Deep Transfer Learning with Joint Adaptation Networks

Mingsheng Long1, Han Zhu1, Jianmin Wang1
Michael I. Jordan2

1School of Software, Institute for Data Science
Tsinghua University

2Department of EECS, Department of Statistics
University of California, Berkeley

https://github.com/thuml
International Conference on Machine Learning, 2017
Outline

1. **Motivation**
 - Deep Transfer Learning
 - Related Work
 - Main Idea

2. **Method**
 - Kernel Embedding
 - JMMD
 - JAN

3. **Experiments**
Deep Learning

Learner: $f : x \rightarrow y$

Distribution: $(x, y) \sim P(x, y)$

Error Bound: $\epsilon_{test} \leq \hat{\epsilon}_{train} + \sqrt{\text{complexity} \cdot \frac{1}{n}}$
Deep Transfer Learning

- Deep learning across domains of different distributions $P \neq Q$

Source Domain

Target Domain

2D Renderings

Real Images

Model

$P(x,y) \neq Q(x,y)$

Representation

Model

$f : x \rightarrow y$

$f : x \rightarrow y$
Deep Transfer Learning: Why?

Motivation

- Deep Transfer Learning

Training Error high?
Train-Dev Error high?
Dev Error high?
Test Error high?

Training Set | Train-Dev Set | Dev Set | Test Set

- **Training Error high?**
 - No
 - **Train-Dev Error high?**
 - No
 - **Dev Error high?**
 - No
 - **Test Error high?**
 - No
 - **Done!**
 - Yes
 - Dataset Shift
 - Yes
 - Overfit Dev Set
 - No
 - Bigger Dev Data
 - Yes
 - Bias
 - Yes
 - Deeper Model
 - Longer Training
 - No
 - Variance
 - Yes
 - Bigger Data
 - Regularization
 - No
 - Transfer Learning
 - Data Generation

Andrew Ng. The Nuts and Bolts of Building Applications using Deep Learning. NIPS 2016 Tutorial.
Deep Transfer Learning: How?

- Learning predictive models on transferable features s.t. $P(x) = Q(x)$
- Distribution matching: **MMD** (ICML’15), **GAN** (ICML’15, JMLR’16)
Deep Adaptation Network (DAN)

Deep adaptation: match distributions in multiple domain-specific layers
Optimal matching: maximize two-sample test power by multiple kernels

\[d_k^2(P, Q) \triangleq \| \mathbf{E}_P[\phi(x^s)] - \mathbf{E}_Q[\phi(x^t)] \|^2_{\mathcal{H}_k} \]

\[\min_{\theta \in \Theta} \max_{k \in \mathcal{K}} \frac{1}{n_a} \sum_{i=1}^{n_a} J(\theta(x^s_i), y^a_i) + \lambda \sum_{\ell=1}^{l_2} d^2_k(D^\ell_s, D^\ell_t) \]
Domain Adversarial Neural Network (DANN)

Adversarial adaptation: learning features indistinguishable across domains

\[
E(\theta_f, \theta_y, \theta_d) = \sum_{x_i \in D_s} L_y(G_y(G_f(x_i)), y_i) - \lambda \sum_{x_i \in D_s \cup D_t} L_d(G_d(G_f(x_i)), d_i) \quad (3)
\]

\[
(\hat{\theta}_f, \hat{\theta}_y) = \arg \min_{\theta_f, \theta_y} E(\theta_f, \theta_y, \theta_d) \quad (\hat{\theta}_d) = \arg \max_{\theta_d} E(\theta_f, \theta_y, \theta_d) \quad (4)
\]
Behavior of Existing Work

- Adaptation of marginal distributions $P(x)$ and $Q(x)$ is not sufficient

Before Adaptation
$P(x) \neq Q(x)$

After Adaptation
$P(x) \approx Q(x)$
Main Idea of This Work

- Directly model and match joint distributions $P(x, y)$ and $Q(x, y)$

Match Marginal Distributions

$P(x) \approx Q(x)$

Match Joint Distributions

$P(x, y) \approx Q(x, y)$
Outline

1 Motivation
 - Deep Transfer Learning
 - Related Work
 - Main Idea

2 Method
 - Kernel Embedding
 - JMMD
 - JAN

3 Experiments
Kernel Embedding of Distributions

<table>
<thead>
<tr>
<th>Distributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete</td>
</tr>
<tr>
<td>(P(X))</td>
</tr>
<tr>
<td>(P(X, Y))</td>
</tr>
<tr>
<td>(P(X, Y, Z))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kernel Embedding</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(X))</td>
</tr>
<tr>
<td>(Y) (P(X, Y))</td>
</tr>
<tr>
<td>(Z) (P(X, Y, Z))</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\mu_X := & \mathbb{E}_X[\phi(X)] \\
C_{XY} := & \mathbb{E}_{XY}[\phi(X) \otimes \phi(Y)] \\
C_{XYZ} := & \mathbb{E}_{XYZ}[\phi(X) \otimes \phi(Y) \otimes \phi(Z)]
\end{align*}
\]

