify) and neural spectral block (Spectral). We
conduct two types of experiments: replacing our attention-based
projector with other designs (rep) and removing components (w/o).
Efficiency is calculated on inputs with size 256× 256 and batch
size as 1. See Appendix D for full results.

DESIGNS
#PARAM #MEM #TIME MSE

(MB) (MB) (S/ITER) ELAS-P DARCY

REP
CONV 1.947 2.793 0.037 0.0236 0.0081
AVGPOOL 1.836 1.748 0.028 0.0243 0.0077
SELF-ATTN 2.002 7.188 0.064 0.0245 0.0082

W/O

PROJECTOR 1.836 2.793 0.035 0.0563 0.0080
MULTISCALE 0.079 1.757 0.020 0.0269 0.0123
PATCHIFY 2.002 1.748 0.062 0.0545 0.0068

SPECTRAL 1.990 1.913 0.034 0.0253 0.0075

OURS 2.002 1.914 0.041 0.0218 0.0065

information, showing that LSM can cover physical states in
different scales and regions adaptively.

In experiments of replacing our hierarchical projector, we
observe that the convolution (Conv) and canonical self-
attention (Self-Attn, 2017) will damage both efficiency and
accuracy, since they still solve PDEs in the high-dimensional
coordinate space. Although average pooling (AvgPool) can
efficiently eliminate coordinate information, without latent
tokens as physics prompts, it cannot capture the essential
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Figure 4. Top: showcases of fluid physics on Darcy (left) and Airfoil (right); bottom: showcases of solid physics on Elasticity-P (left) and
Plasticity (right). We present the last timestamp (T = 20) for Plasticity here, which is a time-dependent task. For clearness, we also plot
the prediction error, namely {y(s)− ŷ(s)}s∈D . See Appendix C for more showcases.

physical information and thus impairs accuracy. This veri-
fies the efficacy of our hierarchical projection network.

Showcases. To present an intuitive comparison among dif-
ferent methods, we provide several showcases from repre-
sentative benchmarks in Figure 4. Generally, LSM achieves
impressive performance on both solid and fluid benchmarks.
Especially, for the Airfoil benchmark, LSM is the only
model that precisely captures the shock wave around the
airfoil, which is vital for practical design. Note that the Air-
foil benchmark is to estimate the airflow velocity from the
airfoil structure, where the input and output are semantically
heterogeneous, demonstrating the universal approximation
capacity of LSM. Besides, LSM also surpasses FNO and
U-NO in estimating the inner stress of elastic materials and
the future mesh deformation in plastic materials, verifying
the model capability in processing complex geometrics.

4.2. Model Analysis

Efficiency. From Figure 5, we can find that LSM achieves
a good trade-off between accuracy and efficiency. For solid
physics, although U-NO (Rahman et al., 2022) is the second-
best model and slightly more efficient than LSM, LSM
surpasses U-NO by a large margin, concretely 15.6%, 12.8%
and 26.5% relative promotion in Elasticity-P, Elasticity-G
and Plasticity respectively. For fluid physics, LSM is more
accurate and efficient than the previous top three baselines:
HT-Net, WMT and U-Net. It is notable that F-FNO is

ҁa҂Solid Mechanics ҁb҂Fluid Mechanics
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Figure 5. Efficiency comparison for the top 5 models on the bench-
marks of solid and fluid physics. Running time is evaluated on
inputs with size 256× 256 and batch size as 1.

much more lightweight than others, but its running time
and accuracy are still comparable to other baselines. Thus,
in comparison to the lightweight model F-FNO, LSM is
still more favorable for real-world applications due to the
remarkable accuracy advantage. See Table 13 in Appendix
for a comprehensive comparison.

Solving process visualization. We visualize the solving
process of LSM in Figure 6. From Figure 6(a) and (b), we
can easily recognize the projection and the PDE-solving pro-
cess. Especially, for the Darcy benchmark, whose input and
output are semantically heterogeneous, empowered by neu-
ral spectral block, LSM can present a distinct transformation
in latent space to capture this complex mapping. Besides,
we also provide a case for the time-dependent task from
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Figure 6. Visualization of solving process. Through PCA algorithm (Jolliffe & Cadima, 2016), we plot the input features {x(s)}s∈D ,
latent input tokens {Tx}, latent output tokens {Ty} and output features {ŷ(s)}s∈D into a 2D plane. All the data are from the test set.

Table 4. Transfer the model pre-trained from full-data Pipe to limited-data Airfoil. The results are presented in the formalization of a → b,
where a is the model performance when it is trained from scratch and b is the performance finetuned from the Pipe pre-trained model.
Since U-NO degenerates seriously in limited data situations, we do not take its 20% and 40% cases into comparison (colored in gray).

MSE (×10−2) 20% AIRFOIL DATA 40% AIRFOIL DATA 60% AIRFOIL DATA 80% AIRFOIL DATA 100% AIRFOIL DATA

U-NET (2015) 1.88→1.93 (-2.7%) 1.38→1.14 (+17.3%) 0.96→0.90 (+6.3%) 0.85→0.81 (+4.7%) 0.79→0.77 (+2.5%)
U-NO (2022) 6.30→1.72 2.39→1.73 1.10→1.00 (+9.1%) 0.86→0.82 (+4.7%) 0.78→0.82 (-5.1%)
HT-NET (2022) 1.73→1.43 (+17.3%) 1.08→0.82 (+24.1%) 0.75→0.69 (+8.0%) 0.70→0.65 (+7.1%) 0.65→0.61 (+6.2%)

LSM 1.66→1.31 (+21.1%) 0.91→0.75 (+17.6%) 0.69→0.61 (+11.6%) 0.63→0.58 (+7.9%) 0.59→0.55 (+6.8%)
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Figure 7. Model performance of Darcy under different resolutions.

the Navier-Stokes benchmark. As shown in Figure 6(c), by
plotting the learned features over time, we can find that the
latent input tokens present a similar process as the input
features, demonstrating that LSM can precisely capture the
latent process from high-dimensional coordinate space.

Performance under various resolutions. We also evalu-
ate the model performance on the Darcy benchmark with var-
ious resolutions ranging from 32×32 to 1024×1024 in Fig-
ure 7. LSM presents a stable performance w.r.t. different in-
puts and consistently surpasses other baselines in all resolu-
tions, presenting good capacity in solving high-dimensional
PDEs. Besides, it is also notable that HT-Net degenerates
in extremely high-dimensional setting, which is presented
as a hierarchical Transformer, while FNO and its variants
perform well. This indicates that there exist complex map-
pings between input-output pairs of high-dimensional PDEs,
where even the most advanced deep models may fail without
specific designs for mapping approximation.

Transferability. As shown in Table 4, we evaluate the
model transferability by finetuning the model trained on
Pipe to Airfoil. We can find that LSM consistently presents
the positive transfer under all limited data situations, which
is meaningful for applications. Besides, it is also observed
that LSM performs best in both with and without pre-
training cases. Note that both two benchmarks are governed
by Navier-stokes equations but with distinct boundary con-
ditions, indicating that LSM can learn the intrinsic physical
information from unwieldy high-dimensional data.

5. Conclusions and Future Work
In this paper, we present LSM for solving high-dimensional
PDEs. Instead of directly solving PDEs in coordinate space,
LSM can efficiently reduce the high-dimensional data into
compact latent space by a hierarchical projection network
and approximate complex mappings by neural spectral block
under theoretical guarantees. Benefiting from the above
designs, LSM achieves consistent state-of-the-art in both
solid and fluid benchmarks and presents a good trade-off
between accuracy and efficiency, making itself a promising
PDE solver for real-world applications. In the future, we
further explore the generalization capability of LSM among
different PDEs to pursue a foundation model.
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A. Proofs of Theorems 3.6
First, we would like to present a well-established theorem, whose proof can be found in the cited paper.

Theorem A.1. (Nayak et al., 2014) Let f : R → R be a 2π-periodic function. Its trigonometric approximation fN is
defined as:

fN (x) =

N∑

k=−N

(
1

2π

∫ π

−π

f(t)e−iktdt

)
eikx, (13)

If f satisfies the Lipschitz condition, then there is a constant K that does not depend on f nor N , such that:

|f(x)− fN (x)| ≤ K lnN

N
,∀x ∈ R. (14)

Lemma A.2. Given f : [0, π] → R and g(x) = f(x) − x, ∀x ∈ [0, π]. If f satisfies the Lipschitz condition, then g also
satisfies the Lipschitz condition.

Proof. Suppose that f satisfies the Lipschitz condition, then there is a constant K, such that

|f(x)− f(y)| ≤ K|x− y|,∀x, y ∈ [0, π].

Then, we have the following inequations:

|g(x)− g(y)| = |f(x)− x− (f(y)− y) | ≤ |f(x)− f(y)|+ |x− y| ≤ (K + 1)|x− y|,∀x, y ∈ [0, π].

Thus, g also satisfies the Lipschitz condition.

Lemma A.3. Given f : [−π, π] → R and f(x) = f(−x),∀x ∈ [0, π]. If f satisfies the Lipschitz condition within [0, π],
then f also satisfies Lipschitz condition in [−π, π].

Proof. Suppose that f satisfies the Lipschitz condition in [0, π], then there is a constant K, such that

|f(x)− f(y)| ≤ K|x− y|,∀x, y ∈ [0, π].

∀x, y ∈ [−π, π], if xy ≥ 0, we obvisouly have |f(x)− f(y)| ≤ K|x− y|.
If xy < 0, we have |f(x)− f(y)| = |f(x)− f(−y)| ≤ K|x+ y| ≤ K|x− y|.

Next, we will prove Theorem 3.6, which shows the convergence property of trigonometric approximation with residual.

Proof. For simplification, we define g(x) = f(x) − x, ∀x ∈ [0, π]. From Lemma A.2, g holds the Lipschitz condition
as f . Then we would like to extend g : [0, π] → R to a 2π-periodic function gextend : R → R. Firstly, we define
ĝextend : [−π, π] → R as:

ĝextend(x) =

{
g(x), If x ∈ [0, π]

g(−x), If x ∈ [−π, 0),
(15)

Further, we define the 2π-periodic function gextend : R → R as follows:

gextend(x) = ĝextend

(
Normalize(x)

)
, where

Normalize(x) =

{
x− sgn(x)

(
⌈ |x|−π

2π ⌉ × 2π
)
, if |x| > π

x, otherwise,

(16)

where sgn(·) is the sign function, whose values is 1 for positive inputs, −1 for negative inputs, 0 for zero inputs.
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Considering the definition of neural spectral block in Eq. (8), we can find the following parameters in the neural spectral
block will satisfy Eq. (12):

w0 =
[ 1

2π

∫ π

−π

gextend(t)dt
]

wsin =
[ 1
π

∫ π

−π

gextend(t) sin(t)dt, · · · ,
1

π

∫ π

−π

gextend(t) sin(
N

2
t)dt

]

wcos =
[ 1
π

∫ π

−π

gextend(t) cos(t)dt, · · · ,
1

π

∫ π

−π

gextend(t) cos(
N

2
t)dt

]
.