Kernel Embedding of Joint Distributions

\[
C_{YX} = \mathbb{E}[\phi(Y) \otimes \phi(X)] \approx \hat{C}_{YX} = \frac{1}{n} \sum_{i=1}^{n} \phi(y_i) \otimes \phi(x_i)
\]

\[
\mathcal{C}_{X^{1:m}(P)} \triangleq \mathbb{E}_{X^{1:m}} \left[\otimes_{\ell=1}^{m} \phi^\ell(X^\ell) \right] \approx \hat{\mathcal{C}}_{X^{1:m}} = \frac{1}{n} \sum_{i=1}^{n} \otimes_{\ell=1}^{m} \phi^\ell(x_i^\ell)
\]

Joint Maximum Mean Discrepancy (JMMD)

Distance between embeddings of $P(Z^{s1}, \ldots, Z^{s|\mathcal{L}|})$ and $Q(Z^{t1}, \ldots, Z^{t|\mathcal{L}|})$

$$D_{\mathcal{L}} (P, Q) \triangleq \|C_{Z^{s,1:|\mathcal{L}|}} (P) - C_{Z^{t,1:|\mathcal{L}|}} (Q)\|_{\bigotimes_{\ell=1}^{|\mathcal{L}|} \mathcal{H}_\ell}^2.$$

(6)

$$\hat{D}_{\mathcal{L}} (P, Q) = \frac{1}{n_s^2} \sum_{i=1}^{n_s} \sum_{j=1}^{n_s} \prod_{\ell \in \mathcal{L}} k^\ell (z_{si}^{s\ell}, z_{sj}^{s\ell})$$

$$+ \frac{1}{n_t^2} \sum_{i=1}^{n_t} \sum_{j=1}^{n_t} \prod_{\ell \in \mathcal{L}} k^\ell (z_{ti}^{t\ell}, z_{tj}^{t\ell})$$

$$- \frac{2}{n_s n_t} \sum_{i=1}^{n_s} \sum_{j=1}^{n_t} \prod_{\ell \in \mathcal{L}} k^\ell (z_{si}^{s\ell}, z_{tj}^{t\ell}).$$

(7)

Theorem (Two-Sample Test (Gretton et al. 2012))

- $P = Q$ if and only if $\hat{D}_{\mathcal{L}} (P, Q) = 0$ (In practice, $\hat{D}_{\mathcal{L}} (P, Q) < \varepsilon$)
How to Understand JMMD?

- Set last-layer features $\mathbf{Z} = \mathbf{Z}^{L-1}$, classifier predictions $\mathbf{Y} = \mathbf{Z}^L \in \mathbb{R}^C$
- We can understand JMMD(\mathbf{Z}, \mathbf{Y}) by simplifying it to linear kernel
- This interpretation assumes classifier predictions \mathbf{Y} be one-hot vector

\[
\hat{D}_L (P, Q) \triangleq \left\| \frac{1}{n_s} \sum_{i=1}^{n_s} \mathbf{z}_i^s \otimes \mathbf{y}_i^s - \frac{1}{n_t} \sum_{j=1}^{n_t} \mathbf{z}_j^t \otimes \mathbf{y}_j^t \right\|^2
\]

\[
= \sum_{c=1}^{C} \left\| \frac{1}{n_s} \sum_{i=1}^{n_s} \mathbf{y}_{i,c}^s \mathbf{z}_i^s - \frac{1}{n_t} \sum_{j=1}^{n_t} \mathbf{y}_{j,c}^t \mathbf{z}_j^t \right\|^2
\]

\[
\approx \sum_{c=1}^{C} \hat{D} (P_{\mathbf{Z}|y=c}, Q_{\mathbf{Z}|y=c})
\]

Equivalent to matching distributions P and Q conditioned on each class!
How to Understand JMMD?