Then, we have the canonical trigonometric approximation of gextend as gNextend, which is defined as follows:

gNextend(x) = w0 +wsin




sin(x)
...

sin(N2 x)


+wcos




cos(x)
...

cos(N2 x)


 =

N
2∑

k=−N
2

(
1

2π

∫ π

−π

gextend(t)e
−iktdt

)
eikx,∀x ∈ R.

If f satisfies the Lipschitz condition, from Lemma A.2 and Lemma A.3, we have that ĝextend satisfies the Lipschitz condition.
Since ĝextend : [−π, π] → R satisfies ĝextend(x) = ĝextend(−x), then ∀x, y ∈ R, there is a constant K ′, such that:

|gextend(x)− gextend(y)| =
∣∣∣ĝextend (|Normalize(x)|)− ĝextend (|Normalize(y)|)

∣∣∣

=
∣∣∣g (|Normalize(x)|)− g (|Normalize(y)|)

∣∣∣

≤ K ′
∣∣∣|Normalize(x)| − |Normalize(y)|

∣∣∣
≤ K ′|x− y|. (Similar discussion as Lemma A.3)

(17)

For the last inequation of Eq. (17), if |x−y| ≥ π, the inequation obviously holds. If |x−y| < π and x, y ∈ [nπ, (n+1)π], n ∈
Z, then we have

∣∣∣|Normalize(x)| − |Normalize(y)|
∣∣∣ = |x − y|. As for |x − y| < π and x ≤ 2nπ ≤ y, n ∈ Z (suppose

x ≤ y without loss of generality), we have
∣∣∣|Normalize(x)| − |Normalize(y)|

∣∣∣ =
∣∣∣(2nπ − x)− (y − 2nπ)

∣∣∣ ≤
∣∣∣(2nπ − x) + (y − 2nπ)

∣∣∣ = |x− y|.

As for |x− y| < π and x ≤ (2n+ 1)π ≤ y, n ∈ Z, we have
∣∣∣|Normalize(x)| − |Normalize(y)|

∣∣∣ =
∣∣∣
(
π − ((2n+ 1)π − x)

)
−
(
π − (y − (2n+ 1)π)

)∣∣∣

=
∣∣∣(y − (2n+ 1)π)− ((2n+ 1)π − x)

∣∣∣

≤
∣∣∣(y − (2n+ 1)π) + ((2n+ 1)π − x)

∣∣∣
= |x− y|.

Thus, gextend also satisfies the Lipschitz condition.

Thus, from Theorem A.1, we have that gNextend converges to gextend with the speed as follows:

|gextend(x)− gNextend(x)| ≤
K ln N

2
N
2

,∀x ∈ R, (18)

where K is a constant. From the definition of Eq. (8), ∀x ∈ [0, π], we have fN (x) = x+ gNextend(x), then

|f(x)− fN (x)| =
∣∣∣∣
(
gextend(x) + x

)
−
(
gNextend(x) + x

)∣∣∣∣

=

∣∣∣∣gextend(x)− gNextend(x)

∣∣∣∣ ≤
K ln N

2
N
2

≤ (2K) lnN

N
,∀x ∈ [0, π].

(19)
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Table 5. Details for benchmarks. All the settings follow FNO (Li et al., 2021) and geo-FNO (Li et al., 2022). The input-output resolutions
are presented in the shape of (temporal, spatial, variate). “/” means without this dimension.

DESCRIPTIONS
SOLID PHYSICS FLUID PHYSICS

ELASTICITY-P ELASTICITY-G PLASTICITY NAVIER–STOKES AIRFOIL PIPE DARCY

P
H

Y
S

IC
S

PDES PDES OF SOLID MATERIAL NAVIER-STOKES EQUATION DARCY’S LAW

TASK ESTIMATE STRESS MODEL DEFORMATION PREDICT FUTURE ESTIMATE VELOCITY ESTIMATE PRESSURE

INPUT MATERIAL STRUCTURE BOUNDARY CONDITION PAST VELOCITY STRUCTURE POROUS MEDIUM

OUTPUT INNER STRESS MESH DISPLACEMENT FUTURE VELOCITY FLUID VELOCITY FLUID PRESSURE

D
A

TA

TRAIN SET SIZE 1000 1000 900 1000 1000 1000 1000

TEST SET SIZE 200 200 80 200 100 200 200

INPUT TENSOR (/, 972, 2) (/, 41× 41, 1) (/, 101× 31, 2) (10, 64× 64, 1) (/, 200× 50, 2) (/, 129× 129, 2) (/, 85× 85, 1)

OUTPUT TENSOR (/, 972, 1) (/, 41× 41, 1) (20, 101× 31, 4) (10, 64× 64, 1) (/, 200× 50, 1) (/, 129× 129, 1) (/, 85× 85, 1)

B. Details for Benchmarks
We have summarized benchmark configurations in Table 5. Here are the generation details categorized by governing PDEs.

B.1. Solid Material

The governing equation of solid material is:

ρs
∂2u

∂t2
+∇ · σ = 0, (20)

where ρs ∈ R means the solid density, ∇ denotes the nabla operator. u is a function that represents the displacement vector
of material over time t. σ denotes the stress tensor. Elasticity-P, Elasticity-G and Plasticity (Li et al., 2022) share the same
governing equation as shown in Eq. (20).

Elasticity-P and Elasticity-G. These benchmarks are to estimate the inner stress of an incompressible material with an
arbitrary void at the center of the material. Besides, an external tension is applied to the material. The input is the structure
of the material, and the output is inner stress. Elasticity-P and Elasticity-G differ in the way modeling the geometric of
material: Elasticity-P uses a point cloud with 972 points, while Elasticity-G presents the data in a regular grid with the size
of 41× 41, which is interpolated from Elasticity-P.

Plasticity. This benchmark focuses on the plastic forging problem, where a plastic material is impacted from above by
an arbitrary-shaped die. The input is the shape of the die, which is recorded in structured mesh. And the output is the
deformation of each mesh point in the future 20 time steps. The resolution of the structured mesh is 101× 31.

B.2. Navier-Stokes Equation

The differential form of fluid dynamics equations are:

∂ρ

∂t
+∇ · (ρU) = 0 (21)

∂U

∂t
+U · ∇U = f +

1

ρ
∇ · (T ijeiej) (22)

∂(e+ 1
2U

2)

∂t
+U · ∇(e+

1

2
U2) = f ·U +

1

ρ
∇ · (U · T ijeiej) +

λ

ρ
∆T, (23)

where Eq. (21), Eq. (22) and Eq. (23) describe the mass, momentum and energy conservation respectively. Here ρ is the
density, U is the velocity vector, f is the external force, e is the internal energy. And T is the stress tensor in the fluid, e
is the basis vector and T ijeiej follows the Einstein summation convention. All above variates are related to both space
and time. λ

ρ∆T is for heat conduction. For a Newtonian fluid, the stress tensor T is related to the pressure p, viscosity
coefficient ν and velocity vector U . Thus, for the Newtonian fluid, Eq. (22) can be rewritten as:

∂U

∂t
+U · ∇U = f − 1

ρ
∇p+ ν∇2U . (24)
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Besides, Eq. (23) can also be deduced in a similar way, but the result is too complex to be presented in this paper. See
(McLean, 2012) for more details. The dynamics equations for Newtonian fluid are well-known as Navier-Stokes equations.
Next, we will detail the underlying PDEs for our fluid benchmarks.

Navier-Stokes. We take the Navier-Stokes dataset from (Li et al., 2021). This dataset simulates incompressible and
viscous flow on the unit torus, where the density of fluid is unchangeable (ρ in Eq. (21)). In this situation, the energy
conservation presented in Eq. (23) is independent of mass and momentum conservation. Hence, the fluid dynamics can be
deduced with Eq. (21) and Eq. (24):

∇ ·U = 0

∂w

∂t
+U · ∇w = ν∇2w + f

w|t=0 = w0,

(25)

where U = (u, v) is a velocity vector in 2D field, w = |∇ ×U | = ∂u
∂y − ∂v

∂x is the vorticity, w0 ∈ R is the initial vorticity
at t = 0. In this dataset, viscosity ν is set as 10−5 and the resolution of the 2D field is 64 × 64. Each generated sample
contains 20 successive frames and the task is to predict the future 10 frames based on the past 10 frames.

Pipe. This dataset (Li et al., 2022) focuses on the incompressible flow through a pipe. The governing equations are
similarly deduced with Eq. (21) and Eq. (24):

∇ ·U = 0

∂U

∂t
+U · ∇U = f − 1

ρ
∇p+ ν∇2U .

(26)

The dataset is generated in the geometric of structured mesh with the resolution of 129× 129. For experiments, we adopt
the mesh structure as the input data, and the output is the horizonal fluid velocity within the pipe.

Airfoil. The airfoil dataset (Li et al., 2022) is about the transonic flow over an airfoil. Since the viscosity of air is quite
small, the viscous term ν∇2U can be ignored in the Navier-Stokes equation. Thus, the governing equations for this situation
can be presented as follows:

∂ρf

∂t
+∇ · (ρfU) = 0

∂ρfU

∂t
+∇ · (ρfUU + pI) = 0

∂E

∂t
+∇ · ((E + p)U) = 0,

(27)

where ρf denotes the fluid density, and E represents the total energy. The data is generated in the geometric of structured
mesh with resolution of 200× 50. The locations of these mesh points are adopted as inputs. And the Mach number of each
mesh point is the output.

B.3. Darcy Flow

Darcy. The Darcy’s law describes the flow of fluid through a porous medium, for example, water goes through sand. We
use the Darcy dataset proposed in (Li et al., 2021), where 2-D Darcy flow equations in a unit box are formulized as:

−∇ · (a∇u) = f

u|x∈∂(0,1)2 = 0,
(28)

where a ∈ R+ is the diffusion coefficient. f means the externel force, which is fixed as 1 in this dataset. This dataset takes a
as input, and the output is the solution u. The samples in this dataset are in the regular grid with resolution as 85× 85.
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Figure 8. Showcases on all seven benchmarks. Especially for the sub-figure (c) Plasticity, we plot the last timestamp of output (T = 20).
As for the sub-figure (g) Navier-Stokes, we plot the frames at T = 18 and T = 20 to present the model performance over time.