- JMMD can process continuous softmax activations (probability)
- In practice, Gaussian kernel is used for matching all orders of moments
Joint Adaptation Network (JAN)

Joint adaptation: match joint distributions of multiple task-specific layers

\[
\min_f \frac{1}{n_s} \sum_{i=1}^{n_s} J(f(x_i^s), y_i^s) + \lambda \hat{D}_L(P, Q)
\]

\[
D_L(P, Q) \triangleq \left\| C_{Z^{s,1:|\mathcal{L}|}}(P) - C_{Z^{t,1:|\mathcal{L}|}}(Q) \right\|_2^2 \bigotimes_{\ell=1}^{|\mathcal{L}|} \mathcal{H}_\ell
\]
Learning Algorithm

Linear-Time $O(n)$ Algorithm of JMMD (Streaming Algorithm)

$$\hat{D}_L (P, Q) = \frac{2}{n} \sum_{i=1}^{n/2} \left(\prod_{\ell \in \mathcal{L}} k^\ell (z_{2i-1}^{s\ell}, z_{2i}^{s\ell}) + \prod_{\ell \in \mathcal{L}} k^\ell (z_{2i}^{t\ell}, z_{2i}^{t\ell}) \right)$$

$$- \frac{2}{n} \sum_{i=1}^{n/2} \left(\prod_{\ell \in \mathcal{L}} k^\ell (z_{2i-1}^{s\ell}, z_{2i}^{t\ell}) + \prod_{\ell \in \mathcal{L}} k^\ell (z_{2i}^{t\ell}, z_{2i}^{s\ell}) \right)$$

$$= \frac{2}{n} \sum_{i=1}^{n/2} d \left(\{z_{2i-1}^{s\ell}, z_{2i}^{s\ell}, z_{2i-1}^{t\ell}, z_{2i}^{t\ell}\} \right)$$

SGD: for each layer ℓ and for each quad-tuple $(z_{2i-1}^{s\ell}, z_{2i}^{s\ell}, z_{2i-1}^{t\ell}, z_{2i}^{t\ell})$

$$\nabla_{W^\ell} = \frac{\partial J (z_{2i-1}^{s\ell}, z_{2i}^{s\ell}, y_{2i-1}^{s\ell}, y_{2i}^{s\ell})}{\partial W^\ell} + \lambda \frac{\partial d \left(\{z_{2i-1}^{s\ell}, z_{2i}^{s\ell}, z_{2i-1}^{t\ell}, z_{2i}^{t\ell}\} \right)}{\partial W^\ell}$$
Adversarial Joint Adaptation Network (JAN-A)

Optimal matching: maximize JMMD as semi-parametric domain adversary

\[
\min_{f} \max_{\theta} \frac{1}{n_s} \sum_{i=1}^{n_s} J(f(x^s_i), y^s_i) + \lambda \hat{D}_{\mathcal{L}}(P, Q; \theta)
\]

(13)

\[
\hat{D}_{\mathcal{L}}(P, Q; \theta) = \frac{2}{n} \sum_{i=1}^{n/2} d \left(\{\theta^\ell(z^{s\ell}_{2i-1}, z^{s\ell}_{2i}, z^{t\ell}_{2i-1}, z^{t\ell}_{2i})\}_{\ell \in \mathcal{L}} \right)
\]

(14)
Outline

1 Motivation
 - Deep Transfer Learning
 - Related Work
 - Main Idea

2 Method
 - Kernel Embedding
 - JMMD
 - JAN

3 Experiments
Datasets

VisDA Challenge 2017
ImageCLEF Challenge 2014
Office-Caltech
Caffe

Pre-train
Fine-tune
Fine-tune
Fine-tune
Fine-tune

M. Long et al. (Tsinghua Univ.) JAN: Joint Adaptation Networks ICML 2017 21 / 25
Learning transferable features with joint adaptation and optimal matching