C. More Showcases
As a complement to Figure 4, we present showcases for all benchmarks in Figure 8 and also plot the coordinate-wise
prediction error for comparison. As demonstrated in above showcases, LSM achieves a remarkable prediction performance
in extensive tasks. By investigating each case, we can obtain the following observations:

• Performance on the boundary. From Figure 8(a)(b)(c)(f), we can find that LSM significantly surpasses other baselines
on the boundary of different geometrics, demonstrating the model capability in learning physical constraints.

• Performance in time-dependent tasks. As shown in Figure 8(g), LSM can precisely predict the future velocity for the
fluid in the Navier-Stokes benchmark. Especially, the performances of other methods drop seriously from T = 18 to
T = 20, while LSM can simulate the fluid accurately even in the long-term future.

D. Full Ablations
As a complement to Table 3 of main text, we provide the comprehensive ablation results for all seven benchmarks here.
From Table 6, we can observe that all the components in LSM are effective to the final performance. Besides, we also
present detailed ablations on the neural spectral block in Table 7. Here are the analyses.
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Table 6. Full ablation results on hierarchical projection network (Projection, Multiscale, Patchify) and neural spectral block (Spectral). We
conduct two types of experiments: replacing our attention-based projector with other designs (rep) and removing components (w/o).
Efficiency is calculated on inputs with size 256× 256 and batch size as 1. “/” indicates the out-of-memory situation.

DESIGNS
#PARAM #MEM #TIME SOLID PHYSICS FLUID PHYSICS

(MB) (MB) (S/ITER) ELASTICITY-P ELASTICITY-G PLASTICITY NAVIER-STOKES DARCY AIRFOIL PIPE

REP
CONV 1.947 2.793 0.037 0.0236 0.00429 0.0029 0.1571 0.0081 0.0077 0.0052
AVGPOOL 1.836 1.748 0.028 0.0243 0.0413 0.0031 0.1564 0.0077 0.0072 0.0056
SELF-ATTN 2.002 7.188 0.064 0.0245 0.0424 / 0.1567 0.0082 0.0062 0.0056

W/O

PROJECTOR 1.836 2.793 0.035 0.0563 0.0419 / 0.1609 0.0080 0.0085 0.0059
MULTISCALE 0.079 1.757 0.020 0.0269 0.0479 0.0044 0.1667 0.0123 0.0097 0.0091
PATCHIFY 2.002 1.748 0.062 0.0545 0.0414 0.0040 0.1576 0.0068 0.0062 0.0055

SPECTRAL 1.990 1.913 0.034 0.0253 0.0421 0.0034 0.1618 0.0075 0.0107 0.0053

OURS 2.002 1.914 0.041 0.0218 0.0408 0.0025 0.1535 0.0065 0.0059 0.0050

Table 7. Detailed ablations on neural spectral block. MSE is recorded.

TYPE MODEL ELASTICITY-P DARCY

REPLACE NEURAL SPECTRAL BLOCK
LSM W/O NEURAL SPECTRAL BLOCK 0.0253 0.0075
LSM BUT REPLACE NEURAL SPECTRAL BLOCK WITH MLP 0.0249 0.0075
LSM BUT REPLACE NEURAL SPECTRAL BLOCK WITH FNO 0.0356 0.0073

REPLACE BASIS OPERATORS LSM WITH POLYNOMIAL BASIS OPERATORS 0.0261 0.0073

FINAL VERSION LSM 0.0218 0.0065

Replace neural spectral block with other global operators. To verify advantages in learning multiple basis operators,
we also conduct experiments on replacing the neural spectral block with multilayer perceptrons (MLP) and FNO (Li et al.,
2021), where the latter ones are global operators without basis operator decomposition design. As shown in Table 7,
compared to learning basis operators, it is harder to learn a global operator, whose performance is close to removing the
neural spectral block directly. It is also notable that replacing neural spectral block with FNO means applying FFT in the
latent space, which is unreasonable since the latent tokens are independent. Thus, directly replacing neural spectral block
with FNO damages performance seriously (Table 7), sometimes even worse than the case without neural spectral block.

Replace basis operators in neural spectral block. Note that the classical spectral method is a general framework,
which is to decompose the complex solution into several orthogonal basis functions. Thus, replacing the trigonometric
approximation in LSM with other basis is also implementable. However, other basis may not achieve the nice approximation
and optimization properties as the trigonometric basis functions. For example, as shown in Table 7, directly replacing
trigonometric basis with polynomial basis will decrease the model performance. Thus, we would like to leave the exploration
of other basis operators as the future work, including the corresponding model design and theoretical derivation.

E. Performance Under Various Resolutions
As shown in Table 8 and 9, we also evaluate the model performance on the newly-generated Darcy and Navier-Stokes
datasets with various resolutions, where we can obtain the following observations:

• For the Darcy benchmark, U-Net (2015) and HT-Net (Liu et al., 2022) that are proposed based on advanced deep
models U-Net and Transformer (Vaswani et al., 2017), degenerate a lot on the inputs with large resolutions, e.g.
1024× 1024, indicating that there exist complex mappings between input-output pairs of high-dimensional PDEs. In
contrast, LSM presents a stable performance w.r.t. different inputs and consistently surpasses other baselines in all
resolutions, presenting good capacity in solving high-dimensional PDEs.

• As for the Navier-Stokes benchmark, whose task is to predict the future 10 frames based the past 10 frames, we can
find that in comparison with other baselines, LSM presents more significant advantage in higher input resolutions.
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Table 8. Model performance comparison on Darcy under different resolutions.

RESOLUTION U-NET (2015) FNO (2021) MWT (2021) U-NO (2022) F-FNO (2023) HT-NET (2022) LSM (OURS)

32× 32 0.0059 0.0128 0.0083 0.0148 0.0103 0.0058 0.0049
64× 64 0.0052 0.0067 0.0078 0.0079 0.0064 0.0046 0.0042

128× 128 0.0054 0.0057 0.0064 0.0064 0.0050 0.0040 0.0038
256× 256 0.0251 0.0058 0.0057 0.0064 0.0051 0.0044 0.0043
512× 512 0.0496 0.0057 0.0066 0.0057 0.0042 0.0063 0.0039

1024× 1024 0.0754 0.0062 0.0077 0.0058 0.0069 0.0163 0.0050

Table 9. Model performance comparison on the Navier-Stokes benchmark under different resolutions. “/” indicates the poor performance.

RESOLUTION U-NET (2015) FNO (2021) MWT (2021) U-NO (2022) F-FNO (2023) HT-NET (2022) LSM (OURS)

64× 64 0.1982 0.1556 0.1541 0.1713 0.2322 0.1847 0.1535
128× 128 / 0.1028 0.1099 0.1068 0.1506 0.1088 0.0961

F. Additional Experiments on Burger’s Equation
As a fundamental partial differential equation for convection-diffusion processes occurring in various areas of applied
mathematics, Burger’s equation is widely used in modeling fluid mechanics, nonlinear acoustics and gas dynamics. Following
the experiment settings in FNO (Li et al., 2021), we also test LSM in solving 1D Burger’s equation. Especially, to fit the 1D
input data, we need to implement the following changes to LSM and other baselines:

• By conducting the up-down sampling and patchify in the 1D space, LSM can handle the 1D inputs.

• As for the F-FNO, we replace its factorized 2D FFT with 1D FFT.

• For the U-NO, we replace both 2D up-down sampling and 2D FFT with 1D versions.

From Table 10, we can find that LSM still performs well in this equation under various resolutions, verifying the model
capacity in solving high-dimensional PDEs.

Table 10. Model performance comparison on 1D Burger’s equation.

RESOLUTION FNO (2021) MWT (2021) U-NO (2022) F-FNO (2023) LSM (OURS)

256 0.00332 0.00199 0.00450 0.00414 0.00123
512 0.00333 0.00185 0.00488 0.00347 0.00124
1024 0.00377 0.00185 0.00508 0.00319 0.00126
2048 0.00346 0.00186 0.00574 0.00313 0.00115
4096 0.00324 0.00185 0.00571 0.00314 0.00122
8192 0.00336 0.00178 0.00575 0.00315 0.00105

G. Hyperparameter Sensitivity
As shown in Table 11, we test the hyperparameter sensitivity of our model by changing one hyperparameter and fixing the
other. Here are the details:

• Change the number of latent tokens C and fix N = 24,K = 5. we can find that the performance of LSM is stable
w.r.t. different choices of C, which may come from the equivalence of different latent tokens.

• Change the number of basis operators N and fix C = 4,K = 5. Generally, larger N will bring better results, while
larger N will also cause more computation cost and optimization problems, which explains why the model performance
drops slightly at N = 40 and N = 48. Note that the N = 0 setting is equivalent to the without neural spectral block
situation, where the model performance will drop seriously.

• Change the number of scales K and fix C = 4, N = 24. In general, adding scales K will improve the model’s
performance. But the model with too many scales is unimplementable due to the limitation of input resolution.

18



Solving High-Dimensional PDEs with Latent Spectral Models

Table 11. Model performances on Elasticity-G with different number of latent tokens C, number of basis operators N and number of
scales K. “/” means that the experiment is unimplementable.

NUMBER OF LATENT TOKENS C 0 1 2 3 4 5 6

MSE / 0.0415 0.0415 0.0409 0.0408 0.0411 0.0415

NUMBER OF BASIS OPERATORS N 0 8 16 24 32 40 48

MSE 0.0433 0.0415 0.0418 0.0408 0.0406 0.0413 0.0416

NUMBER OF SCALES K 3 4 5 6 7 8 9

MSE 0.0428 0.0412 0.0408 0.0400 0.0402 / /

Overall, LSM is stable to these three hyperparameters, where C is robust and easy to tune in the range of 3 to 5, N is robust
in 24 to 40 and K is stable in 5 to 7. Thus, the setting of number of latent tokens C as 4, number of basis operators N as 24
and number of scales K as 5 can aptly trade off the efficiency and performance.

H. Training Stability
We provide the model training curves on different benchmarks in Figure 9. From Figure 9, we can observe that in addition
to the consistent state-of-the-art performance in all benchmarks, LSM also presents comparable training stability w.r.t. the
well-acknowledged FNO (Li et al., 2021).

Besides, we also repeat all the experiments five times, where the standard deviations of LSM performance are within 0.0001
for Elasticity-P, Elasticity-G and Plasticity, Darcy and Airfoil, and within 0.0002 for Navier-Stokes and Pipe.

(a) Elasticity-G (b) Plasticity (c) Navier-Stokes

(d) Darcy (e) Airfoil (f) Pipe
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Figure 9. Model training curves, where the x-axis means the number of epochs and the y-axis is MSE performance in the test set.