<table>
<thead>
<tr>
<th>Method</th>
<th>A → W</th>
<th>D → W</th>
<th>W → D</th>
<th>A → D</th>
<th>D → A</th>
<th>W → A</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlexNet</td>
<td>61.6±0.5</td>
<td>95.4±0.3</td>
<td>99.0±0.2</td>
<td>63.8±0.5</td>
<td>51.1±0.6</td>
<td>49.8±0.4</td>
<td>70.1</td>
</tr>
<tr>
<td>TCA</td>
<td>61.0±0.0</td>
<td>93.2±0.0</td>
<td>95.2±0.0</td>
<td>60.8±0.0</td>
<td>51.6±0.0</td>
<td>50.9±0.0</td>
<td>68.8</td>
</tr>
<tr>
<td>GFK</td>
<td>60.4±0.0</td>
<td>95.6±0.0</td>
<td>95.0±0.0</td>
<td>60.6±0.0</td>
<td>52.4±0.0</td>
<td>48.1±0.0</td>
<td>68.7</td>
</tr>
<tr>
<td>DDC</td>
<td>61.8±0.4</td>
<td>95.0±0.5</td>
<td>98.5±0.4</td>
<td>64.4±0.3</td>
<td>52.1±0.6</td>
<td>52.2±0.4</td>
<td>70.6</td>
</tr>
<tr>
<td>DAN</td>
<td>68.5±0.5</td>
<td>96.0±0.3</td>
<td>99.0±0.3</td>
<td>67.0±0.4</td>
<td>54.0±0.5</td>
<td>53.1±0.5</td>
<td>72.9</td>
</tr>
<tr>
<td>RTN</td>
<td>73.3±0.3</td>
<td>96.8±0.2</td>
<td>99.6±0.1</td>
<td>71.0±0.2</td>
<td>50.5±0.3</td>
<td>51.0±0.1</td>
<td>73.7</td>
</tr>
<tr>
<td>RevGrad</td>
<td>73.0±0.5</td>
<td>96.4±0.3</td>
<td>99.2±0.3</td>
<td>72.3±0.3</td>
<td>53.4±0.4</td>
<td>51.2±0.5</td>
<td>74.3</td>
</tr>
<tr>
<td>JAN</td>
<td>74.9±0.3</td>
<td>96.6±0.2</td>
<td>99.5±0.2</td>
<td>71.8±0.2</td>
<td>58.3±0.3</td>
<td>55.0±0.4</td>
<td>76.0</td>
</tr>
<tr>
<td>JAN-A</td>
<td>75.2±0.4</td>
<td>96.6±0.2</td>
<td>99.6±0.1</td>
<td>72.8±0.3</td>
<td>57.5±0.2</td>
<td>56.3±0.2</td>
<td>76.3</td>
</tr>
<tr>
<td>ResNet</td>
<td>68.4±0.2</td>
<td>96.7±0.1</td>
<td>99.3±0.1</td>
<td>68.9±0.2</td>
<td>62.5±0.3</td>
<td>60.7±0.3</td>
<td>76.1</td>
</tr>
<tr>
<td>TCA</td>
<td>72.7±0.0</td>
<td>96.7±0.0</td>
<td>99.6±0.0</td>
<td>74.1±0.0</td>
<td>61.7±0.0</td>
<td>60.9±0.0</td>
<td>77.6</td>
</tr>
<tr>
<td>GFK</td>
<td>72.8±0.0</td>
<td>95.0±0.0</td>
<td>98.2±0.0</td>
<td>74.5±0.0</td>
<td>63.4±0.0</td>
<td>61.0±0.0</td>
<td>77.5</td>
</tr>
<tr>
<td>DDC</td>
<td>75.6±0.2</td>
<td>96.0±0.2</td>
<td>98.2±0.1</td>
<td>76.5±0.3</td>
<td>62.2±0.4</td>
<td>61.5±0.5</td>
<td>78.3</td>
</tr>
<tr>
<td>DAN</td>
<td>80.5±0.4</td>
<td>97.1±0.2</td>
<td>99.6±0.1</td>
<td>78.6±0.2</td>
<td>63.6±0.3</td>
<td>62.8±0.2</td>
<td>80.4</td>
</tr>
<tr>
<td>RTN</td>
<td>84.5±0.2</td>
<td>96.8±0.1</td>
<td>99.4±0.1</td>
<td>77.5±0.3</td>
<td>66.2±0.2</td>
<td>64.8±0.3</td>
<td>81.6</td>
</tr>
<tr>
<td>RevGrad</td>
<td>82.0±0.4</td>
<td>96.9±0.2</td>
<td>99.1±0.1</td>
<td>79.7±0.4</td>
<td>68.2±0.4</td>
<td>67.4±0.5</td>
<td>82.2</td>
</tr>
<tr>
<td>JAN</td>
<td>85.4±0.3</td>
<td>97.4±0.2</td>
<td>99.8±0.2</td>
<td>84.7±0.3</td>
<td>68.6±0.3</td>
<td>70.0±0.4</td>
<td>84.3</td>
</tr>
<tr>
<td>JAN-A</td>
<td>86.0±0.4</td>
<td>96.7±0.3</td>
<td>99.7±0.1</td>
<td>85.1±0.4</td>
<td>69.2±0.4</td>
<td>70.7±0.5</td>
<td>84.6</td>
</tr>
</tbody>
</table>
Results

ACCURACY (VISDA CHALLENGE 2017)

CNN DAN RTN RevGrad JAN JAN-A

ALEXNET

28.7
51.6
52.03
53.32
58.1
58.51

RESNET

43.88
53.02
53.56
55.03
61.06
61.62

M. Long et al. (Tsinghua Univ.) JAN: Joint Adaptation Networks ICML 2017
Analysis

(a) DAN: A
(b) DAN: W
(c) JAN: A
(d) JAN: W

(e) \mathcal{A}-distance
(f) JMMD
(g) Convergence
Summary

- A joint adaptation network framework for deep transfer learning
- Two main contributions:
 - Joint adaptation of multilayer features and classifier predictions
 - Adversarial adaptation with semi-parametric domain discriminator
- State-of-the-art results on cross-domain & simulation-to-real datasets

Open Problems
- Randomized method for the multilinear operation across feature maps
- Kernel approximation of the universal kernel for distribution matching

Code available at: https://github.com/thuml/transfer-caffe