I. Implementation Details
All experiments are repeated five times, implemented in PyTorch (Paszke et al., 2019) and conducted on a single NVIDIA
RTX 3090 24GB GPU. We have provided the training curves and standard deviations in Appendix H. For all methods, the
performance at the final epoch is recorded as the final result. Here are the implementation details of the LSM model.
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I.1. Model Configurations

Here, we present the detailed model configurations for LSM. In the beginning, we will pad the input with zeros properly to
resolve the division problem in model configurations.

Table 12. Model configurations for LSM.

MODEL DESIGNS HYPERPARAMETERS VALUES

NUMBER OF LATENT TOKENS C 4
NUMBER OF SCALES K 5

HIERARCHICAL PROJECTION DOWNSAMPLE RATIO r = |Dk+1|
|Dk| 0.5

NETWORK CHANNELS OF EACH SCALE {d1MODEL, · · · , dKMODEL} {32, 64, 128, 128, 128}
CHANNELS OF LATENT TOKENS AT EACH SCALE {d1LATENT, · · · , dKLATENT} {32, 64, 128, 128, 128}

PATCHES OF EACH SCALE {P1, · · · , PK} {256, 64, 16, 4, 1}
NEURAL SPECTRAL BLOCK NUMBER OF BASIS OPERATORS N 24

I.2. Model Architecture

In this section, we will illustrate the operations in the patchified multiscale architecture.

Downsample. Given deep features {xk(s)}s∈Dk at the k-th scale, the downsample operation is to aggregate deep features
in a local region with maximum pooling and convolution operations, which can be formulized as follows:

{xk+1(s)}s∈Dk+1 = Conv
(
MaxPool

(
{xk(s)}s∈Dk

))
, k from 1 to (K − 1). (29)

Upsample. Given the deep features {ŷk+1(s)}s∈Dk+1 , {ŷk(s)}s∈Dk at the (k + 1)-th and k-th scales respectively, which
have been projected from latent space back to coordinate space, the upsample process is to fuse the interpolated k + 1-th
features and the k-th features with local convolution, which can be formulized as follows:

{ŷk(s)}s∈Dk = Conv

(
Concat

([
Interpolation

(
{ŷk+1(s)}s∈Dk+1

)
, {ŷk(s)}s∈Dk

]))
, k from (K − 1) to 1, (30)

where we adopt the bilinear Interpolation(·) for 2D data and the trilinear Interpolation(·) for 3D data.

Patchify and De-Patchify. The patchify operation is to split the coordinate set into several non-overlapping local regions
with an equal number of coordinates. This process of patchify at the k-th scale is formulized as follows:

{Dk
j }Pk

j=1 = Patchify(Dk). (31)

And the depacthify operation is just to splice the patches in different local regions, that is Dk = De-Patchify({Dk
j }Pk

j=1).

I.3. Benchmark Construction

Time-dependent tasks. In our benchmarks, both Plasticity and Navier-Stokes are time-dependent. For the Plasticity
benchmark, since its input is the boundary condition and output is the mesh displacement over time, we adopt the 3D-version
LSM for Plasticity experiments, where all the convolution (Conv), max pooling (MaxPool), interpolation (Interpolation)
and patchify (Patchify) operations are in the 3D space. As for the Navier-Stokes, since it is an autoregressive task, we still
adopt the 2D-version LSM like other benchmarks and predict the next frame step by step. Note that the neural spectral block
is applied to the independent latent tokens, hence it is unchanged for both 2D- and 3D-versions.

Baselines. We implement all the baselines based on their official code. Note that we focus on the operator-learning
paradigm, thus we only adopt their model and uniformly use the L2 loss during training for fairness. Especially, for the
MWT (Gupta et al., 2021), we pad the inputs with zeros to make the input resolutions as integer power of two.
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J. Efficiency
To present a clear efficiency comparison among different models, we fix the model input as a regular grid with the resolution
of S×S, the input channel as 1 and the batch size as 1. Then, we record the model parameter, GPU memory and running time
under different choices of S, which are selected from {64, 128, 256, 512, 1024}. Besides, we also calculate the performance
ranking of baselines on each benchmark and present the model efficiency in the order of averaged ranking.

From Table 13, we can obtain the following observations:

• There is an evident gap between solid and fluid physics. From Table 13, we can find that the performances of baselines
are quite different in solid and fluid physics. Concretely, the top 5 models in solid and fluid benchmarks are distinct,
except LSM (rank 1st) and F-FNO (rank 5th). This result also indicates that there is a large gap between solid and fluid
physics and previous methods cannot cover different disciplines of physics well.

• LSM presents favorable generality in varied physics. From the performance ranking on seven tasks, it is observed
that other baselines fluctuate greatly in different benchmarks. In contrast, it is impressive that our proposed LSM can
achieve consistent state-of-the-art on these varied physics, demonstrating the model generality.

• LSM presents competitive efficiency in high-dimensional inputs. We have provided the efficiency comparison for
256 × 256 inputs in Figure 5 of the main text. If we focus on the running time for the inputs with the resolution of
512× 512 and 1024× 1024, we can find that LSM is clearly faster than U-NO (rank 2nd), U-Net (rank 3rd).

K. Limitations
As we discussed in the main results (Table 2), performance under various resolutions (Table 8), efficiency comparison
(Table 13) and transfer learning tasks (Table 4), LSM can precisely solve the PDEs with good efficiency and transferability,
covering both solid and fluid physics and various geometrics. Although LSM can achieve advanced performance, it still
holds some limitations. Here are the discussions.

One potential limitation of LSM may lie in the model generality among different PDEs, where we expect a zero-shot PDE
solver like the foundation models in natural language processing, such as GPT-3 (Brown et al., 2020), T5 (Raffel et al.,
2020) and etc. Note that due to the inherent complexity of PDEs, a small perturbation to the coefficients of PDEs may
change their property seriously, such as condition number, with or without explicit solution, the convergence of infinite
values (Evans, 2010). Thus, to tackle this potential limitation, we need first to explore the fundamental question of “whether
there is a universal solution to all PDEs or not,” which is clearly far beyond the scope of our paper. Thus, we would like to
leave this problem as future work.

L. Societal Impacts
Real-world applications. In this paper, we present the LSM as a practical deep solver for high-dimensional PDEs. Given
the state-of-the-art performance of LSM, this paper may help many PDE-related applications, such as airfoil design, the
load-bearing tests of civil engineering, weather forecasting, etc. Especially, LSM can also present a favorable transferability
to limited data scenarios (Table 4), which is important for fast-adaption to new scenarios.

Academic research. Unlike previous methods, LSM attempts to solve high-dimensional PDEs through a new technology
roadmap: going beyond high-dimensional coordinate information and solving PDEs in latent space, which can be a good
supplement for the operator learning community.

This paper only focuses on the scientific problem. All the datasets are generated by public tools and strictly follow the
corresponding licenses (Appendix B). Thus, there is no potential ethical risk or negative social impact.
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Table 13. Model efficiency comparison and their rankings in solid, fluid and all seven benchmarks, where we select the top 10 methods. A
smaller ranking means better performance. Efficiency is evaluated on inputs with size S × S during the training phase. The batch size is
set to 1. Running time is averaged from 103 iterations. “/” indicates the out-of-memory situation.

Input Size (S × S) Parameter GPU Memory Running Time Ranking

Model S (MB) (MB) (s / iter) Seven tasks⋆ Solid∗ Fluid† Averaged‡

64 2.002 1409 0.0353

(1, 1, 1, 1, 1, 1, 1) 1.0 1.0 1.0
128 2.002 1679 0.0359

LSM 256 2.002 1959 0.0411
(ours) 512 2.002 3019 0.0602

1024 2.002 7859 0.2002

U-NO

64 1.307 1345 0.0347

(6, 2, 2, 4, 7, 4, 9) 3.3 8.0 4.9
128 1.307 1381 0.0354
256 1.307 1603 0.0397
512 1.307 2473 0.0989
1024 1.307 6833 0.3335

U-Net

64 4.332 1171 0.0321

(3, 8, 5, 6, 4, 6, 4) 5.3 5.0 5.1
128 4.332 1243 0.0307
256 4.332 1515 0.0450
512 4.332 2429 0.1589
1024 4.332 6235 0.8100

FNO

64 2.368 1137 0.0202

(2, 6, 6, 3, 6, 8, 5) 4.6 7.3 5.1
128 2.368 1179 0.0203
256 2.368 1349 0.0147
512 2.368 1975 0.0401
1024 2.368 4591 0.1270

HT-Net

64 3.285 1175 0.0406

(10, 3, 10, 5, 3, 2, 3) 7.6 3.2 5.1
128 3.285 1283 0.0415
256 3.285 1749 0.0469
512 3.285 3267 0.1300
1024 3.285 9259 0.4581

F-FNO

64 0.218 1089 0.0303

(7, 4, 4, 9, 2, 5, 6) 5.0 5.5 5.3
128 0.218 1169 0.0303
256 0.218 1437 0.0202
512 0.218 2457 0.0825
1024 0.218 6443 0.3248

U-FNO

64 3.990 1169 0.0400

(4, 5, 3, 7, 9, 9, 2) 4.0 6.7 5.6
128 3.990 1241 0.0400
256 3.990 1499 0.0471
512 3.990 2537 0.1047
1024 3.990 6869 0.3217

WMT

64 3.106 1145 0.0615

(9, 7, 7, 2, 5, 3, 7) 7.6 4.2 5.7
128 3.106 1201 0.0720
256 3.106 1407 0.0900
512 3.106 2165 0.1118
1024 3.106 5241 0.3120

Galerkin

64 6.319 1233 0.0252

(5, 10, 8, 10, 8, 7, 8) 7.6 8.2 8.0
128 6.319 1277 0.0260
256 6.319 1675 0.0681

Trasnformer 512 6.319 3175 0.2225
1024 2.002 9333 0.8688

Swin

64 0.538 1135 0.0615

(8, 9, 9, 8, 10, 10, 10) 8.6 9.5 9.1
128 0.538 1261 0.0333
256 0.538 1789 0.0355

Trasnformer 512 0.538 3759 0.1150
1024 / / /

⋆ The rankings are presented in the order of (Elasticity-P, Elasticity-G, Plasticity, Navier-Stokes, Darcy, Airfoil, Pipe).
∗ Top 5 methods of solid benchmarks: LSM (ours), U-NO (2022), U-FNO (2021), FNO (2021), F-FNO (2023).
† Top 5 methods of fluid benchmarks: LSM (ours), HT-Net (2022), WMT (2021), U-Net (2015), F-FNO (2023).
‡ Top 5 methods of all benchmarks: LSM (ours), U-NO (2022), U-Net (2015), FNO (2021), HT-Net (2022).
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